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A novel random forest approach 
to revealing interactions 
and controls on chlorophyll 
concentration and bacterial 
communities during coastal 
phytoplankton blooms
Yiwei Cheng1*, Ved N. Bhoot1, Karl Kumbier2,7, Marilou P. Sison‑Mangus3, 
James B. Brown2,4,5,6, Raphael Kudela3 & Michelle E. Newcomer1

Increasing occurrence of harmful algal blooms across the land–water interface poses significant risks 
to coastal ecosystem structure and human health. Defining significant drivers and their interactive 
impacts on blooms allows for more effective analysis and identification of specific conditions 
supporting phytoplankton growth. A novel iterative Random Forests (iRF) machine‑learning model 
was developed and applied to two example cases along the California coast to identify key stable 
interactions: (1) phytoplankton abundance in response to various drivers due to coastal conditions 
and land‑sea nutrient fluxes, (2) microbial community structure during algal blooms. In Example 1, 
watershed derived nutrients were identified as the least significant interacting variable associated 
with Monterey Bay phytoplankton abundance. In Example 2, through iRF analysis of field‑based 
16S OTU bacterial community and algae datasets, we independently found stable interactions of 
prokaryote abundance patterns associated with phytoplankton abundance that have been previously 
identified in laboratory‑based studies. Our study represents the first iRF application to marine 
algal blooms that helps to identify ocean, microbial, and terrestrial conditions that are considered 
dominant causal factors on bloom dynamics.

Marine phytoplankton represent a diverse set of microorganisms that span a wide range of cell  physiologies1, 
biochemical functions and ecological strategies. As key primary producers, microalgae play a crucial role in 
mediating the global carbon cycle and underpin food webs in oceanic and coastal  environments2,3. Phytoplank-
ton are responsible for ~ 50% of global primary production and net oxygen production, despite constituting less 
than 1% of global photosynthetic  biomass4,5. However, when present in unusually high densities, and/or coupled 
with biotoxin production, harmful algal blooms (HABs) are detrimental to the environment in many ways. �e 
frequency and magnitude of HABs have increased dramatically in the past decade and have been linked to the 
impacts of global climate  change6,7. A recent study has revealed the southern California coast to be a hotspot for 
algal bloom formation and domoic acid (DA) production (a marine biotoxin)8. In 2015, record breaking concen-
trations of DA produced by several Pseudo-nitzschia species, notably the diatom, Pseudo-nitzschia australis bioac-
cumulated and poisoned coastal marine organisms, and caused the shutdown of shell�sh and �sh industries along 
the U.S. West  Coast9. Estimated economic damages associated with blooms exceed $20 million USD per  year10.

Current research �ndings point to multiple terrestrial and aquatic factors contributing to the formation of 
HABs in coastal  environments8,11–14. Along the Californian coast, Ryan et al.14 analyzed the 2015 HAB outbreak 
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utilizing datasets collected in the Monterey Bay region and showed that upwelling of nutrient-rich cold water, 
contributed to the algal blooms. However, the authors noted this condition alone was insu�cient to trigger the 
production of DA by Pseudo-nitzschia. Further analysis of water chemistry revealed that low silicate to nitrate 
ratios reduced diatom growth, allowing DA concentration to build up within individual  cells14. Other studies have 
investigated the important role of coastal watershed exports at the land–ocean interface contributing nutrients 
that can stimulate bloom  formation11–13. Studies along the U.S. East Coast of Florida have pointed to elevated 
nitrogen and phosphorus concentrations in agricultural runo� as a major cause of these toxic algae  outbreaks15–17, 
while Howard et al.18 reported that in southern California, wastewater e�uent can provide a signi�cant source 
of nitrogen to coastal waters, promoting the development of HABs.

