
Research Article

A Novel Ratiometric Probe Based on
Nitrogen-Doped Carbon Dots and Rhodamine B Isothiocyanate
for Detection of Fe3+ in Aqueous Solution

Lin Liu, Lu Chen, Jiangong Liang, Lingzhi Liu, and Heyou Han

State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China

Correspondence should be addressed to Lu Chen; chenlu@mail.hzau.edu.cn and Jiangong Liang; liangjg@mail.hzau.edu.cn

Received 30 November 2015; Accepted 1 February 2016

Academic Editor: Chih-Ching Huang

Copyright © 2016 Lin Liu et al. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A ratiometric probe for determining ferric ions (Fe3+) was developed based on nitrogen-doped carbon dots (CDs) and rhodamine
B isothiocyanate (RhB), which was then applied to selective detection of Fe3+ in PB bu	er solution, lake water, and tap water.
In the sensing system, FePO4 particles deposit on the surface of CDs, resulting in larger particles and surface passivation. �e

uorescence (FL) intensity and the light scattering (LS) intensity of CDs can be gradually enhanced with the addition of Fe3+, while
the FL intensity of RhB remains constant. �e ratiometric light intensity of CDs LS and RhB FL was quantitatively in response
to Fe3+ concentrations in a dynamic range of 0.01–1.2�M, with a detection limit as low as 6 nM. Other metal ions, such as Fe2+,
Al3+, K+, Ca2+, and Co2+, had no signi�cant interference on the determination of Fe3+. Compared with traditional probes based
on single-signal probe for Fe3+ detection, this dual-signal-based ratiometric probe exhibits a more reliable and stable response on
target concentration and is characterized by easy operation in a simple 
uorescence spectrophotometer.

1. Introduction

Quantum dots have been extensively investigated for their
applications in chemosensor, biosensor, and bioimaging due
to their prominent advantages, such as size-dependent 
u-
orescence emission and wide excitation spectrum, whereas
narrow 
uorescence emission spectrum and high 
uores-
cence quantum yield resistance to photobleaching. Although
traditional quantum dots have been widely used in sensor
and imaging, their cytotoxicity is still a controversial question
[1–4]. In recent years, carbon dots (CDs) [5–8], with low
cytotoxicity [9, 10], have attracted extensive research interests
due to their good optical properties [5], chemical inertness
[11], good biocompatibility [12], and low cost [13]. Due to the
above-mentioned advantages, CDs have been widely applied
to the development of new methods for detecting ions [14–
18], organic molecules [19], and proteins [20].

Traditional 
uorescent methods mainly depend on the
intensity changes of single-signal 
uorescence (increased
or decreased). Fluorescence signals of these probes were

vulnerable to environment (such as temperature, pH, and
viscosity), the in
uence of the sample itself (such as con-
centration), equipment e	ects (such as photobleaching and
background light), and other factors.�erefore, strict control
of the experimental conditions is bene�cial to obtain accurate
results. Compared with the single-signal 
uorescence probe,
ratiometric 
uorometry provides an intrinsic correction for
external interference. In particular, it can eliminate 
uctu-
ations of the excitation light intensity by forming the ratio
of the intensity of two well-resolved emission peaks. It is
independent of the probe concentration and improves the
accuracy of the quanti�cation [21–24].

Herein, we fabricated a dual-signal-based ratiometric

probe for the detection of Fe3+ and conducted a preliminary
test in PB bu	er solution.�is probe possesses dual emission
peaks at 399 nm (CDs) and 577 nm (RhB). �e addition of
Fe3+ to the CD-RhB probe resulted in the rapid increase
of FL intensity and LS intensity of the CDs, while the FL
intensity of RhB remained constant. By taking advantage of
the observed ratios in light intensity between CDs LS and
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RhB FL, we fabricated a facile ratiometric probe, which can
be used to detect di	erent concentrations of Fe3+ in both PB
bu	er solution and actual samples (lake water and tap water).

