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ARTICLE

A novel rapamycin analog is highly selective
for mTORC1 in vivo
Katherine H. Schreiber1,11, Sebastian I. Arriola Apelo2,3,4,11, Deyang Yu3,4,5, Jacqueline A. Brinkman3,4,

Michael C. Velarde6,9, Faizan A. Syed3,4, Chen-Yu Liao 1, Emma L. Baar3,4, Kathryn A. Carbajal3,4,

Dawn S. Sherman3,4, Denise Ortiz1,7, Regina Brunauer 1,10, Shany E. Yang3,4, Stelios T. Tzannis6,

Brian K. Kennedy1 & Dudley W. Lamming 3,4,5,8

Rapamycin, an inhibitor of mechanistic Target Of Rapamycin Complex 1 (mTORC1), extends

lifespan and shows strong potential for the treatment of age-related diseases. However,

rapamycin exerts metabolic and immunological side effects mediated by off-target inhibition

of a second mTOR-containing complex, mTOR complex 2. Here, we report the identification

of DL001, a FKBP12-dependent rapamycin analog 40x more selective for mTORC1

than rapamycin. DL001 inhibits mTORC1 in cell culture lines and in vivo in C57BL/6J mice,

in which DL001 inhibits mTORC1 signaling without impairing glucose homeostasis and with

substantially reduced or no side effects on lipid metabolism and the immune system. In cells,

DL001 efficiently represses elevated mTORC1 activity and restores normal gene expression

to cells lacking a functional tuberous sclerosis complex. Our results demonstrate that highly

selective pharmacological inhibition of mTORC1 can be achieved in vivo, and that selective

inhibition of mTORC1 significantly reduces the side effects associated with conventional

rapalogs.
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A
ge-related diseases, including cardiovascular disease,
cancer, neurodegenerative disease, and type 2 diabetes,
represent the greatest healthcare challenges in a graying

world. Targeting the aging process through dietary or pharma-
cological interventions has been advanced as way to prevent or
delay many age-related diseases simultaneously, extending
healthspan. Over the past decade, significant scientific activity has
focused on the anti-aging potential of rapamycin, an inhibitor of
the serine/threonine protein kinase mTOR (mechanistic Target
Of Rapamycin), which can extend the lifespan of organisms
including yeast, worms, flies, and mice1–4. Excitingly, rapamycin
also prevents or delays the onset of age-related diseases in mice,
including cancer and Alzheimer’s disease, rejuvenating the aging
mouse heart, and ameliorating age-related cognitive decline5–9.
Scientists are now beginning to explore the possibility that
rapamycin may be of therapeutic benefit for age-related diseases
in dogs and humans10–12.

Unfortunately, treatment with rapamycin and its analogs
(rapalogs) is associated with negative side effects that limit their
potential utility as anti-aging therapies. These side effects include
immunosuppression, glucose intolerance, an increased risk of
type 2 diabetes, and disruption of lipid homeostasis13–19.
Although short term, low dose, and/or intermittent rapalog-based
regimens may partially limit side effects11,20–22, and trials of
rapamycin in the elderly have begun11,22,23, the efficacy of such
treatment regimens in treating age-related diseases remains to be
determined, particularly as the effects of rapamycin on longevity
are dose-dependent24,25. All three FDA-approved rapalogs—sir-
olimus, everolimus, and temsirolimus—have similar effects on the
glucose metabolism and immune cell profile of mice20. It is clear
that there is an urgent need for new molecules that inhibit mTOR
signaling with reduced side effects26.

mTOR is found in two distinct protein complexes. mTORC1,
which is acutely sensitive to rapamycin, promotes cell growth,
ribosomal biogenesis, and protein translation through substrates
that include S6K1 and 4E-BP1, and regulates autophagy via
ULK1. mTORC2, originally characterized as rapamycin resis-
tant27, functions primarily as a downstream effector of the
insulin/IGF-1 signaling pathway, through substrates that include
AKT15. Several years ago, while investigating the molecular basis
of rapamycin-mediated glucose intolerance, we made the sur-
prising discovery that long-term treatment with rapamycin
inhibits not only mTORC1 but also inhibits mTORC2 in vivo in
many metabolically active tissues28. This discovery, in combina-
tion with extensive results from genetic manipulation of model
organisms, has led to the consensus that the beneficial effects of
rapamycin on health and longevity are mediated solely by inhi-
bition of mTORC1, while the off-target inhibition of mTORC2 is
responsible for many of the negative side effects of rapamycin.
Thus, many of the side effects of rapalogs could be avoided by
selectively inhibiting mTORC1 signaling14.

Here, we report the identification of DL001, a rapamycin analog
with much greater selectivity for mTORC1 than rapamycin. We
show that DL001 selectively inhibits mTORC1 both in cell culture
and in vivo in mice. Critically, we find that unlike rapamycin,
DL001 does not disrupt glucose or lipid homeostasis, and has
substantially reduced effects on the immune system. Our results
demonstrate that highly selective pharmacological inhibition of
mTORC1 can be achieved in vivo, and that such a compound
minimizes the negative metabolic and immunological impacts
associated with rapamycin and other conventional rapalogs.

Results
Identification and characterization of DL001 in vitro. Although
all FDA-approved rapalogs inhibit both mTOR complexes20,29,

recent work investigating the molecular mechanism by which
rapamycin disrupts mTORC2 (ref. 30) suggested that rapamycin
derivatives with reduced activity against mTORC2 but full
potency against mTORC1 might exist. We therefore screened a
library of approximately 90 rapamycin analogs in order to
identify compounds with reduced activity against mTORC2; for
the screens, we primarily utilized PC3 cells (Supplementary
Fig. 1a), a cell line in which mTORC2 is exquisitely sensitive to
rapamycin31. While a majority of the compounds demonstrated
strong inhibition of mTORC1 (as indicated by reduced phos-
phorylation of the mTORC1 downstream readout S6 S240/S244),
we also identified several compounds with reduced inhibition of
mTORC2. We selected DL001 (Fig. 1a) for further characteriza-
tion due to its strong mTORC1 inhibitory activity.

