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ABSTRACT In recent years, stealth aircraft penetration path planning has been a significant research subject

in the field of low altitude combat. However, previous works have mainly concentrated on the path planning

for stealth unmanned aerial vehicle(UAV) in 2D static environment. In contrast, this paper addresses a

novel real-time path planning algorithm for stealth UAV to realize the rapid penetration, which aims to

devise a route penetration strategy based on the improved A-Star algorithm to address the problems of

replanning for stealth UAV in 3D complex dynamic environment. The proposed method introduces the

kinematic model of stealth UAV and detection performance of netted radar in the process of low altitude

penetration. Additionally, POP-UP threats are adopted into three different threat scenarios, which is closer to

the real combat environment. Moreover, further combined with the prediction technique and route planning

algorithm, the multi-step search strategy is developed for stealth UAV to deal with POP-UP threats and

complete the replanning of the route in different scenarios. Furthermore, the attitude angle information

is integrated into the improved A-Star algorithm, which reflects the characteristics of the dynamic radar

cross section(RCS) and conforms to the actual flight requirements for the stealth UAV. Finally, the improved

A-Star algorithm, the sparse A-Star search (SAS), and the dynamic A-Star algorithm(D-Star) are respectively

adopted to address the problem of penetration route planning for stealth UAV in three different threat

scenarios. Numerical simulations are performed to illustrate that the proposed approach can achieve rapid

penetration route planning for stealth UAV in a dynamic threat scenario, and verify the validity of the

improved A-Star algorithm which is compared to the other two algorithms.

INDEX TERMS Stealth unmanned aerial vehicle, dynamic radar cross-section, netted radar, real-time path

planning, A-Star algorithm.

I. INTRODUCTION

With the development and application of high-tech military

equipment, stealth technology has been applied in modern air

warfare [1]–[3]. In recent years, many countries are actively

applying stealth technology to equipment and weapons, such

as stealth aircraft and stealth missiles. The survivability and

combat capability of aircraft will play a crucial role in warfare

[4], [5]. At present, many countries study stealth aircraft in

the world, andmore than 20 types of stealth aircraft have been

equipped, such as the F-22 fighter developed by the America,

The associate editor coordinating the review of this manuscript and

approving it for publication was Cheng Hu .

T-50 equipped by Russia, J-20 developed by China and

neuron unmanned aerial vehicle(UAV) being developed by

the EU [6]–[8]. In the design process of stealth UAV, the radar

cross-section(RCS) of the head, body and tail fin should be

reduced according to the band of radar, which can reduce

the detection probability of radar and improve the penetration

ability and survival ability of stealth UAV [9]. However, there

are many theoretical challenges and practical problems in the

penetration path planning technology of stealth UAV, such

as the complexity of the combat environment, the constraints

of attitude, and control of stealth UAV, the efficiency of the

route planning algorithm, optimal and real-time performance

of the routes. Additionally, for various uncertain factors and
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dynamic threats existing in the real combat environment,

stealth UAV is difficult to realize rapid and safe penetration

route planning. Therefore, the rapid penetration route plan-

ning for stealthUAV is a significant subject in the 3D dynamic

threat environment.

In the current literature, many scholars have studied the

problem of aircraft penetration route planning. Moore firstly

proposed the path planning problem for the variation of

aircraft RCS, he found that the stealth UAV could signif-

icantly reduce its RCS in flight by adjusting its attitude

angle [10]. Inanc studied the problem of low detectabil-

ity trajectory generation for UAVs and proposed a research

framework of low detectability tactical trajectory planning in

the presence of multiple radar-detected threat environments,

the form of trajectory generation was defined as the optimal

control problem with the minimum threat probability [11],

[12]. Refs. [13], [14] proposed a hybrid heuristic adaptive

pseudo spectrum method to solve the low-detectability tra-

jectory planning problem. However, these methods usually

use a simplified kinematic model of aircraft to obtain a rough

reference track. Although the computing efficiency of the

simplified model is better, the constraints and control condi-

tions of radar attitude are not considered in these trajectories.