2. Experimental

2.1. Chemicals. Ascorbic acid was obtained from Tianjin
Kaitong Chemical Reagents Co., Ltd. (Tianjin, China).
Polyoxyethylenebis(amine) (PEG-diamine, MW 2000) was
purchased from Aladdin Chemistry Co., Ltd. (Shanghai,
China). Rhodamine B isothiocyanate was obtained
from Sigma-Aldrich. NaCl, KNO3, Fe2(SO4)3⋅7H2O,
Zn(NO3)2⋅6H2O, CoCl2⋅6H2O, AgNO3, Al2(SO4)3⋅18H2O,
CaCl2⋅2H2O,CdCl2⋅2.5H2O,CuSO4⋅5H2O, and FeSO4⋅7H2O
were acquired from Shanghai Chemical Reagent Co., Ltd.
Dialysis bag (MWCO: 1000) was purchased from Aladdin
Chemistry Co., Ltd. All reagents were used without further
puri�cation and all the solutions were prepared using
ultrapure water obtained from a Millipore water puri�cation
system (Milli-Q, Millipore, 18.2MΩ resistivity).

2.2. Apparatus. All 
uorescence measurements were carried
out with RF-5301PC 
uorescence spectrometer (Japan); the
sample was placed in a 10mm quartz 
uorescence cuvette.
�e UV-Vis absorption spectra were recorded between 200
and 700 nmon aUV-2450 (JAPAN)with a 1.0 cmpath-length
cuvette. High-resolution transmission electron microscopy
(HRTEM) (JEM-2100F, JEOL) was used to characterize the
size and surface morphology of the as-prepared CDs. Fourier
transform infrared spectroscopy (FT-IR) was conducted to
detect the chemical identity of CDs on a Nicolet Avatar-330

spectrometer (�ermo Nicolet, USA) with 4 cm−1 resolution
using the KBr pellet technique. All Raman spectra were
recorded at room temperature using a Raman spectrometer
(Renishaw, UK) equipped with a confocal microscope (Leica,
German). Flame atomic absorption spectrometry (FAAS)
was obtained with AA240FS spectrometer (Varian, Inc.,
USA) to detect the content of Fe3+ in the actual samples. All
pHmeasurements were carried out with a PHS-3C pHMeter
(Shanghai, China).

2.3. Synthesis of the CDs. �e CDs were synthesized by a
hydrothermal method according to the literature with some
modi�cations [25]. 0.10 g polyethylene glycol diamines and
0.20 g ascorbic acid were mixed and ground su�ciently in an
agate mortar. �en, the mixture was transferred to a 25mL
hydrothermal reaction kettle and heated for 1 h at 180∘C to
get a dark brown mixture that was dissolved with 5.0mL
ultrapure water. Subsequently, the mixture was centrifuged at
12000 rpm for 10min.�e supernatant was collected and then
dialyzed against ultrapurewater through a dialysismembrane
for 24 h to obtain the pure CDs.

2.4. Preparation of Carbon Nanoprobes. �e preparation of
carbon nanoprobes followed Huimin Ma’s method [26]. �e
as-prepared CDs solution above was mixed with RhB at a 4 : 1
mass ratio in 0.10M NaHCO3 solution at room temperature
overnight. �en, the reaction solution was dialyzed in 0.10M
NaHCO3 and ultrapure water every 24 h by amembrane with

a molecular weight cuto	 of 1000. A�er gel chromatographic
separation on a Sephadex G-100 columnwith water as eluent,
the product was collected and stored at 4∘C for further use.

2.5. Characterization by Raman Spectroscopy. �e speci�c
experimental procedures were as follows. 10�L of the probe
was added into 950 �L PB bu	er solution (10mM, pH 7.4)

and was mixed to uniformity. �en, 40 �L of 30 �M Fe3+ was
added dropwise into the above solution, and the mixture was
centrifuged for 30min at 12000 rpm. To completely remove
the interference of phosphate radical, the supernatant was
removed and the precipitate was washed with ultrapure water
for three times.�en, ultrapure water was added and the pre-
cipitation was dissolved by ultrasound. �e obtained liquid
dropped on the foil. Raman spectroscopy was recorded at the
excitation wavelength of 633 nm until the liquid was dried.

3. Results and Discussion

High-resolution transmission electron microscopy
(HRTEM) was used to characterize the surface morphology
of the as-prepared CDs. �e CDs are well dispersed in aque-
ous solution and their diameters range from 2.7 to 5.9 nm,
with a mean diameter of 4.4 ± 0.6 nm (Figures 1(a) and 1(b)).
�e UV-Vis absorption spectrum and the 
uorescent spec-
trum were given in Figure 1(c). Due to the �-�∗ transition of
CDs, the resultant CDs displayed a broad UV-Vis absorption
[9, 25]. In addition, the UV-Vis absorption spectrum shows a
strong peak at 249 nm, which could be ascribed to the �-�∗
transition of aromatic sp2 domains [27, 28]. It can be clearly
observed that themost intense peak ofCDs appears at 450 nm
(emission wavelength) with excitation at 370 nm. �erefore,
CDs show blue color under UV (365 nm) light (Figure 1(c)
inset), with the obtained CDs with a quantum yield of 15%.
Moreover, the corresponding FL emission spectra of CDs
were plotted with the excitation wavelength progressively
increasing from 340 to 400 nm (Figure 1(d)). It is obvious
that the FL emission peak of CDs exhibits a large red shi�
(from 420 nm to 480 nm) with an increase of the excitation
wavelength, and the FL intensity increases until�ex= 370 nm,
and then decreases slowly.�e result that the emission of CDs
strongly depends on the excitation wavelength is consistent
with the results reported in previous studies [25, 29].