In addition to the abiotic factors, biotic factors such as microbial community assemblage have been hypoth-
esized to be key factors that dynamically interact with HAB. Some of these factors include the release of putative 
metabolites by heterotrophic bacteria that can suppress algal  growth19–21, promotes algal  growth22 or release 
remineralized nutrients from microbial degradation of algal substrates that sustains primary  production23. Con-
sequently, the interactions of these factors (i.e. terrestrial input, upwelling and microbial controls) are crucial for 
two reasons: a) they can de�ne the overall environmental conditions that are foundational for bloom establish-
ment, and b) co-occurring microbial assemblage may de�ne the succession of HAB species and the fate of organic 
carbon transformation via remineralization. �e synergistic interactions of both biotic and abiotic conditions in 
regulating HAB occurrences remain a key knowledge gap in phytoplankton bloom ecology.

Interactions between marine bacterial and phytoplankton communities can shape algal bloom develop-
ment trajectories, impact ecosystem diversity, and modify water chemistry and have been recognized as a criti-
cal microbial  loop24. Phytoplankton-associated bacteria break down photosynthate-released dissolved organic 
 matter25 and dead algal  cells26 and assimilate these compounds for their own growth. Bacteria, in turn, provide 
macro- (e.g. �xed nitrogen) and micro-nutrients (e.g. vitamin  B12) for algal  growth27,28. Due to such close phy-
toplankton-bacteria interactions, phytoplankton biomass and bacterial biomass are tightly  coupled23. A recent 
study o� the California Coast indicated that bacterial composition and structure are strongly in�uenced by 
phytoplankton species in blooms, and that algal biotoxin can play a role in limiting bacterial  diversity29.

With increasing recognition of HAB problems, investments have gone into early detection and prediction of 
HABs through real-time monitoring of ocean, lagoon, and coastal watershed systems at regional to global  scales30. 
In addition, technological advancement and proliferation of ‘big’ datasets have led to machine learning techniques 
as numerical tools that reveal insights into HAB dynamics and predict HAB occurrences in ways that still chal-
lenge physically-based  models31. Recent studies explored the application of other machine-learning approaches 
(i.e. multiple linear regression, regression tree, support vector machine and random forest) to predict algal blooms 
using remote-sensing  data32,33. Asnaghi et al.34 used a Quantile Random Forest to predict the concentration of 
the toxic benthic dino�agellate Ostreopsis cf. ovata in the Ligurian Sea (North-western Mediterranean). A math-
ematical model predicting the occurrence of Alexandrium minutum in coastal waters of the NW Adriatic Sea was 
developed using a Random Forest (RF), which is a machine learning technique, trained with molecular data of 
A. minutum occurrence obtained by molecular PCR  assay35. Other examples include self-organizing  maps36 and 
network-based community detection  approaches37. �ese RF studies identi�ed independent controls over algal 
blooms and characterized their relative  importance34,35. However, thus far, no RF analysis conducted reveals the 
interactive impacts of these key controls on phytoplankton bloom formation. Given that blooms follow highly 
non-linear  pattern38, improvement in our understanding of relationships between bloom dynamics and interac-
tions between key controls is warranted.

Using empirical examples, we demonstrate the utility of a novel RF algorithm, iterative random forest (iRF)39, 
in extracting stable nonlinear interactions in two algal bloom related biological scenarios in Northern California, 
USA. In the �rst example, we explore impacts of inland and marine nutrient conditions on algal abundance. In 
the second example, we apply iRF to a marine microbiome dataset to explore interactions between microbial 
community structure and phytoplankton during algal blooms. To our knowledge, this is the �rst application 
of iRF to a marine dataset that explores and identi�es higher order interactions between key biological and 
environmental controls.

Methods
Iterative Random Forest. We utilized iterative Random Forest (iRF) in this study. �e RF  model40 is an 
ensemble-based machine learning method, where each RF includes a �xed number of Decision Trees (DT). 
Each model statistically learns patterns and rules using a bootstrapping technique from correlations between 
explanatory variables and a response  variable41. �e outputs of the trees are averaged to prevent over dependence 
on any single DT model and reduce the risk of over-�tting. A trained/�tted RF model is then used to predict a 
response variable given a set of explanatory variables. In addition, RF models also provide statistically produced 
measures such as permutation importance (also known as feature importance) to quantify the relative impact of 
the explanatory variables on the response variables. While RF is able to uncover nonlinear and linear relation-
ships between variables, and evaluate the relative importance of the individual explanatory variables, identify-
ing the interactions between these variables remains challenging due to the potentially intractable number of 
 interactions39.