Ref. [15] addressed a stealth track planning method based

on the aircraft RCS ellipsoid model to obtain the position

of the track node during penetration, which simplified the

characteristics of UAV detection targets into ellipsoids and

established the nonlinear differential equation model based

on the minimum cross-sectional area of the detected direc-

tion. The method requires a large amount of computation in

addressing the problem of route planning and the route is not

guaranteed to be optimal. Ref. [16] studied the game relation-

ship between aircraft and radar and proposed the trajectory

planning method of aircraft based on dynamic game theory.

Similarly, a real-time air battle trajectory optimization and

game model for aircraft based on a rolling time-domain con-

trol strategy were presented in [17]. The calculation process

of this game theory method is tedious, and it cannot solve

some of the penetration track planning problems with high

real-time requirements. Additionally, this method can only be

applied to the static combat environment where the location

of radars is known, and it cannot achieve the expected effect

for the stealth UAV track planning problem in the dynamic

environment. Refs. [18], [19] proposed a path planningmodel

that related expected cost for air task of path planning prob-

lem in the hostile environment, this method described the

expression of the cost function with the minimum expecta-

tion, and the particle swarm optimization algorithm(PSO) is

developed to settle the route optimization problem. However,

these researches mainly focus on the 2D environment, and

the real-time performance of routes cannot satisfy the actual

flight requirements.

More recently, scholars have tried to use some the state

of the art optimization algorithms to settle the flight

path planning problem of aircraft penetration. The most

common search algorithm can be divided into a random

search algorithm and a deterministic search algorithm.

On the one hand, deterministic search algorithms are

adopted to solve UAV route planning, such as A-Star

algorithm [20]–[22],D-Star algorithm [23]–[25], artificial

potential field algorithm [26], [27],Dijkstra algorithm [28],

[29], dynamic programming algorithm [30]–[32]. However,

the A-Star algorithm, Dijkstra algorithm, and dynamic pro-

gramming algorithm can only be applied for route planning

in a small-scale static environment. Although theD-Star algo-

rithm and artificial potential field algorithm are suitable for

dynamic route planning, they cannot satisfy the constraints on

maneuverability of stealth UAV. On the other hand, random

search algorithm is employed to settle UAV route planning

problems, such as genetic algorithm(GA) [33], [34], particle

swarm optimization(PSO) [35]–[37], ant colony algorithm

[38]–[40], simulated annealing algorithm [41], [42] and neu-

ral network algorithm [43], [44]. Inversely, the real combat

environment is composed of various uncertain and dynamic

threats, so there is no effective method to address the problem

of penetration route planning for stealth UAV in 3D dynamic

environment. Therefore, it is necessary to study the perfor-

mance of the improved algorithm, which can improve the

applicability of the algorithm and the ability to settle the

practical path planning problem for stealth UAV.

The purpose of this paper is to present a novel real-time

path planning algorithm for stealth UAV, which aims to

achieve rapid penetration route planning in the 3D dynamic

combat environment. The main contributions of this study are

as follows:

1) The idea of the predictive control and learning

real-time A-Star algorithm are integrated to devise the

improved A-Star algorithm with a multi-step search

strategy.

2) In order to improve the survival ability and flight path

penetration efficiency of stealth UAV in 3D dynamic

threat environment, the improved A-Star algorithm is

applied to the real-time penetration path planning for

stealth UAV.

3) In order to prove the effectiveness of the improved

A-Star algorithm in the presence of radar net in 3D

dynamic environment, numerical experiments are per-

formed employing the improved A-star algorithm,

the sparse A-Star search algorithm(SAS) and the

D-Star algorithm in static and dynamic environments,

respectively.