�e e	ects of pH on emission stability of CDs were
monitored in 10mM PB bu	er solution. It is clearly shown
in Figure 2 that the FL intensity of CDs nearly has no change
at pH ranging from 3.0 to 10.0, indicating that CDs can
work in environments at a wide range of pH values. Fourier
transform infrared (FT-IR) spectra were used to identify the
functional groups present on the surface of the as-prepared

CDs: stretching vibrations of C-OH at 3409 cm−1 and C-

H at 2901 cm−1; the peak at 1350 cm−1 from the stretching
vibration of C-NH, which indicates the successful adulter-
ation of nitrogen atoms into the CDs; bending vibrations of

N-H at 1685 cm−1; the vibration absorption band of C=O
at 1762 cm−1 and the peaks at 1042 and 1105 cm−1 related to
the C-OH stretching vibrations, which imply the oxygen-
rich property of the CDs (Figure 3) [5, 25]. �ese functional
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Figure 1: TEM image (a) and size distribution (b) of CDs. (c) UV-Vis absorption spectrum and FL intensity spectrum of CDs (inset shows
the photographs of CDs under day light and ultraviolet light). (d) FL emission spectra (with progressively longer excitation wavelengths from
340 to 400 nm) of CDs.

groups improve the hydrophilicity and stability of the as-
prepared CDs, suggesting their great advantage to be used as
sensor in aqueous solution.

According to previous reports, doping CDs with trace
impurities enables the alteration or an increase in the number
of emission centers [30, 31]. Nitrogen-doped CDs are the
most widely studied doped CDs that exhibit both defect-
related emission and scattering emission. Figure S1 in Supple-
mentaryMaterial available online at http://dx.doi.org/10.1155/
2016/4939582 indicates that the LS peak of CDs at 399 nm
was observed a�er quench of FL.�e defect-related emission
leads to FL in a wavelength range of 400–700 nm. Whilst,
nitrogen-doped CDs are capable of scattering the incident
light and the LS intensity can be greatly increased upon parti-
cle aggregation [32]. �is probe possesses distinguished
advantages over other probes for the LS resulting from
target-induced aggregation of nanoparticles [33, 34]. RhB

was selected as the reference signal in the probe due to its

chemical inertness in the presence of Fe3+. As shown in Fig-
ure S2, the hydrodynamic size distribution of CD-RhB probe

was increased a�er the addition of Fe3+. Figure 4(a) presents
the emission spectra of RhB upon the addition of Fe3+. It is
clear that the FL spectra remain almost unchanged with the

addition of Fe3+; in contrast, when the concentration of Fe3+

ranges from0.01 to 1.2�M, the light intensity of CDs increases

in the presence of Fe3+, especially the intensity of LS. Based
on these �ndings, we expect that the probe can selectively

detect Fe3+ with high sensitivity. As shown in Figure 4(a),
the LS intensity of CDs shows a rising trend and the FL
intensity of RhB basically remains unchanged in the presence

of di	erent concentrations of Fe3+.�e ratios in light intensity
between CD LS and RhB FL (�399/�577) display a good linear

relationship with the Fe3+ concentrations ranging from 0.01
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Figure 2: FL intensity of CDs in aqueous solutions with di	erent
pH values. All values were obtained based on three independent
measurements.
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Figure 3: FT-IR spectra of the CDs.

to 1.2 �M with a detection limit of 6 nM under the optimum
experimental conditions (Figure 4(b)). �e linear equation
is �399/�577 = 0.256 + 0.379c (c: �M) and the correlation

coe�cient 	2 is 0.996, where �399 and �577 are the light
intensities at 399 nm and 577 nm in the absence or the
presence of Fe3+, respectively.