We compared the effect of rapamycin and DL001 on mTORC1
and mTORC2 activity in PC3 cells across a range of doses
(0.3–100 nM) via western blotting, assessing the phosphorylation of
the mTORC1 substrate S6K1 and its substrate S6, the phosphor-
ylation of rapamycin-sensitive and -insensitive residues on 4E-BP1
(S65 and T37/S46, respectively), and the phosphorylation of the
mTORC2 substrate AKT S473. While rapamycin and DL001 had
very similar effects on mTORC1 activity (Fig. 1b, Supplementary
Fig. 1b–d), the effect of these compounds on mTORC2 was
dramatically different (Fig. 1b, c). The IC50

mTORC2 for rapamycin
in this assay was approximately 10 nM, while the IC50

mTORC2 for
DL001 was unable to be determined, as the experiments did not
achieve greater than 50% inhibition at the levels tested, but was in
excess of 100nM. We observed similar effects on other mouse and
human cell lines (Supplementary Fig. 2a, b).

In order to validate the above western blot analysis and to
determine accurately the IC50

mTORC2 for DL001, we utilized a
commercially available high-sensitivity chemiluminescent assay
(AlphaLISA). PC3 cells treated with either vehicle or a range of
doses of either rapamycin or DL001 for 24 h were analyzed to
determine the phosphorylation of S6 S240/S244 and Akt S473. As
shown in Fig. 1d, in our assay we found that rapamycin inhibited
mTORC1 with an IC50 of 63.3 pM, whereas DL001 inhibited
mTORC1 with a very similar IC50 of 74.9 pM. In contrast, while
rapamycin inhibited mTORC2 activity with an IC50 of 534.9 pM,
DL001 inhibited with a significantly greater IC50 of 26,245.4 pM
(Fig. 1e). Thus, while both rapamycin and DL001 are similarly
potent mTORC1 inhibitors, DL001 is over 430× more selective
for mTORC1 than mTORC2—and is 44-fold more selective for
mTORC1 than rapamycin (Fig. 1f).

Finally, to comprehensively compare the functional impact of
rapamycin and DL001 treatment on cellular processes down-
stream of mTORC1, we performed quantitative proteomics. We
observed that rapamycin and DL001 both significantly down-
regulated ribosomal proteins and proteins involved in translation
(Fig. 1g, h), while upregulating proteins involved in macro-
autophagy and lysosomal function (Fig. 1i).

Rapamycin analogs act acutely to inhibit mTORC1 via a
noncompetitive mechanism that involves the formation of a
ternary complex between a FK506-binding protein (FKBP),
rapamycin, and mTOR32. While rapamycin’s activity is most
closely associated with FKBP12, it was recently shown that other
FKBPs, including FKBP51, can also be induced by rapamycin to
bind to and inhibit mTOR activity33. These findings, and the
recent demonstration that FKBP12 is essential for the inhibition
of mTORC2 by rapamycin30, have led some of us to suggest that
rapamycin derivatives that do not bind to FKBP12 would be more
selective for mTORC1. We tested if DL001 might act indepen-
dently of FKBP12 by treating PC3 cells expressing shRNAs
against either FKBP12, FKBP51, or a nonspecific control with a
range of doses (0.3–100 nM) of DL001 and rapamycin, and
western blotting to determine the phosphorylation of S6 and AKT
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S473 (Fig. 2a–d). We find that knockdown of FKBP12, but not
FKBP51, inhibits the ability of both rapamycin and DL001 to
inhibit the phosphorylation of S6 (Fig. 2e). Likewise, the effect of
both compounds on mTORC2 was completely dependent upon
FKBP12, and was unaffected by knockdown on FKBP51 (Fig. 2f).

DL001 specifically inhibits mTORC1 in vivo. We and others
have observed that the metabolic effects of rapamycin are
apparent in mice after 2–3 weeks of chronic treatment28,34. We
therefore administered DL001 to mice for 20 days, and broadly
assessed the effect of DL001 on mTORC1 and mTORC2 signaling
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Fig. 1 DL001 is a selective inhibitor of mTORC1. a Structure of DL001. b, c PC3 cells were treated with rapamycin or DL001 at 0.3–100 nM for 48 h and

b the phosphorylation of S6K1 T389 (a mTORC1 substrate), S6 S240/S244 (a readout for mTORC1 activity), and AKT S473 (a mTORC2 substrate) was

determined by western blotting; c the inhibition of AKT S473 phosphorylation was plotted (n= 3 biologically independent experiments; *p < 0.005, Sidak’s

test following two-way ANOVA). Rapamycin data are plotted in black, DL001 data plotted in red. d–f The IC50 for rapamycin (Rap) and DL001 against

d mTORC1 and e mTORC2 was determined using an in vitro assay to measure the phosphorylation of S6 S240/S244 (mTORC1) and AKT S473

(mTORC2) in PC3 lysates treated for 24 h. Rapamycin data are plotted in black, DL001 data plotted in red. f The selectivity of each compound for mTORC1

was calculated from the IC50 (n= 4 biologically independent replicates, three technical replicates each; IC50 was calculated using Prism 7; *p < 0.05,

Student’s t-test). g–i Quantitative proteomic analysis was performed on PC3 cells treated for 24 h with 100 nM Rapamycin (Rap) or DL001, or vehicle, and

significantly affected (q < 0.05) proteins were analyzed with gProfiler to identify significantly altered KEGG and Reactome categories, which included

g ribosome, h translation initiation, and imacroautophagy and lysosome. Error bars represent standard error. Source data are provided as a Source Data file
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in 11 tissues. We observed robust inhibition of
mTORC1 signaling by DL001 in 9 of 11 tissues, including liver,
gastrocnemius, and heart (Fig. 3a–d), visceral white adipose tis-
sue, pancreas, soleus, lung, thymus, and kidney (Supplementary
Fig. 3a–f). DL001 did not inhibit mTORC1 signaling in either
stomach or spleen (Supplementary Fig. 3g–h), tissues in which
rapamycin also has limited or no efficacy30. As compared to mice
treated in parallel with 8 mg kg−1 rapamycin30, DL001 inhibited
mTORC1 with equal efficacy to rapamycin in many tissues
including muscle and white adipose tissue, but less strongly in
liver and heart (Fig. 3d). Strikingly, mTORC2 inhibition by
DL001 in every tissue was significantly reduced relative to rapa-
mycin. Further, in tissues where complete mTORC1 inhibition by

DL001 was observed (e.g. visceral fat and thymus (Supplementary
Fig. 3a, e)), AKT S473 phosphorylation was increased, consistent
with expectations for a highly selective mTORC1 inhibitor due to
the mTORC1-mediated feedback regulation of IRS1 (refs. 35,36).