The rest of the paper is organized as follows. Section II

describes the mathematical model of stealth UAV, includes

the kinematics model and dynamic RCS model. Section III

discusses the detection probability calculation of multiple

radar net, which is close to the real combat environment.

Section IV presents the improvement of the route plan-

ning algorithm, includes improved A-Star algorithm, SAS

algorithm, and D-Star algorithm. Numerical simulations

results of different algorithms in dynamic scenarios are

discussed in Section V. Finally, the conclusions are made and

future works are presented in Section VI.
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FIGURE 1. The RCS for F-22 fighter.

FIGURE 2. Air defense holes created by stealth UAV.

II. STEALTH UAV MODEL

What makes stealth UAV different from conventional UAV is

that it has smaller RCS in places, such as the nose, fuselage,

and tail, so it can reduce the radar detection probability by

controlling the attitude angle during the flight. The RCS

distribution of the F-22 fighter is depicted in Fig. 1.

The appearance of stealth technology greatly reduces the

range of radar action, some air defense vulnerabilities may

exist, which is depicted in Fig. 2. However, it is difficult

to achieve penetration only by stealth characteristics in the

traditional mode. Further combined with the route planning

method is a essential way for stealth UAV to achieve the

security penetration in complex combat scenarios.

A. KINEMATICS

In order to study the control of flight track points and ignore

the influence of external conditions such as wind force,

it is assumed that stealth UAV moves in 3D space. Specify

radar locations in the plane zk = 0 (on the ground) by the

coordinates (xk , yk , 0), Therefore, the kinematics model can

be given by



























ẋ = v cosφ

ẏ = v sinφ

φ̇ =
u

v

Rk =
√

(x − xk)
2 + (y− yk)

2 + z2

(1)

where x and y are the Cartesian coordinates of the aircraft,φ is

the heading angle, v is the constant speed, u is the acceleration

normal to the flight path vector, Rk is the range from the k th

radar to the stealth UAV.

FIGURE 3. Constraints of heading angle.

Additionally, let



























αk = arctan

(

y− yk

x − xk

)

λk = αk − φ + π

θ = arctan

(

u

g

)

(2)

be the azimuth, aspect, and roll angles, respectively, measured

with respect to the i th radar, g is the acceleration of gravity.

B. CONSTRAINTS

Due to the physical characteristics, stealth UAV is not allowed

to adjust the attitude angle greatly. Therefore, in order to

satisfy the actual flight requirements of UAV and ensure

safety during the flight, it is necessary to limit the flight speed

and attitude angle.

1) CONSTRAINTS OF HEADING ANGLE

Stealth UAVs are not permit to adjust its attitude at a large

angle. The maximum heading angle limits the range of hor-

izontal direction angle of the UAV when it flies from route

a to route a + 1, and the track planned by the model and

algorithm can only change direction within the range less

than or equal to the maximum heading angle φmax . The

geometric relationship is depicted in Fig. 3. The constraint

of the heading angle is given by

φ = cos−1 1xa−11xa + 1ya−11ya
√

1x2a−1 + 1y2a−1

√

1x2a + 1y2a

≤ φmax (3)

where 1xa−1 = xa − xa−1, 1xa = xa+1 − xa, 1ya−1 =
ya − ya−1 and 1ya = ya+1 − ya.

2) CONSTRAINTS OF PITCH ANGLE

Similarly, the track obtained by the model and algorithm can

only change direction within the range less than or equal

to the maximum pitch angle βmax. The geometric rela-

tionship is depicted in Fig. 4. The pitch angle constraint
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FIGURE 4. Constraints of pitch angle.

conditions are given by

β = tan−1 zi − zi−1
√

(xi − xi−1)
2 + (yi − yi−1)

2
≤ βmax (4)

3) CONSTRAINTS OF ROLL ANGLE

According to Eq.(2), the roll angle is related to the transverse

acceleration u, During the flight, there is always an upper

limit valueU , that is u ≤ U , which also ensures the safe flight

of stealth UAV. Therefore, the constraint of the roll angle is

given by

θ ≤ arctan
U

g
(5)

This model is a simplification of actual aircraft flight.