Basu et al.39 developed the iRF algorithm as a computationally e�cient approach towards interpreting stable 
high order interactions between the variables in a �tted RF. Readers are referred to Basu et al.39 for detailed 
description of the iRF and applications to genomic datasets. Here we brie�y describe the main iRF work�ow: (1) 
Iteratively grow N number of feature re-weighted RF. �e iterations are based on the Gini Importance (GI) index, 
which is a measure of information gain (feature importance) in each decision pathway. (2) Extract decision rules 
from ensemble RF outputs. Building upon the generalization of the random intersection trees algorithm (RIT), 
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the resulting RF map from step (1) allows users to identify prevalent  interactions41. (3) Perform an additional 
layer of bootstrapping to assess the stability of the recovered interactions.

Dataset, response and explanatory variables. We provide two examples of iRF in this study. Methods 
and datasets used for each example are provided below.

Example 1 We explore the role of inland (terrestrial) and oceanic abiotic controls and interactions during HABs. 
Marine data were collected at the Santa Cruz Wharf on a weekly basis by the Central and Northern Califor-
nia Ocean Observing System (CeNCOOS). �e dataset ranged from October 19, 2011 to December 19, 2018 
(Fig. S1). Due to signi�cant sections of missing values, observations from January 17, 2018 to December 19, 
2018 were not considered. Ocean abiotic factors collected by CeNCOOS at the SCW consisted of nitrate (µM), 
phosphate (µM), silicic acid (Si, µM), and domoic acid (mg/L). Detailed descriptions of sampling procedures 
and post processing can be found in Lee and Sison-Mangus42 and Sison-Mangus et al.29. iRF was �rst applied 
to this CeNCOOS -SCW dataset using in-situ measurements of chlorophyll-a as the response variable assuming 
chlorophyll-a is a reasonable proxy for algal biomass.

Inland data were obtained from the Coastal Santa Cruz watershed (HUC8 – 180600001 – San Lorenzo-
Soquel), which contain a number of rivers and creeks draining into the Paci�c Ocean (Fig. S2). Water quality 
data were obtained from the California Environmental Data Exchange Network (CEDEN). CEDEN data were 
selected between January 1, 2000 to December 31, 2018, that included total ammonium, dissolved nitrate, total 
Kjeldahl nitrogen, total nitrogen, dissolved orthophosphate and total phosphorus, and cover the same time 
period of analysis as the CeNCOOS-SCW dataset mentioned above. Discharge data were obtained from the 
USGS National Water Information System (NWIS).

We used water quality data and discharge data from the Santa Cruz watershed to calculate �ow normalized 
inland nutrient �uxes (FNFs) which are the mass �uxes of nutrients that reach the ocean from the San Lorenzo 
River (SLR) and Soquel Creek (SCk). Flow normalization is the process using the probability density distribution 
of discharge values in order to remove any major yearly variations of discharge. Individual contributions of SLR 
and SCk were historically recreated through Weighted Regressions in Time, Discharge, and Seasons (WRTDS, 
see details in Supplementary Information)43. FNF, calculated as kg/day in WRTDS, was summed for SLR and 
SCk on a weekly time scale, and represents the approximate watershed contributions to coastal marine water 
quality. WRTDS FNF estimates, and measured concentrations are provided in Fig. S3. All WRTDS FNF data 
were used as explanatory variables in the iRF model.

Since the main aim of Example 1 is to identify key factors and interactions among aquatic variables (terrestrial 
and oceanic) governing the formation of HABs, we evaluate iRF models across the oceanic, and oceanic + inland 
dataset. We used iRF �rst on the CeNCOOS data only to evaluate just the oceanic in�uence (oceanic CeNCOOS 
based SCW only), then the iRF analysis was repeated on a combined dataset using the CeNCOOS oceanic data 
and inland nutrient �uxes from the WRTDS methodology to evaluate the terrestrial and oceanic combined 
controls (CenCOOS + WRTDS Inland, SCW + Inland).