As the effect of rapamycin on mTORC1 and mTORC2
signaling in the liver is likely to be highly important—the liver
is a key tissue in the regulation of both glucose and lipid
homeostasis—we examined in detail the effect of 12 mg kg−1

DL001 administered every other day for 5 weeks on hepatic
mTORC1 signaling. Consistent with our findings above, we
confirmed decreased mTORC1 signaling in the liver of both
rapamycin and DL001-treated mice as measured via the
phosphorylation of S6 S240/S244 (Fig. 3e), and also observed
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treated with vehicle or 13 mg kg−1 DL001 every other day for 20 days, and the phosphorylation of S240/S244 S6 (a readout for mTORC1 activity) and Akt

S473, an mTORC2 substrate, was determined by western blotting. d The activity of DL001 and rapamycin against mTORC1 and mTORC2 was determined

by quantification of the western blots above and from mice treated in parallel with 8 mg kg−1 rapamycin 30 using NIH ImageJ (n= 4 biologically

independent animals per group, *p < 0.05, Tukey–Kramer test following one-way ANOVA). Data from Vehicle-treated mice are plotted with white bars,

rapamycin-treated mice with black bars, and DL001-treated mice with red bars. e, f C57BL/6J mice were treated with either vehicle, 8 mg kg−1 rapamycin

or 12 mg kg−1 DL001 every other day for 5 weeks. e Quantification of phosphorylated liver proteins in vehicle, rapamycin, and DL001-treated mice (n= 17

vehicle, 16 rapamycin, and 9 DL001-treated biologically independent animals for quantification of phosphorylated S6 and S6K1, 12 vehicle, 10 rapamycin,

and 6 DL0001-treated biologically independent animals for quantification of phosphorylated ULK1; Dunnett’s test following one-way ANOVA, *p < 0.05).

f The integrity of mTORC2 was determined by immunoprecipitation of Rictor from liver lysate; the immunoprecipitate and lysate were probed with

antibodies against the indicated proteins and quantified with NIH ImageJ. mTOR(IP) and RICTOR(IP) refer to the quantification of the mTOR and RICTOR

immunoblots from the RICTOR immunoprecipitate (n= 6 vehicle, 5 rapamycin, and 3 DL001-treated biologically independent animals, *p < 0.05,

Tukey–Kramer test following one-way ANOVA). e, f Data from Vehicle-treated mice are plotted with white bars, rapamycin-treated mice with black bars,

and DL001-treated mice with red bars. Error bars represent standard error. Source data are provided as a Source Data file
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decreased phosphorylation of the direct rapamycin-sensitive
mTORC1 substrate S6K1 T389; phosphorylation of the
rapamycin-resistant mTORC1 substrate ULK1 S757 trended
lower in DL001-treated mice, but was not significantly decreased
by either compound (Fig. 3e). Despite dosing DL001-treated mice
with higher levels of compound than rapamycin-treated mice, we
observed that the phosphorylation of mTORC1 substrates in a
number of tissues were lower in rapamycin-treated than in
DL001-treated mice; consistent with this, and preliminary
observations of a shorter half-life for DL001 than rapamycin,
we observed lower levels of DL001 than rapamycin in the blood
16 h following the final administration of the compounds
(Supplementary Fig. 4a).

In order to directly determine the effects of chronic rapamycin
treatment on mTORC2, we immunoprecipitated the complex in
order to observe the association of mTOR and Rictor, the two
defining subunits of mTORC2 (refs. 28,30). Rapamycin dramati-
cally impacted both the amount of Rictor-associated mTOR and
the total amount of mTORC2 in the liver, while DL001 had no
effect on mTORC2 integrity or abundance (Fig. 3f). Genetic
experiments from a number of labs have also pointed to an
important role for mTORC2 in several tissues, including skeletal
muscle and white adipose tissue, in the regulation of glucose
homeostasis37–40. In agreement with our previous observation
that rapamycin disrupts the Rictor–mTOR association in skeletal
muscle and white adipose tissue, we observed that rapamycin, but
not DL001, disrupts mTORC2 integrity in these two tissues
(Supplementary Fig. 5a, b). DL001 thus shows enhanced
specificity for mTORC1 not only in cell culture, but also in vivo.

DL001 has reduced side effects relative to rapamycin. Our
initial hypothesis was that a rapalog that specifically inhibits
mTORC1, such as DL001, would enable us to avoid many of the
side effects of rapamycin. To test this, we examined the effects of
DL001 on glucose metabolism, lipid metabolism, and the immune
system. Male C57BL/6J mice, which show a robust metabolic
response to rapamycin and to genetic inhibition of hepatic
mTORC2 signaling28,41, were treated for 5 weeks with either 8
mg kg−1 rapamycin or 12 mg kg−1 DL001. The specific doses of
compounds used were chosen as a preliminary single dose
pharmacokinetic study suggested that DL001, when delivered i.p.
at 12 mg kg−1, has a shorter half-life in blood than rapamycin,
with a t1/2 of ~3.5 h. As we expected, while there was not a
significant difference between blood levels of DL001 and rapa-
mycin 16 h after administration, blood levels of DL001 trended
~25% lower (Supplementary Fig. 4a). Given our half-life estimate,
this time point reflects a near-trough concentration (Cmin) of
DL001; the trough level of rapalogs is clinically monitored in
patients subjected to rapalog therapy and is directly linked with
rapalog exposure, efficacy, and side effects42,43. Importantly, the
blood levels of both DL001 and rapamycin were substantially
higher than levels observed in the blood of mice fed 14 ppm
rapamycin24, which as we have previously demonstrated is suf-
ficient to inhibit mTORC2 in vivo34,44.