However, the important feature that it preserves is the cou-

pling between the RCS and the aspect and bank angles.

Hence, according to the kinematics model of stealth UAV,

the attitude angle information is fully considered to analyze

the influence of penetration route change and the precise

calculation of radar detection probability.

C. DYNAMIC RCS MODEL

The RCS is a measure of how well the UCAV reflects the

electromagnetic radiation emitted by a radar [45]. The RCS

is usually regarded as a constant in general route planning

problems, but it is not reasonable in practice. The RCS value

of the target will change according to the irradiation direction

of the radar wave, and the RCS is characterized by sharp

fluctuations in a different line of sight. Moreover, the size of

the RCS in a particular direction is related to the frequency

of the incoming radar wave and the polarization direction

of the radar antenna. By convention [46], it is modeled as a

function of the aspect angle λ and roll angle θ , as viewed from

the radar, and the function is written as σ (λ, θ), Therefore,

the dynamic RCSmodel employed for an ellipsoid is given by

σ (λ, θ) =
πa2b2c2

(

a2 sin2 λ cos2 θ + b2 sin2 λ sin2 θ + c2 cos2 λ
)2

(6)

where σ represents the RCS value of UAV, λ represents aspect

angle, θ represents roll angle, a is relatively small frontal

RCS, b is a larger beam aspect RCS and c is relatively large

RCS when viewed from above or below.

III. RADAR DETECTING PROBABILITY MODEL

The radar system will repeatedly scan the designated

airspace, and the radar detection probability represents the

possibility that the radar can continuously obtain the target

information within a certain period of time. Each scan will

obtain the target signal with a certain detection probability.

When the acquired target information satisfies the common

track criteria, the radar system confirms to find the target and

transmits the acquired target information to the information

fusion center of the system. The detection probabilities of

targets under the single radar and netted radar are discussed

as follows.

A. THE DETECTION PROBABILITY OF A SINGLE RADAR

For a single radar system, when the detection probability and

false alarm probability are known, the detection probability

of the UAV is only related to the distance from the UAV to

the radar center. In a period, the radar instantaneous detection

probability can be given by

Pt =
1

1 +
(

c2R
4
k

σ

)c1
(7)

where Pt is the instantaneous detection probability of the

single base radar, Rk is given by Eq.(1), c1 and c2 are the

performance parameters of specific radar, respectively.

However, stealth UAV can be detected by radar many times

when flying in a certain route. The RCS of the UAV at

each flight time is different from the distance and attitude

angle of the radar center, so the radar detection probability

of the track point is also different. In order to analyze the

situation that the whole route of stealth UAV is threatened

under radar detection, objectively, the instantaneous detection

probability of radar is accumulated, that is, the probability

of UAV discovery is discretized according to Eq.(7), and the

detection probability of UAV in the radar is given by

PD = 1 −
s

∏

i=1

(1 − pi) (8)

where the s represents the number of radar scans, Pi
represents the instantaneous detection probability of the i th

radar.

B. THE DETECTION PROBABILITY OF NETTED RADAR

For a complete netted radar system, the radar net can improve

the detection probability of UAV, significantly. The detection

probability of a networked radar system mainly refers to

the target detection probability calculated by the information

fusion center. The rankK fusion rule is widely used inmodern

networked radar systems. Therefore, we used the rank K

fusion rule to analyze the detection probability of networked

radar [47], [48].
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Suppose M is the number of radars in the netted radar

system, when the number of radar detected in the system

exceeds the detection threshold K0 according to the rank

K fusion rule, that means, the target has been detected by

the radar system, and the approximate value of the optimal

detection threshold K0 is given by

K0 = 1.5
√
M (9)