Example 2 We used a marine microbial community dataset from the Santa Cruz Wharf (SCW) in Monterey 
Bay (36.958 °N, − 122.017 °W), with 55 unique sampling dates and a total of 152 samples including replicate 
samples from April 3, 2014, to November 11, 2015 to explore abiotic and biotic interactions between prokary-
otes, phytoplankton, and environmental conditions during HABs. �e SCW dataset collection, description, 
and analysis details can be found in Lee and Sison-Mangus42 and Shuler et al.44. We used these data to explore 
microbial abundance patterns driven by harmful algal bloom environmental and biological drivers. We apply iRF 
to this microbiome dataset to: (1) identify impacts of physical, chemical and biological drivers, and (2) elucidate 
interactions between these drivers, on microbial abundances.

Abiotic (environmental) variables consisted of ammonium  (NH4, µM), silicic acid (Si, µM), nitrate (N, µM), 
phosphate (P, µM), temperature (WTMP, oC), and Domoic Acid (DA, mg/L). Biotic variables include two phyto-
plankton taxa represented by the dino�agellate group Alexandrium spp. (Alx. Spp. cells/L) and Pseudo-nitzschia 
in the size range of the functional group seriata (Ps-nt. Seri. cells/L), chlorophyll-a (Chl-a. mg/m3) as a proxy 
for biomass, and the eleven most abundant operational taxonomic units (OTUs) from the sequence samples. 
Alexandium spp. is being monitored in the SCW because it (together with Pseudo-nitzschia) represents a key 
toxin producing algae. One missing value for both Ps-nt. Seri. and Alx. Spp. was �lled in using the mean of the 
points before and a�er. �e eleven OTUs include: Octadecabacter_1, Octadecabacter_2, Euryarcheota Marine 
group II, Polaribacter, Flavobacteriaceae_1, Flavobacteriaceae_2, Loktanella, Cryomorphaceae, Candidatus Porti-
era, Idiomarina and Persicirhabdus. Microbial sequences were derived from 3 μm membrane �lters, suggesting 
the presence of both free-living and particulate-attaching microbial OTUs. Of these microbes, the taxa Rho-
dobacteraceae are known to be free-living45,46, while Cryomorphaceae, Polaribacter and Flavobacteriaceae are 
particle-associated29,47,48. �ese samples were processed using 16 s rRNA sequencing, further details on processing 
procedures can be found in Kempnich and Sison-Mangus49 and Lee and Sison-Mangus42. Extended SCW data 
descriptions can be found in Sison-Mangus et al.29 and data are shown in Fig. S4. Of the 274 OTUs present the 
eleven OTUs chosen were those with the highest counts. Before analysis, we used the Compositional Data Analy-
sis framework, outlined in Quinn et al.50, to normalize the OTU data using code produced by Kempnich and 
Sison-Mangus49 which used the “zCompositions” and “compositions” R  packages51,52. �is process �rst modi�es 
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counts of zeros to small positives values while holding the ratios of non-zeros, converts to relative abundance, 
and then performs a centered log-ratio transformation.

Modeling procedure. In each example, to determine the best performing iRF model, we trained 25 models 
(for Example 2, 25 models for each OTU) with randomly selected training and testing data. For Example 1, the 
response variable is chlorophyll-a. For Example 2, the response variables are the eleven most abundant microbial 
OTUs. For Example 2 due to the presence of replicates in the data, we randomly selected one replicate for each 
set of replicates, leaving 55 total data points. We used a strati�ed sampling technique to select the training/test-
ing data, where 75 percent of the data was used as training and the remaining 25 percent held out for testing. 
�e 95th percentile of chlorophyll-a, roughly two standard deviations from the mean, was used for Example 1 to 
target speci�cally bloom conditions. �e median was used for Example 2 as this was the default setting for iRF 
and was le� as is to avoid biasing the selection using any other speci�cation.