After 2 weeks of treatment, a fasting glucose tolerance test
(GTT) was conducted (Fig. 4a); as expected, rapamycin-treated
mice had significantly impaired glucose tolerance, with increased
blood glucose levels starting at 30 min, and a 33% increase in total
glucose burden over the time course of the assay as measured by
area under the curve (AUC). In contrast, mice treated with DL001
were indistinguishable from vehicle-treated mice at every time
point and in AUC (Fig. 4a). We also performed a pyruvate
tolerance test (PTT); as we have previously observed28,44,
rapamycin-treated mice were pyruvate intolerant, indicating a
failure to suppress hepatic gluconeogenesis (Fig. 4b). Once again,

DL001-treated mice were similar to vehicle-treated mice
throughout the assay, and exhibited an AUC that was
indistinguishable from that of vehicle-treated control mice
(Fig. 4b). Clinically, the first sign of impaired glycemic control
in humans is fasting hyperglycemia, which is induced by
rapamycin in both humans and mice;14 we observed a statistically
significant elevation in fasting glucose levels in rapamycin-treated
mice, but not in mice treated with DL001 (Fig. 4c).

A prominent clinical effect of rapamycin is dyslipidemia, as
defined by elevated levels of cholesterol, triglycerides, and free
fatty acids; some of these effects are associated with inhibition of
mTORC2 signaling, while the molecular basis of others is
unclear45. We observed that while rapamycin robustly elevated
plasma cholesterol, triglycerides, and free fatty acids, DL001 does
not increase blood levels of these lipids (Fig. 4d–f). The
physiological and molecular mechanisms which mediate
rapamycin-induced hyperlipidemia and hypercholesterolemia
have remained mysterious for some time46. It has been suggested
that these changes may be due in part to the induction of lipolysis
in white adipose tissue45; mTORC1 is an important regulator of
lipolysis in adipocytes47,48, and some researchers have also
proposed a role for mTORC2 in the regulation of lipolysis in
adipose tissue37,40. Although DL001 does not inhibit mTORC2 in
white adipose tissue (Supplementary Figs. 3a and 4a), rapamycin
induces a 24% increase in ATGL protein, with a 16% increase
(p= 0.1, t-test) in DL001-treated animals; rapamycin and DL001
both increase the phosphorylation of PKA substrates (Supple-
mentary Fig. 6a, b). Our observations support the conclusion that
mTORC1 regulates lipolysis in adipose tissue, but suggest that
this effect is not sufficient to cause rapamycin-induced
dyslipidemia.

In addition to its metabolic side effects, the immunosuppres-
sive effects of rapamycin—mediated in part via inhibition of
mTORC2 (ref. 49)—are likely a significant barrier to its
application for the treatment of chronic age-related diseases.
Rapamycin is associated with an increase in viral and fungal
infections in humans, short courses of low-dose rapamycin
impairs the defense against acute bacterial and viral infections in
mice, and chronic treatment with rapamycin impairs adaptive
immunity in mice50–52. As both mTOR complexes play
important roles in adaptive immunity, in part by promoting the
survival, differentiation, activation, and function of T cells49, we
predicted that by more selectively targeting mTORC1, DL001
would have reduced—although not zero—effects on immune cell
numbers as compared to rapamycin.

To compare the effects of rapamycin and DL001 on immune
cells, we isolated splenocytes during tissue harvesting, and
analyzed their population by flow cytometry20. As we and others
have previously reported20,53, rapamycin-treated mice had
significantly decreased T cell numbers; rapamycin reduced total
CD3+ (T) cell numbers by 40%, and CD3+CD4+ (helper T) cell
numbers by 47% (Fig. 4g, h). In contrast, DL001 had a
significantly smaller effect on total T cell and helper T cell
numbers, reducing the number of CD3+ cells and CD3+CD4+

cells by 13% and 23%, respectively. We and others have
previously reported that chronic rapamycin treatment of mice
results in decreased numbers of CD3+CD4+CD25+Foxp3+ T
regulatory cells (Tregs)20,53,54; rapamycin reduced Tregs by 54%,
while DL001 had a significantly smaller effect on Tregs, reducing
the numbers by 37% (Fig. 4i). Finally, and surprisingly, while
rapamycin reduced the CD3+CD8+ (suppressor/cytotoxic T) cell
number by 36%, DL0001 had no effect on CD3+CD8+ cell
number (Fig. 4j). While further work is required to fully assess the
effect of DL001 on immune function, these observations support
the idea that mTORC1-specific inhibitors such as DL001 are
likely to have reduced impact on the immune system.
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DL001 suppresses the hyperactive mTORC1 of cells lacking
TSC. While mTORC1-specific inhibitors such as DL001 are likely
to prove of use for many diseases of aging, an immediate urgent
need where they may prove beneficial is for the treatment of
tuberous sclerosis complex (TSC), a rare genetic disease resulting
from a loss of function mutation in TSC1 or TSC2 characterized

by the formation of non-malignant tumors in organs including
the brain, heart, kidney, and lungs; disfiguring facial angiofi-
bromas; and neurological symptoms including seizures and epi-
lepsy. Functioning together, the proteins encoded by TSC1 and
TSC2 normally act to inhibit the activity of mTORC1; TSC
patients therefore have hyperactive mTORC1 signaling55.
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Treatment with rapamycin can suppress many of the effects of
TSC in animal models of the disease56, and a rapalog (everolimus)
has been FDA approved for the treatment of specific symptoms of
TSC57,58. However, suppression of TSC symptoms requires
continuous chronic treatment with rapalogs, which can results in
significant side effects. Over the course of 4 years, 30% of subjects
in one trial of rapalogs for TSC developed hypercholesterolemia;59

in a second study 5 of 18 (27%) participants were hospitalized for
pneumonia over the course of 4 years60. One clinical trial of a
rapalog for TSC had a particularly high incidence of side effects,
with 72% of the subjects developing hypercholesterolemia, 66%
developing hyperlipidemia, and 22% of subjects developing
hyperglycemia; in that trial one subject died as a result of bacterial
sepsis13. Thus, TSC represents a disease in which minimizing the
side effect of rapamycin may be particularly important.