Each radar makes a local judgment based on its detection

of the stealth UAV, and the judgment results are either 0 or 1,

which depends on whether the local threshold detection target

exists or not. H0 and H1 are binary assumptions, where H0

represents the target does not exist and H1 represents the

target exists. Therefore, the decision value of the j th radar

(j = 1, 2, . . . ,M ) is given by

dj =
{

0 if decision result is H0

1 if decision result is H1

(10)

Then, the local decision result is passed to the information

fusion center of the radar system to form a global decision

matrix Dc, that is, Dc = (d1, d2, . . . , dM ). And the radar

information fusion rule for the network is denoted as R,

the decision rule R(Dc) for rank K is given by

R(Dc) =



























1 if

M
∑

j=1

dj ≥ K0

0 if

M
∑

j=1

dj < K0

(11)

Additionally, the total detection probability of the network

radar system is given by

PNet =
∑

Dc



R (Dc)
∏

df ∈S1

Pdj

∏

dj∈S0

(

1 − Pdj
)



 (12)

where S1 is a set of local decision vectors that make the fusion

center judge ’1’, S0 is a set of local decision vectors that

make the fusion center judge ’0’, and Pdj is the discovery

probability of the first radar in the radar net.

IV. PATH PLANNING METHOD

A-Star algorithm is a heuristic search algorithm, which is

widely adopted in the path planning problems of various

agents. This paper discusses the improvement method of the

A-Star algorithm and analyzes the efficiency of algorithm and

route safety in the stealth UAV penetration problem.

A. A-STAR ALGORITHM

The main idea of the standard A-Star algorithm is as follows.

Firstly, select the appropriate heuristic function, estimate the

generation value of the extensible search points in the search

area, comprehensively. Additionally, compare the different

cost values of each point. Moreover, consider the operation

time and distance cost of the track point search, Finally, find

an optimal route. In the A-Star algorithm, the operation of the

OPEN list and CLOSE list are usually performed to achieve

the storage and update of track points, and the operation

equation of the algorithm is given by

f (n) = g(n) + h(n) (13)

However, the route obtained by the standard A-Star

algorithm has many disadvantages: (1) only the position

information of the stealth UAV can be obtained in the route,

and the dynamic RCS characteristics and attitude informa-

tion of the stealth UAV cannot be obtained. (2) unknown

path cost estimation cannot be accurately calculated in route

planning, not only the final route cannot guarantee to be

globally optimal, but also the computation time is long. (3) the

performance of real-time is poor, and the algorithm unable to

deal with emergent threats. Therefore, the performance of the

standard A-Star algorithm needs to be improved, including

the search validity of the algorithm, real-time performance in

the face of unknown threats and the expansion mode of track

nodes.

B. D-STAR ALGORITHM

D-Star algorithm is developed based on the A-Star algorithm

and Dijkstra algorithm [49], [50] which is suitable for solving

route planning problems in unknown environments. Themain

idea of the algorithm is to search the reverse path from the

goal to the origin when a new obstacle is found in the path,

the path between the target location and the path node within

the range of the new obstacle will not change due to the

appearance of the new obstacle, but the path between theUAV

and the node within the range of the obstacle will change

during the flight. In other words, the whole track is only

partially replanned, which not only avoids the emergent threat

well but also improves the search efficiency. The heuristic

function expression of the D-Star algorithm is given by

f (X ,E) = h(X ) + g(X ,E) (14)

where h(X ) represents the actual journey cost from the goal

to state X and g(X ,E) represents the estimated journey cost

from the state X to the current position of the stealth UAV.

The D-Star algorithm is mainly composed of three

functions which are Process_State, Modify_Cost and

Move_UAV. The function of Process_State is employed to

calculate the optimal path value and the route sequence. The

Modify_Cost is applied to change the path costC(∗) between
two states and put the affected state into the OPEN list. The

function of Move_UAV ensures that the UAV can fly along

the optimal route by calling the above two functions. The

main steps of the D-Star algorithm are described as follows.