Each model was tuned with 5 iterations, 20–30 bootstraps, and 500 trees; random intersection trees (RITs) 
were given a depth of 5 with 500 total trees, 2 children nodes for each RIT, and the median or 95th percentile 
response value, per the respective example, for leaf node threshold for converting to binary classes (class-0 and 
class-1). Performances of the models were determined using Nash–Sutcli�e E�ciency (Eq. 1).

where N = total number of observations,  Oi = observations,  Omean = mean of the observations, and  Pi = predictions 
from the iRF model.

In each example, the relative importance of the explanatory variables was evaluated using the GI for all 25 
simulations. GI (a.k.a mean decrease in impurity, MDI) is a measure of variable importance that is calculated by 
summing the number of times a variable is used to split a node, normalized by the number of samples it splits. 
�e higher the GI, the higher the variable importance.

Next, only the best performing model for each set of iRF models were considered for evaluation of interac-
tions. Measures such as stability and precision of the interactions were evaluated. Stability is the proportion of 
bootstrap samples in which the interaction was recovered from the total number of bootstrap samples, indicating 
how recoverable an interaction is. Precision is the proportion of class-1 observations in leaf nodes containing the 
interaction, showing the degree of potential in�uence of the interaction on class-1 observations.

Results and discussions
Example 1: inland and marine controls over coastal phytoplankton abundance. Observed 
chlorophyll-a showed seasonal patterns across years (2011–2018), with bloom initiation in the spring, peaking 
around summer and tapering o� in fall (Fig. S5-Observed). Simulated (with iRF) chlorophyll-a captured similar 
seasonal trends (Fig. S5-Simulated). Utilizing only the CenCOOS-SCW dataset, the iRF models �t the training 
data well, with maximum and minimum NSE values at 0.59 and 0.34 respectively (Fig. 1A). When predicting the 
testing data, model performance is better than training, with maximum and minimum NSE values at 0.75 and 
0.34 respectively. Incorporation of the inland nutrient �ux (WRTDS-CEDEN) seemed to nominally improve 
model performance with a slight increase in median NSE (median improvement from 0.53 to 0.55 on testing 

(1)NSE = 1 −

∑
N

i=1
(Oi − Pi)

2

∑
N

i=1
(Oi − Omean)

2

Figure 1.  Nash–Sutcli�e E�ciencies (NSE) of the iterative random forest models when tested against training 
and testing data. (A) iRF NSE results for the Santa Cruz Wharf (SCW) only dataset, and (B) iRF NSE results for 
the SCW + inland dataset.
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data) (Fig. 1B). Maximum and minimum NSE values at training and testing (training max = 0.61, min = 0.33, 
testing max = 0.81 min = 0.43) are only a slight improvement respectively (Fig. 1).

For iRF simulations utilizing both the SCW only and SCW + inland datasets, iRF revealed the top two features 
to be ammonium and silicic acid concentrations at the wharf (Fig. 2a, b). For iRF analysis of SCW + inland data-
sets, nitrate and ammonium contributions from the watershed are less important than nutrient concentrations 
at the SCW (ammonium, silicic acid, phosphate and nitrate). In addition, iRF also identi�ed stable interactions 
between wharf measured ammonium, silicic acid, phosphate and nitrate (Fig. 2c) despite the inclusion of inland 
data (Fig. 2d). In both cases, iRF consistently identi�ed stable interactions between silicic acid and ammonium 
concentrations at the wharf [sta (ammonium(−)_silicic acid (+)) = 1.0], and silicic acid and nitrate concentra-
tions at the wharf [sta (nitrate(−)_silicic acid (+)) = 0.9], suggesting the importance of the Silicate:Nitrogen ratio.