�e speci�city of the CD-RhB probe for Fe3+ with a

variety of metal ions including Fe2+, K+, Co2+, Zn2+, Al3+,
Cu2+, Ag+, Na+, Ca2+, and Cd2+ was evaluated in PB bu	er
solution (10mM, pH 7.4). �e �399/�577 ratios of di	erent
metal ions at the same concentration (1.0 �M)were evaluated
in PB bu	er solution. As shown in Figure 5, there is no
signi�cant interference on the probe from the above cations.
�is result indicates that our CD-RhB probe exhibits a high

speci�city for Fe3+ over other metal ions.

4. Possible Mechanism by Which Fe3+

Affects Probe Light Intensity

We constructed CD-RhB probe through the conjugation of

CDs and RhB molecules. With the addition of Fe3+, the FL
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Figure 4: (a) FL emission spectra of the CD-RhB probe with
di	erent concentrations of Fe3+ (from bottom to top, 0, 0.01, 0.15,
0.3, 0.6, 0.9, and 1.2 �M) in PB bu	er solution (10mM, pH 7.4). (b)
�e �399/�577 ratios of the probe versus the concentration of Fe3+

within the range of 0.01–1.2�M. �e error bars represent standard
deviations based on three independent measurements.

and LS of CDs in the probe were gradually enhanced, while
the FL of the RhB remained constant. �erefore, we propose
a working mechanism of the FePO4-mediated LS and FL
increase of CDs: while FePO4 particles are deposited on the
surface, the defects of the CDs are �lled, and thus the LS
intensity can be greatly increased along with the appearance
of larger particles. In addition, the interactions of FePO4
particles with CDs result in surface passivation of the CDs,
thereby enhancing the FL intensity (Scheme 1). �en, the
hypothesis was veri�ed by Raman spectroscopy. As shown in

Figure 6, a very prominent peak appears at 1003 cm−1, which
indicates the presence of FePO4 according to the previous
study [35]. Except for the peak of FePO4, no responses were
observed for CDs, RhB, or CD-RhB nanohybrid on the whole
Raman spectrum.
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Scheme 1: Dual-signal ratiometric probe of Fe3+ based on a CD-RhB nanohybrid system.

Table 1: Determination of Fe3+ in lake water and tap water with the
proposed method.

Sample Proposed method (�M) FAAS (�M)

Sample 1 (lake water) 0.036 ± 0.006 0.044

Sample 2 (tap water) 0.060 ± 0.009 0.065

5. Calibration and Application in
Actual Samples

To demonstrate the practicability of the ratiometric probe,
its detection performance was evaluated in actual water
samples. �e proposed method was successfully applied to

determine Fe3+ content in lake water (sample 1) and tap
water (sample 2). �e lake water was taken from South
Lake (Wuhan), and the tap water was collected from our
laboratory. A�er the environmental water samples were
centrifuged at 6000 rpm for 30min and then �ltered through

0.22�m �lter membranes, they were used for Fe3+ analysis.
Parallel measurements were carried out with three similar
water samples by FAAS.�e results obtained by the proposed
method are in good consistency with those of FAAS (given in
Table 1). To further validate the determination, addition and
recovery of Fe3+ in actual water samples were also studied,
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Figure 5: Selectivity of the CD-RhB probe toward Fe3+ over
other ions. �e concentration of metal ions is 1.0�M. �e error
bars represent standard deviations based on three independent
measurements.

and the obtained recoveries ranged from 97.2% to 108.8%
(Table S1 in the Supporting Information).
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6. Conclusion

In summary, the as-prepared nitrogen-doped CDs are stable,
bright, andwith goodwater solubility.We have demonstrated
that CDs and RhB form a nanohybrid probe through their
chemical reaction.�is CD-RhB probe was successfully used

as a ratiometric probe to detect Fe3+ in lake water and
tap water, showing the good selectivity and sensitivity. �e
detection limit is as low as 6 nM. Compared with the previ-
ously reported sensing methods, this CD-RhB probe displays
several important advantages. First, this strategy avoids the
use of traditional semiconductor quantum dots and organic
solvents; thus, it is more environmental friendly. Second, the
ratiometric probe can e	ectively eliminate the background
interference and the 
uctuation of detection conditions by
depending on two kinds of signals: CDs LS and RhB FL, and
thus it is more reliable than single-signal detection strategy.

�ird, this ratiometric probe for Fe3+ determination exhibits
more sensitive signals than quenching probe. It is expected
that this strategy may o	er a new approach for developing
green, low-cost, and sensitive dual-signal probes for practical
applications.
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