Step 1: the value of tag all states is set to NEW, f (∗) and
h(∗) are set to infinity for all states, h(G) is set to 0 and

the target point G is added to the OPEN list. Step 2: the

Process-State function is executed until the location of E

which is removed from the OPEN list, that is, if the CLOSE

list contains the tag value of the current UAV, the complete

route sequence will be obtained. In contrast, the return of

’NO-PATH’ means that the route planning of the stealth UAV

VOLUME 8, 2020 122761



Z. Zhang et al.: Novel Real-Time Penetration Path Planning Algorithm for Stealth UAV in 3D Complex Dynamic Environment

TABLE 1. The pseudocode of the Process_State function.

TABLE 2. The pseudocode of the Modify_Cost function.

FIGURE 5. Single point expansion of sparse A-Star algorithm.

has failed in the current threat scenario. Step 3: if the route

exists, the current state of the UAV can be applied to point

to the target point G by the back pointer. Additionally, if the

function of Process_State changes, such as detecting a new

threat, the function ofModify_Cost is immediately called to

correct the path costC(∗). Step 4: insert the affected state near
the new threat into the OPEN list, then return to Step 2.

The pseudocodes of the main functions in the D-Star

algorithm are presented in Table 1 and Table 2.

C. SPARSE A-STAR SEARCH ALGORITHM (SAS)

The sparse A-Star Search algorithm is an improvement of

the A-Star algorithm. Before the start of the track node

search, the space of node search can be reduced through

constraints of UAV, which can effectively shorten the search

time, optimize the solution space, and improve the search

efficiency of the algorithm [51]. The final track obtained by

the SAS algorithm can satisfy the maneuvering performance

of UAV. The expansion mode of the sparse A-star algorithm

is depicted in Fig. 5.

The search process of the sparse A-Star search algorithm is

given as follows: Firstly, it starts from the starting point and

expands with the minimum step size lmin. Additionally, in the

FIGURE 6. The path planning structure of the sparse A-Star algorithm.

FIGURE 7. The principle of the MPC system.

TABLE 3. The pseudocode of the improved A-Star algorithm.

sector with an angle of 2ρ in the track direction of the current

point, the value of the cost assessment function of n + 1 the

node to be extended is calculated, and then the node with the

lowest value of the cost assessment function is selected as

the next search node until the target point which is finally

reached.

The steps of the SAS algorithm are described as follows.

Step1: initialize the OPEN list and CLOSED list, and put the

starting point into the OPEN list; Step2: judge whether the

OPEN list is empty if it is, that means the algorithm search

failed and stop the algorithm search. Step3: select the node

with the lowest cost from the OPEN list and move it to the

CLOSED list as the current node. Step4: determine whether

the current node is the target point. If it is, the algorithm will

complete the search and trace back to the starting point from

the target point in the CLOSED list to get the minimum cost

path between the starting point and the target point. Step5:

expand the current node and select the numbers of n + 1

nodes that meet the constraint requirements in the direction

of the current node. If the node is not in the two tables, add

it to the OPEN list and its parent node pointer points to the

122762 VOLUME 8, 2020
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FIGURE 8. The flow chart of the improved A-Star algorithm.

current node. If it already exists in the OPEN list, compare its

current generation value with its original generation value in

the OPEN list. If it is less than the original generation value,

update the OPEN list with its current information. The parent

node points to the current node. Otherwise, return Step 3.

The route planning structure of the sparse A-Star algorithm

is depicted in Fig. 6.

D. IMPROVED A-STAR ALGORITHM

Learning real-time A-Star algorithm(LRTA-Star) is a

heuristic search algorithm [52], [53], which satisfies the

requirements of real-time planning in a dynamic environment

FIGURE 9. The RCS data of a certain type of stealth UAV.