As a proof of principle, we compared the effect of rapamycin
and DL001 on mouse embryonic fibroblasts (MEFs) lacking Tsc1.
We observed that both rapamycin and DL001 effectively
suppressed the hyperactive mTORC1 activity of Tsc1−/− MEFs
to below wild-type levels (Fig. 5a). MEFs lacking a functional TSC
have increased expression of a number of genes involved in
metabolic pathways, including glycolysis, sterol, and lipid
biogenesis, which can be reversed by treatment with rapamycin61.
We find that MEFs lacking Tsc1 have increased expression of
Pdk1, Pfkp, Mvk, Sc5d, Ascl3, and Scd1, and that the expression of
these genes can be repressed to normal levels by treatment with
either 100 nM rapamycin or 100 nM DL001 (Fig. 5b–d).
Importantly, rapamycin and DL001 are equally efficient at
suppressing hyperactive mTORC1. Finally, as many of the
symptoms of TSC1 such as seizures originate in the brain, we
realized it was critically important to determine if DL001 can
regulate mTORC1 signaling in the brain. We find that rapamycin
and DL001 are both capable of efficiently inhibiting mTORC1 in
the brain (Fig. 5e).

Discussion
Here, we determined that DL001 is an effective mTORC1-
specific rapalog both in cell culture and in vivo, and we
demonstrate for the first time that the negative side effects of
rapamycin and its analogs, including metabolic disruption and
immunosuppression, may be avoided in whole or in part by a
compound that specifically targets mTORC1. Importantly, as
DL001 is an FKBP12-dependent rapalog, its effects on the
rapamycin-resistant functions of mTORC162 is minimal; work in
genetic mouse models suggests that inhibition of the rapamycin-
resistant functions of mTORC1 may be associated with side
effects such as allergic asthma, hypoglycemia, seizures, and the
ability to build muscle mass with exercise63–66. Importantly,
DL001 efficiently represses hyperactive mTORC1 in cells lacking
a functional TSC. As hyperactive mTORC1 drives much of the

pathology of tuberous sclerosis and other mTORopathies67,
DL001 and related molecules may be of clinical use in safely
treating these disorders.

An important limitation of our study is that we have not
conducted detailed pharmacokinetic studies to characterize the
metabolism and elimination of DL001. While we have previously
suggested that rapalogs that are eliminated more rapidly may
have reduced (but still significant) side effects as a result of
decreased mTORC2 inhibition20, the only parameter directly
linked to the appearance of adverse events in clinical studies of
rapalogs is the trough concentration42,43. We estimate that the
half-life of DL001 is about 60% of that of rapamycin, with a near-
trough concentration (Cmin) approximately 25% lower. Impor-
tantly, even this reduced near-trough blood level of DL001 is
substantially higher than blood levels of rapamycin that we have
previously demonstrated to be sufficient to inhibit mTORC2
in vivo24,34,44. The minor differences in blood levels of rapamycin
and DL001 we have observed are therefore not adequate to
explain the in vivo metabolic differences we have observed with
respect to mTORC2-mediated side effects, particularly given the
potent differences in mTORC2 specificity we observed between
rapamycin and DL001 in cell culture. However, we note that the
concentration of DL001 or its metabolism in different tissues may
contribute to our observation that DL001 appears to more
effectively suppress mTORC1 signaling in certain tissues than in
others. As rapalogs are distributed extensively in peripheral tis-
sues, including key metabolic tissues, conducting a full analysis of
DL001 pharmacokinetics and metabolism in both blood and in
specific tissues will be important to help advance our under-
standing of this molecule.

Important work remains to be completed prior to the clinical
use of DL001 and related molecules, including pre-clinical studies
in disease models, a direct assessment of the effects on immune
system function, and a direct comparison of the side effects of
DL001 or related molecules with rapalogs such as everolimus,
which is FDA-approved to treat specific manifestations of TSC, in
both male and female mice. While unanswered questions remain,
including the impact of DL001 and related molecules on other
rapamycin-associated side effects, the exact molecular mechan-
isms responsible for the reduced impact of DL001 on mTORC2
activity, and the ability of these molecules to delay age-related
diseases and extend healthspan, our results demonstrate for the
first time that highly selective pharmacological inhibition of
mTORC1 can be achieved in vivo and that this avoids many of
the side effects associated with long-term rapamycin treatment.

Methods
Materials. For western blotting, antibodies to phospho-AKT S473 (4060), AKT
(4691), phospho-p70 S6 kinase (9234), p70 S6 kinase (2708), phospho-S6 riboso-
mal protein (2215 or 5364), S6 ribosomal protein (2217), p-4EBP1 S65 (9451), p-

Fig. 4 Unlike rapamycin, DL001 does not cause metabolic disruption. a–i C57BL/6J mice were treated with vehicle, 8 mg kg−1 rapamycin, or 12mg kg−1

DL001 every other day. a Glucose and b pyruvate tolerance tests were performed after 2 or 3 weeks, respectively (n= 18 vehicle, 18 rapamycin, and 9

DL001-treated biologically independent animals; for GTT/PTT, Tukey–Kramer test following two-way repeated-measures ANOVA, a= p < 0.006 vs.

vehicle, b= p < 0.006 vs. DL001. For AUC, means with the same letter are not significantly different from each other (Tukey–Kramer test following one-

way ANOVA, p < 0.0007)). For GTT/PTT, data from Vehicle-treated mice are plotted with white squares, Rapamycin-treated mice with black squares, and

DL001-treated mice with red triangles. c Fasting blood glucose was measured in mice after 4 weeks of treatment (n= 14 vehicle, 16 rapamycin, and 9

DL001-treated biologically independent animals, means with the same letter are not significantly different from each other, Tukey–Kramer test following

one-way ANOVA, p < 0.05). d–f Blood was collected after 5 weeks of treatment and plasma levels of d cholesterol, e triglycerides, and f free fatty acids

were determined (n= 18 vehicle, 18 rapamycin, and 9 DL001-treated biologically independent animals, means with the same letter are not significantly

different from each other, Tukey–Kramer test following one-way ANOVA, p < 0.05). g–i Flow cytometry analysis (expressed as percent of total live cells) of

splenocytes collected and isolated after 5 weeks of treatment (n= 18 vehicle, 17 rapamycin, and 9 DL001-treated biologically independent animals, means

with the same letter are not significantly different from each other, Tukey–Kramer test following one-way ANOVA, p < 0.05). a–i Data from Vehicle-treated

mice are plotted with white bars, rapamycin-treated mice with black bars, and DL001-treated mice with red bars. Error bars represent standard error.