In this study, iRF highlighted the importance of nutrient control, and speci�cally the Silicate:Nitrogen ratio 
over phytoplankton biomass in Monterey Bay, similar to earlier studies that have identi�ed coastal waters as 
nitrogen  limited53,54. Springtime upwelling of nutrient rich water into the bay can jumpstart phytoplankton 
growth, with most of the bloom retained within the bay. Analysis of average nutrient pro�les in the Monterey 
Bay region for April–June (1993–2016) indicate high Silicate:Nitrate  ratios14 which can enhance productivity 
when concentrations are also high. However, when the Silicate:Nitrogen ratio is lowered, as in the case of spring 
to summer of 2015, this condition contributed to the highest recorded production of  DA14. �e form of nitrogen 
is also important in controlling growth and toxic production. Studies have shown that ammonium contributes to 
greater toxin production than nitrate in the marine dino�agellate Alexandrium55,56, while diatom toxin produc-
tion can be enhanced with addition of  urea12,57.

Onsets of coastal HABs have been attributed to both oceanic and inland watershed factors. Along the Cali-
fornia coast, studies suggest that seasonal upwelling of nutrient-rich cold water coupled with anthropogenic 
nutrient inputs (e.g., agriculture, urbanization) from watersheds have contributed to algal  blooms10–13,18. In our 
study, we found the inclusion of watershed derived inland dissolved nutrient data nominally (but consistently) 
improved model performance when compared against simulations utilizing only the oceanic SCW data. However, 
we emphasize that watershed nutrient �uxes were not identi�ed as a dominant control despite indications from 
prior studies that terrestrially derived nutrients should be a factor. While upwelling events mostly provide ample 
dissolved nutrients to fuel algal growth in Monterey Bay, watershed exports of dissolved nutrients (particularly 
N) can also contribute to phytoplankton growth in the  bay58,59. Previous studies have identi�ed the coastal Pajaro 
River draining the San Lorenzo-Soquel watershed as a key predictive feature on blooms during the fall and 
 winter58. In this study, the San Lorenzo and Soquel rivers (known for lower nutrient loadings than the Salinas 
and Pajaro rivers) were chosen for their proximity to SCW. Lane et al.58 also identi�ed oceanic chlorophyll a and 

Figure 2.  (A and B) Gini Importance of explanatory variables for iterative random forest models utilizing 
(le�) Santa Cruz Wharf (SCW) data and (right) SCW + inland data. (C and D) �e 8 most stable interactions 
recovered by iRF with the highest NSE utilizing (le�) Santa Cruz Wharf (SCW) data and (right) SCW + inland 
data. Black triangles represent stability values while blue dots represent precision values.
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silicic acid as key predictive variables on yearly time-scales, which suggests there is an important trade-o� in 
nutrient sources to algal growth depending on the time of year.

Our results help to reveal two key pieces of information about the importance of oceanic versus terrestrially 
derived nutrients: (1) on the Paci�c Coast, inland nutrient �uxes may be more relevant during periods when 
contributions from upwelling are less signi�cant. Our work did not include oceanic upwelling variables, such as 
the Bakun index or the recently developed Coastal Upwelling Transport Index (CUTI) and Biologically E�ective 
Upwelling Transport Index (BEUTI), and we suggest future studies utilize this as an  indicator60,61. Other con-
founding sources of nutrients include groundwater discharge to coastal  zones59,62,63. (2) iRF models such as ours 
can help reveal which oceanic and terrestrially derived variables are important contributing factors to blooms. 
Other watersheds contributing to coastal zones (e.g. Great Lakes, Delaware Bay, Florida) have been implicated for 
their outsized roles on blooms (e.g. Howard et al.18). In southern California, rainfall patterns have been suggested 
as an important factor impacting algal bloom  dynamics64 because storm water discharge brings greater than 95% 
of the annual runo� from coastal watersheds into coastal  ecosystems65. As a result, freshwater inputs can have a 
major impact on density strati�cation and nutrient levels. With nitrogen loading projected to increase through 
climate-induced precipitation by 19% for the major river systems in the  US17, these coastal systems may be shi�-
ing towards more inland control with time. Whether or not watersheds play a role, the magnitude of that role, 
and how coastal exports will change in the future is important because HAB management strategies o�en point 
to watersheds as the origin of nutrients associated with blooms, and quantitative information will help to close 
this costly decision-making gap. Future work will assess a larger and more dynamic range of coastal contributions.