TABLE 4. The geographical location and types of threat sources in the
first threat scenario.

by establishing and updating the evaluation cost from each

state to the target point. However, the flight path planned

by the single-step search is composed of a series of bro-

ken lines. The maneuverability of the UAV is limited so

that it is often difficult to achieve accurate flight path

tracking control. Additionally, the search results are prone

to be trapped in local dead loops, which also leads to

the failure of route planning. Therefore, further combined

with the idea of model-based predictive control(MPC) [54],

[55], an improved A-Star algorithm based on the multi-step

optimal search is proposed to address the real-time path

planning problem of stealth UAV.

1) MODEL-BASED PREDICTIVE CONTROL

MPC is an optimization control method, which mainly

includesmodel prediction, rolling optimization, and feedback

correction. The principle of the system is depicted in Fig. 7.

In step k , the error e(k) between the actual object output

value y(k) and the prediction model output value ym(k)

is performed to calculate the closed-loop output prediction

yp(k + 1), which is given by

yp(k + 1) = ym(k + 1) + h1 [y(k) − ym(k)] (15)

where u(k) is the actual control quantity on the system at

moment k , yr (k) is the reference track softened by the input

filter, ym(k + 1) is the predicted output value of the model,

yp(k + 1) is the closed-loop output prediction, and h1 is the

error correction coefficient.

The purpose of the control is to make the output of the

system gradually reach the set value ω along a previous curve

trajectory yr (k), which is referred to as reference trajectory,

and the optimal control rate of the single-step prediction
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FIGURE 10. Numerical results of penetration route planning in the first scenario.

model is given by

J = q
[

yp(k + 1) − yr (k + 1)
]2 + δu2(k) (16)

where q is the output prediction error and δ is the weighting

coefficient of the control variable. In the predictive con-

trol of the model algorithm, it is necessary to predict the

future multi-step output, and the current control variable

depends on the predicted multistep output value. According

to Eq.(16), the optimal control law for multi-step prediction is

given by

J =
N

∑

i=1

qi
[

yp(k + i) − yr (k + i)
]2 +

W
∑

j=1

δj[u(k + j− 1)]2

(17)
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FIGURE 11. The variation of attitude angle that performed by improved A-Star algorithm in the first threat scenario.

FIGURE 12. The detection probability of netted radar in the first threat scenario.

where N is the length of the prediction domain, W is the

length of the control domain, qi is the output prediction error,

and δj is the weighting coefficient of the control variable.

2) MULTI-STEP SEARCH METHOD

Further combined with the MPC method and LRTA-Star

algorithm, a novel search strategy based on multi-step opti-

mization is proposed to achieve the replanning for stealth

UAV in a dynamic environment. In the process of a multi-step

optimization search, the track cost of each predicted track is

considered as the cumulative value of the costs ofN predicted

track nodes. Therefore, the objective function of UAV flight

path planning can be obtained according to the optimal con-

trol law of the MPC system. The cost of the predicted flight

path is N steps from the k th node is given by

J (k) =
k+N
∑

j=k

[

bT1 (j|k)B1b1(j|k) + εjPNet (j|k)
]

+
k+W
∑

j=k
δju

T(j|k)u(j|k) (18)

where PNet(j|k) is the radar threat cost at the j th prediction

point on the current predicted track segment, which can

be obtained by Eq.(12). εj is the weight of threat cost, B1
is the distance cost weighted matrix, u(j|k) is the control

sequence, b1(j|k) is the distance cost between the coordinate

of destination (xe, ye, he) and the coordinate of j th track

TABLE 5. The statistical result of flight in the first scenario.