Source data are provided as a Source Data file
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4EBP1 T37/S46 (2855), total 4EBP1 (9452), p-S757 ULK1 (14202), ULK1 (8054),
mTOR (2792), RICTOR (2140), HSP90 (4877), β-tubulin (2128S), FKBP51
(12210S), and p-PKA substrate (9621) were from Cell Signaling Technology; β-
actin (A2228) was from Sigma; ATGL (SC-365278) was from Santa Cruz; and
FKBP12 (ab2918) was from Abcam. All antibodies for western blotting were used
at a dilution of 1:1000, except that p-T389 S6K1 was used at a dilution of 1:500
for the experiments shown in Fig. 3e, f. For immunoprecipitation, antibody to
RICTOR (A300-458A) was from Bethyl Laboratories and Protein G Agarose
(PI20398) was from Fisher, with exact antibody amounts and concentrations as
specified below. For flow cytometery, antibodies to CD4 (75-0041-U025, used at
0.2 µg µL−1) and CD8 (80-0081-U025, used at 0.5 µg µL−1) were from Tonbo;
antibodies to CD25 (47-0251-80, used at 0.2 µg µL−1) and FOXP3 (25-5773-82,
used at 0.2 µg µL−1) were from eBioscience, and antibodies to CD11a (553121, used
at 0.2 µg µL−1), and CD3 (563204, used at 0.2 µg µL−1) were from BD. Protease
and phosphatase inhibitor cocktail tablets were from Fisher. Other chemicals were
purchased from Sigma unless noted. Glucose measurements were performed using
a Bayer Contour blood glucose meter and test strips. Mouse Insulin ELISA kits
were purchased from Crystal Chem. Rapamycin was purchased from LC Labs.
2.0 mL Tough Tubes with Caps (13119–500) and 1.4 mM ceramic beads
(13113-325), were purchased from Mo-Bio Laboratories, Carlsbad, CA.

DL001. The chemical purity and identity of DL001 was determined through Liquid
chromatography–mass spectrometry, spectrographic analysis using 1H and 13C

NMR, 2D Heteronuclear Multiple Bond Coherence (HMBC) and COSY Correla-
tion NMR (Supplementary Fig. 7). DL001: 1H NMR (major trans rotamer, 600
MHz, DMSO-d6, 300 K) ppm 6.44 (d, J= 1.6 Hz, 1H), 6.39 (dd, J= 14.8, 11.0 Hz,
1H), 6.26–6.19 (m, 1H), 6.15–6.08 (m, 2H), 5.43 (dd, J= 14.8, 9.6 Hz, 1H), 5.11
(d, J= 4.3 Hz, 1H), 5.09 (br d, J= 10.1 Hz, 1H), 4.98 (ddd, J= 8.5, 4.2, 3.1 Hz, 1H),
4.95–4.92 (m, 1 H), 4.88 (d, J= 7.0 Hz, 1H), 4.42 (d, J= 4.4 Hz, 1H), 4.26 (dd, J=
7.0, 4.5 Hz, 1H), 4.04–3.97 (m, 1H), 3.95 (m, 1H), 3.71–3.59 (m, 1H), 3.46–3.40 (m,
1H), 3.34–3.11 (m, 3H), 3.05 (s, 3H), 2.77 (dd, J= 17.5, 2.7 Hz, 1H), 2.49–2.42 (m,
1H), 2.34 (dd, J= 17.7, 8.9 Hz, 1H), 2.28–2.16 (m, 2H), 2.13–2.08 (m, 1H),
2.07–1.99 (m, 1H), 1.89–1.75 (m, 4H), 1.74 (s, 3H), 1.69–0.80 (m, 33H), 0.79–0.70
(m, 5H); 13C NMR (major trans rotamer 150 MHz, DMSO-d6, 300K): ppm 213.5,
208.4, 199.3, 176.9, 169.7, 167.5, 139.9, 139.8, 138.3, 132.9, 130.9, 127.4, 124.8, 99.5,
82.7, 78.1, 76.5, 74.1, 69.7, 66.6, 55.9, 51.3, 45.7, 44.1, 40.6, 40.2, 39.9, 39.1, 35.8,
35.7, 35.5, 35.2, 33.8, 32.2, 30.8, 30.2, 26.9, 26.7, 25.0, 22.1, 21.0, 16.1, 15.2, 14.1,
13.8, 10.8; LC/MS (m/z): [M]+ calculated for C49H75NO12, 869.5 g mol−1; found
887.7 as [M+NH4]+ and 892.7 as [M+Na] +.

Ethical approval for animal research. All animal procedures were performed in
complicance with institutional guidelines and all relevant ethical regulations for
animal testing and research. Animal studies conducted at the Buck Institute for
Research on Aging were approved by the Institutional Animal Care and Use
Committee (IACUC) at the Buck Institute for Research on Aging, Novato, CA.
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Fig. 5 DL001 corrects mTORC1-mediated signaling and metabolic defects of TSC1−/− cells. a Immortalized mouse embryonic fibroblasts (MEFs)

expressing or lacking TSC1 were treated with varying doses of rapamycin or DL001 for 24 h. The phosphorylation of S240/S244 S6 (a readout for mTORC1

activity) and Akt S473, an mTORC2 substrate, was determined by western blotting of protein lysate. b–d MEFs expressing (T1+/+) or lacking TSC1

(TSC1−/−) were treated with vehicle, 100 nM rapamycin, or 100 nM DL001 for 24 h, and the expression of mTORC1 responsive genes involved in

b glycolysis, c sterol biosynthesis, and d fatty acid biosynthesis were determined by qPCR (n= 4 biologically independent experiments per condition,

means with the same letter are not significantly different from each other, Tukey–Kramer test following one-way ANOVA, p < 0.05). e Protein lysates were

prepared from the brain of C57BL/6J mice treated with either vehicle, 8 mg kg−1 rapamycin or 12 mg kg−1 DL001 every other day for 5 weeks, and the

phosphorylation of S240/S244 S6 was determined by western blotting (n= 3 vehicle, 4 rapamycin, and 4 DL001-treated biologically independent animals,

Tukey–Kramer test following one-way ANOVA, *p < 0.05). Data from Vehicle-treated mice are plotted with white bars, rapamycin-treated mice with black

bars, and DL001-treated mice with red bars. Error bars represent standard error. Source data are provided as a Source Data file

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11174-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3194 | https://doi.org/10.1038/s41467-019-11174-0 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Animal studies conducted at WSM VA Hospital were approved by the IACUC of
the William S. Middleton Memorial Veterans Hospital, Madison, WI.