Example 2: interactions between phytoplankton, microbial communities, and abiotic fac‑
tors. In Example 2, we apply iRF to elucidate interactions between environmental and phytoplankton drivers 
(explanatory variables) on microbial abundances (response variables) to explore the dynamics between HABs 
and bacteria. We emphasize that this methodology is to identify interactions between variables (phytoplankton-
bacteria interactions) and not necessarily to predict one variable or another. During both training and testing, 
performance of iRF models as measured by Nash–Sutcli�e E�ciencies (NSE) were found to have notable dif-
ferences between microbial OTUs (Fig. 3). We evaluated the interactions in the top performing model for each 
OTU. Although an NSE > 0.65 is the benchmark value that earlier studies have identi�ed as “acceptable” for 
model performance, during testing we found that only Polaribacter and Flavobacteriaceae produce models above 
this  threshold66. Further, models do not always perform well as shown by simulations with NSE values below 0 
(Fig. 3). �e maximum NSE value is 1.

We evaluated the GI index of explanatory variables for each microbial OTU in this study (Fig. 4). iRF analysis 
revealed one or more of the biological variables (i.e. Alexandrium spp., Pseudo-nitzschia seriata, chlorophyll-a) 
to be dominant interacting drivers on the abundances of the microbial OTUs: Octadecabacter (1 and 2), Flavo-
bacteriaceae (1), and Marine Group II. In particular, Pseudo-nitzschia seriata class consistently remained a key 
driver to the microbial OTUs belonging to the Octadecabacter genera (Rhodobacteraceae), an important bacterial 
group that participates in marine biogeochemical cycling and bio�lm  development67,68, and has been associated 
with  blooms69. Similarly, the Polaribacter OTU, a Bacteroidetes genera, is highly associated with P. seriata and 

Figure 3.  Nash–Sutcli�e E�ciencies (NSE) of the iterative random forest models when tested against (a) 
training and (b) testing data subsets of microbial OTUs that are part of the marine microbiome dataset collected 
from Santa Cruz Wharf. X-axes are the microbial strains and the y-axes are the NSE values.
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nitrogen, as similarly seen during Pseudo-nitschia spring blooms in San Pedro Bay,  USA70. Alexandrium spp was 
identi�ed as a key driver to an OTU belonging to Flavobacteriaceae families. It should be noted that Alexandrium 
spp is usually a minor component of the phytoplankton assemblage at SCW, and as such, this result may actually 
be an indicator of dino�agellate in�uence. Additionally, iRF analysis revealed chemical species (i.e. silicic acid 
and ammonium) as key drivers for the remaining four OTUs (Polaribacter, Candidatus Portiera, Loktanella, 
Flavobacteriaceae 1, and Persicirhabdus). Previous analysis of this dataset showed silicic acid to be associated 
with abundance for some  OTUs44.

Stable interactions identi�ed by iRF (Table 1) point to roles of the microbial OTUs at di�erent stages of the 
bloom events. For each microbial OTU, we used the iRF model with the highest NSE to further elucidate stable 
interactions between key explanatory variables (Table 1). Measures of stability and precision of the interactions 
are evaluated and compared in Table 1. In Table 1, stabilities for most interactions are 1 or near 1, thus only 
precision is shown in the table. Stable interactions as identi�ed through iRF analysis of the dataset are consistent 
with previously observed microbial-phytoplankton-environmental  interactions20,25,26,71–73.

Speci�cally, we �nd stable interactions relating to high phytoplankton abundance (bloom increase) in the 
following two OTUs (with NSE greater than 0.65): Flavobacteriaceae_1 and Polaribacter. Flavobacteriaceae_1 
abundances are related to the interaction of increasing Pseudo-nitzschia seriata, silicic acid and nitrogen (Fla-
vobacteriaceae_1, �rst and third interactions in Table 1). Polaribacter abundances are related to the interaction 
of increasing Pseudo-nitzschia seriata, silicic acid and nitrogen (Polaribacter, second to fourth interactions in 
Table 1). �is assemblage of OTUs may have developed host-speci�c interactions with Pseudo-nitzschia seriata 
as shown in a recent study on Pseudo-nitzschia-microbiota  association20. �ese interactions highlight the impor-
tant role of microbial OTUs during bloom events. Flavobacteriaceae have been found to be abundant during 
blooms associated with diatoms or  dino�agellate70,74–76. �e family Flavobacteriaceae has been recognized for 
their important roles in the microbial loop in coastal  environments71,72 due to their ability to breakdown high 
molecular weight photosynthate-released organic  compounds26,77 and dead algal  cells26.

Results from iRF analysis point to several potential future studies that may better decipher the ecological 
functions or algal-speci�c associations of various bacterial groups. Controlled in vitro experiments can be con-
ducted to elucidate speci�c bacteria-phytoplankton (e.g. Flavobacteraceae- phytoplankton) physical interactions, 
bloom formation, toxin production, and the associated consequences on nutrient (e.g. coastal carbon) cycling. 
Future �eld studies should also consider micro-nutrient measurements (e.g. iron). Idiomarina (one of the OTUs 
investigated in this study) has been characterized as a siderophore-producing bacteria that enhances microal-
gal growth under iron  de�ciency78. However, no iron data were available for iRF analysis in this study. Future 
numerical modeling studies of interacting phytoplankton-bacterial communities can also help quantify �uxes 
exchanged within the community and with the environment, and simulate growth. Future analysis can also focus 
on elucidating the important interacting and mediating e�ects of microbial OTUs on coastal nutrient and element 
dynamics and how these e�ects either favor or limit HABs (i.e. conditions favoring dino�agellate/diatom HABs).

Figure 4.  Feature importance of explanatory variables for each bacterial OTU. X-axes are the explanatory 
variables. �e explanatory variables are categorized and color coded: red – chemical, grey – physical, blue – 
biological. Biotic (environmental) ocean measures consisted of ammonium  (NH4, µM), silicic acid (Si, µM), 
nitrate (N, µM), phosphate (P, µM), temperature (WTMP, °C), and Domoic Acid (DA, mg/L). Biotic measures 
include Alexandrium spp. (Alx. Spp. cells/L), Pseudo-nitzschia in the size range of the functional group seriata, 
(Ps-nt. Seri. cells/L), and chlorophyll-a (Chl-a. mg/m3) as a proxy.
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Conclusions
In this study, the novel iterative random forest (iRF) model was applied to two algal bloom related cases along 
the California coast to identify key governing factors and stable interactions surrounding: (1) phytoplankton 
abundance in response to coastal conditions and inland nutrient �uxes, and (2) microbial abundance and harm-
ful algal bloom environmental and biological conditions. Our study represents the �rst such iRF application to 
marine algal blooms. Further we utilized iRF to elucidate stable interactions between key drivers. In the �rst 
case, iRF helped reveal that in Monterey Bay, inland nutrient �uxes may be more relevant during periods when 
contributions from upwelling are less signi�cant. Given the major inter-annual variability in upwelling and 
precipitation conditions along the Paci�c Coast from climate oscillations (e.g. El Niño Southern Oscillation), 
the strong variability in watershed versus oceanic drivers is an area of future research. In the second case, iRF 
identi�ed microbial abundance patterns associated with algal bloom ecology. Speci�cally, we found a quanti�-
able stable interaction related to algal blooms between Pseudo-nitzschia and Polaribacter and Flavobacteraceae 
OTUs. �e dynamics between these algal-microbial interactions and the surrounding abiotic environment will 
require future studies to better decipher the ecological functions, abiotic interactions, and algal-speci�c associa-
tions of these bacterial OTUs.
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