Animals and treatments. All animal care and experimental procedures performed
at the Buck Institute for Research on Aging were approved by the IACUC at the
Buck Institute for Research on Aging. In these experiments, the results of which are
described in Fig. 3a–d and Fig. S3, 12 10-week-old female C57BL/6J mice were
given intraperitoneal injections of either 8 mg kg−1 rapamycin, 13 mg kg−1 DL001,
or vehicle every other day for 3 weeks (4 mice/group). Following the last injection,
mice were fasted overnight. Mice were injected with insulin (0.75 U kg−1) 15 min
prior to dissection and tissues were immediately frozen in liquid nitrogen. Our
analysis of mTORC1 and mTORC2 signaling in the tissues of vehicle and
rapamycin-treated mice were previously reported30.

Animal studies conducted at WSM VA Hospital were approved by the IACUC
of the William S. Middleton Memorial Veterans Hospital. In these experiments, the
results of which are described in Figs. 3e, f and 4, and Figs. S4–S6, 45 C57BL/6J
male mice were purchased from The Jackson Laboratory at 8 weeks of age and
housed three per cage. All mice were fed LabDiet 5001, the standard facility chow.
Following 1 week of acclimation to the facility, mice were weighed and the body
composition of all mice was measured with an EchoMRI 3-in-1 system. Cages were
sorted into three groups—vehicle, rapamycin, and nID390—such that the average
weight was similar for all three groups. Rapamycin (LC Labs) and DL001 (Delos
Pharmaceuticals) were dissolved in ethanol and diluted in filter-sterilized vehicle
(5% Tween-80, 5% PEG-40, 0.9% NaCl) immediately prior to intraperitoneal
injection. Vehicle, 8 mg kg−1 rapamycin or 12 mg kg−1 DL001 was administered
every other day. Following the last injection, mice were fasted overnight for 16 h.
Mice were injected with insulin (0.75 U kg−1) 15 min prior to dissection, and
tissues were immediately frozen in liquid nitrogen.

Immunoblotting and immunoprecipitation. Frozen tissues collected at the Buck
Institute were homogenized using the Omni TH homogenizer (Omni Interna-
tional) on ice in RIPA buffer (300 mM NaCl, 1.0% NP-40, 0.5% sodium deox-
ycholate, 0.1% sodium dodecyl sulfate (SDS), 50 mM Tris (pH 8.0), Protease
inhibitor cocktail (Roche), phosphatase inhibitor 2, 3 (Sigma)), and then cen-
trifuged at 17,000 g for 15 min at 4 °C. The supernatants were collected and protein
concentration was determined using the DC protein assay (Biorad). Equal amounts
of protein were resolved by SDS polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to nitrocellulose membrane using the Invitrogen Nu-Page system
(Carlsbad, CA). Western blot analysis was then performed.

Frozen tissues collected at UW-Madison, as well as cells and tissues, were lysed
in cold RIPA buffer supplemented with phosphatase inhibitor and protease
inhibitor cocktail tablets (PI88669; Fisher Scientific). Tissues for western blotting
other than brain were lysed in RIPA buffer using a FastPrep 24 (M.P. Biomedicals)
with bead-beating tubes and ceramic beads (Mo-Bio Laboratories), and then
centrifuged28. Protein concentration was determined by Bradford (Pierce
Biotechnology). Twenty micrograms protein was separated by SDS-PAGE on 8%,
10%, or 16% resolving gels (Thermo Fisher Scientific, Waltham, MA). Proteins
were then transferred to PVDF membrane (Millipore). Immunoprecipitation of
RICTOR was performed using flash-frozen liver lysed in cold CHAPS buffer31,68.
Following protein lysis and determination of protein concentration, 1 mg of
protein lysate in 500 µL (2 µg µL−1) was precleared with 20 µL of protein G agarose
beads, and then incubated with 2 µL of RICTOR antibody (1:250) overnight.
Following antibody incubation, 25 µL of protein G agarose beads were added and
incubated at 4 °C for 3 h. Beads were then washed to removed unbound protein,
and boiled in 2× loading buffer prior to SDS page analysis. Imaging was performed
using a GE ImageQuant LAS 4000 imaging station. Brain tissue was analyzed by
Aeonian Pharmaceuticals using a similar protocol and imaging was performed
using a Biorad ChemiDoc MP imager.

Raw western blot images are provided in the Source Data file. Quantification of
all blots was performed by densitometry using NIH ImageJ software. Approximate
molecular weights, based on the expected molecular weight and verified using
molecular weight standards run on each gel, are indicated to the right of each
immunoblot.

AlphaLISA assay. PC3 cells were maintained in F12K media (ATCC/GIBCO, Cat#
ATCC 30-2004) supplemented with additional 10% fetal bovine serum (FBS)
(Gemini, cat# 100–106), 1% Penicillin/Streptomycin (Life Technologies, cat #
15140–122), and 2 mM L-glutamine (Life Technologies, cat# 25030) and cultured at
37 °C under an atmosphere of 95% air and 5% CO2. For AlphaLISA experiments,
cells were seeded in 96-well plates for 24 h and treated at various concentrations of
rapamycin or DL001 (from approx. 8 fM to 10 μM) for 24 h using two methods: for
examination of mTORC1 signaling, the assay was performed in the continuous
presence of serum; for examination of mTORC2 signaling, cells were (1) treated
with the compounds for 8 h in growth media containing 10% serum; (2) the media
was then replaced by serum-free media containing the respective drug con-
centration and incubated for an additional 16 h; and (3) immediately prior to cell
lysis, cells were treated with 12% serum for 15 min Cells were harvested by lysis in
the buffer supplied with the AlphaLISA kit. mTORC1 inhibition was then deter-
mined using the AlphaLISA SureFire kit for Phospho-S6 Ribosomal Protein

(Ser240/244) (TGRS6P2S500; Perkin Elmer). mTORC2 inhibition was determined
by the AlphaLISA SureFire kit for AKT 1/2/3 (S473) (TGRA4S500; Perkin Elmer).
Cells from plates were lysed using 50 μL of the lysis buffer and incubated for 10 min
at room temperature while shaking. Four microliters of cell lysates were then
analyzed for 2 h at room temperature according to the manufacturer’s protocol.
The donor mix was then added and the resulting solution was incubated for 2 h at
room temperature. AlphaLISA signal was read on a Fusion-Alpha FP HT (Perkin
Elmer). Percent inhibition was calculated by comparison to the highest inhibition
value obtained in the response–concentration curve. IC50s were calculated using
Prism software. All IC50 experiments were conducted in triplicates with rapamycin
and vehicle controls.

Cell culture and shRNA knockdown. PC3 (CRL-1435), AML12 (CRL-2254), and
HepG2 (HB-8065) cells were purchased from the American Type Culture Col-
lection (ATCC). PC3 cells transduced with lentivirus expressing shRNA against
FKBP12 or FKBP51 or a nonspecific control were thawed from Kennedy laboratory
stocks30 and reselected in puromycin prior to experimentation. PC3 and HepG2
cells were cultured in DMEM (Fisher Scientific, MT10013CV) containing 10% FBS
(Sigma, 12303C) and 1% penicillin–streptomycin (Fisher Scientific, MT30002CI).
AML12 cells were cultured in DMEM/F-12 media (Fisher Scientific, MT10090CV)
with 10% FBS and 1% penicillin–streptomycin.

Mouse embryonic fibroblast cell culture and qPCR. Immortalized mouse
embryonic fibroblasts lacking Tsc1, and paired Tsc1+/+ cells, were the kind gift of
Dr. David Kwiatkowski, and were grown in DMEM containing 10% FBS. For
signaling and gene expression experiments, cells were cultured for 24 h in serum-
free DMEM containing the specified concentration of rapamycin or DL001, or an
equal volume of DMSO (vehicle). For gene expression, cells were harvested and
RNA was extracted, cDNA was synthesized, and qPCR was performed69. Mouse
qPCR primer sequences for the genes examined have been utilized previously61 and
are listed here: Pdk1: F: ggcggctttgtgatttgtat, R: acctgaatcgggggataaac; Pfkp: F:
aggagggcaaaggagtgttt, R: ttggcagaaatcttggttcc; Mvk: F: gggacgatgtcttccttgaa, R:
gaacttggtcagcctgcttc; Sc5d: F: ccaaatggctggattcatct, R: gtccacagggtgaaaagcat; Ascl3:
F: ggggctggaacaattacaga, R: atagccaccttcctcccagt; Scd1: F: ctgacctgaaagccgagaag, R:
gcgttgagcaccagagtgta.

Tolerance tests and blood collection. Mice were fasted overnight for 16 h and
then injected with either 1 g kg−1 glucose or 2 g kg−1 pyruvate. For glucose and
pyruvate tolerance tests, small blood samples were taken from a tail vein nick at
time intervals and read using a Bayer Contour blood glucose meter and test strips.
For determination of fasting glucose and insulin, blood glucose levels were read
using a glucometer and then 50 μL of blood was collected into a EDTA tube
immediately prior to and 15 min following glucose administration. Insulin levels
were determined using a Mouse Insulin ELISA kit (Crystal Chem).

Splenocyte preparation and flow cytometry. Splenocytes were prepared fol-
lowing a procedure from Life Technologies. Briefly, spleens were collected in a
buffer containing PBS, 0.1% bovine serum albumin (BSA), and 0.6% Na-citrate,
and then macerated through a 70 μM filter using a syringe plunger. Following
centrifugation at 300g for 10 min, cells were resuspended in the same buffer, and
recentrifuged. The splenocytes were suspended in PBS and 0.1% BSA with Ca2+

and Mg2+, and incubated with approximately 100 units of DNAase (Sigma).
Splenocytes were then filtered through a 40 μM filter and red blood cells were lysed.
Splenocytes were then centrifuged, suspended in PBS with 0.1% BSA, and brought
to the UWCCC Flow Cytometry Lab for immunostaining and flow cytometry on a
BD LSRII (San Jose, California). Data were collected using BD FACSDiva, Version
8.0 and analyzed with FlowJo X, Version 10.0.7r2 (FlowJo, LLC, Ashland, OR). An
example of the gating strategy used to analyze the flow cytometry data is shown in
Supplementary Fig. 8.

Proteomics. PC3 cells were grown in 10% DMEM with FBS and treated with 100
nM rapamycin or 100 nM DL001 for 24 h. Cells were washed with cold PBS and
harvested in 8M Urea buffer (8 M Urea, 40 mM NaCl, 50 mM tris, 2 mM MgCl2,
50 mM NaF, 50 mM b-glyceradelhyde phosphate, 1 mM sodium orthovanadate, 10
mM sodium pyrophosphate) with addition of protease and phosphatase inhibitor
(Thermo Fisher Scientific). Cells were then sonicated and supernatant was collected
following centrifugation. Samples were then prepared for quantitative proteomic
analysis by the Proteomics Facility of the University of Wisconsin Biotechnology
Center. Briefly, peptides from each of the 4 Vehicle, 3 Rapamycin-, and 3 DL001-
treated samples were digested with trypsin, the peptides were derivatized separately
with isobaric mass tags (TMT-10plex; ThermoFisher Scientific), and the samples
were pooled. Following offline fractionation, four high-pH fractions were analyzed
using shallow, 4-h gradients by nanoflow HPLC on an Orbitrap Elite (Thermo-
Fisher Scientific). Database searching and quantitation was performed using Pro-
teome Discoverer 2.2 (ThermoFisher Scientific). Peptides with significant
differences between treatment groups were identified using the limma R package70

and the resultant p values were then FDR-adjusted using q values. Differentially
affected KEGG and Reactome categories were identified by analyzing significantly
altered proteins (q < 0.05) using gProfiler .
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Statistics. Statistical analysis was conducted using Prism 7 (GraphPad Software).
Significance was tested by a two-sided Student's t-test for two-group comparisons
or ANOVA followed by a two-sided Dunnett’s, Sidak, or Tukey post hoc test as
specified in the figure legends for comparisons of three or more groups. Statistical
analysis of proteomics data was conducted in R (version 3.5.0).

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
The source data underlying all figures are provided as a Source Data file. Proteomics data

has been deposited in MassIVE with accession code MSV000083602 (doi:10.25345/

C5TW5T). DL001 will be available at cost and subject to an MTA by Aeonian

Pharmaceuticals or contracted non-commercial third party providers.
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