TABLE 6. The geographical location and types of threat sources in
the second threat scenario.

point [x(j|k), y(j|k), h(j|k)]T and the expression for b1(j|k)
is given by

b1(j|k) =





x(j|k) − xe
y(j|k) − ye
h(j|k) − he



 (19)

Additionally, the stealth UAV is limited by its

maneuverability in the process of multi-step search,
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FIGURE 13. Numerical results of penetration route planning in the second scenario.

the u = (u0, u1, u2, . . . uN−1) is sought by the current track

point and heading angle, and the cost function J (k) for the

node has a minimum value. Therefore, add the parameter

ω(0 ≤ ω ≤ 1) to the heuristic function of the original

algorithm, which aims to simplify the operation, reduce the

search time and ensure the optimality of route planning, and

the new heuristic function expression in the improved A-Star

algorithm is given by

f (ns) = ωh (ns) + (1 − ω)k (n, ns) (20)

where n is the current node, ns is the adjacent extended node,

k(n, ns) is the cost from the current node to the adjacent

node, and k (n, ns) = g (ns) − g(n). The pseudocode of

the improved A-Star algorithm is shown in Table 3, and
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FIGURE 14. The variation of attitude angle that performed by improved A-Star algorithm in the second threat scenario.

FIGURE 15. The detection probability of netted radar in the second threat scenario.

TABLE 7. The statistical result of flight in the second scenario.

the flow chart of the improved A-Star algorithm is depicted

in Fig. 8.

V. NUMERICAL RESULTS

Numerical simulations of penetration route planning are

performed by the improved A-Star algorithm, Sparse A-Star

Search algorithm, and D-Star algorithm in different threat

scenarios, which aims to verify the validity of the improved

A-Star algorithm. The simulation experiments are con-

ducted with MATLAB2017Ra software and a Windows

10 system. The parameters of flight are given as follows.

v = 500km/h, φmax = 60◦, βmax = 60◦,U = g,

θmax = 45◦, s = 3,N = 4, ω = 0.5,

Pc = 0.5, lmin = 3, ρ = 30◦. The rank K fusion criterion is

developed for all radars to calculate the detection probability

of stealth UAV. The value K0 is determined by the number

of radar M and it will change when there is a POP-UP threat

in the scenario. Additionally, it is considered as the proba-

bility state of radar high detection when PNet exceeds 0.4.

TABLE 8. The geographical location and types of threat sources in the
third threat scenario.

Besides, the Ph is performed to evaluate the safety degree of

the track segment, the smaller the value, the safer the route.

The RCS data of a certain type of stealth UAV is depicted

in Fig. 9.

A. THE FIRST THREAT SCENARIO

The threat region has a range of 25 km × 25 km × 3km, the

geographical location and types of threat sources are pre-

sented in Table 4. The coordinate of the starting point

is (5, 5, 2)km, and the coordinate of the target point is

(25, 25, 2)km, The numerical results of penetration route

planning which is performed by different algorithms in the

first scenario are depicted in Fig. 10. The variation of attitude

angle which is performed by an improved A-Star algorithm
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FIGURE 16. Numerical results of penetration route planning in the third scenario.

in the first scenario is depicted in Fig. 11, the detection

probability of netted radar in the first threat scenario is

depicted in Fig. 12, and the statistical result of the flight in

the first scenario is presented in Table 5.

Fig. 10 describes the penetration routes for stealth UAV

which is performed by adopting three different algorithms

in a scenario with fewer threat sources. Fig. 12 and Table 5

indicate that the three algorithms can achieve the security

penetration of stealth UAV in the first scenario, in which

static or dynamic environment. However, compared with

the other two algorithms, the routes obtained by using the

improved A-Star algorithm takes less run time and has a

smaller value of Ph. Additionally, the routes obtained by the

improved A-Star algorithm is shorter than the SAS algorithm,

that means the improved A-Star algorithm has higher route

planning efficiency and route safety, which further proves
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FIGURE 17. The variation of attitude angle that performed by improved A-Star algorithm in the third threat scenario.

the effectiveness of the algorithm. Fig. 11 shows that the

improved A-Star algorithm can accurately adjust the attitude

angle and reduce the RCS on the routes, and this algorithm

achieves the rapid and safe route penetration planning for

stealth UAV.

B. THE SECOND THREAT SCENARIO

The threat region has a range of 25 km × 25 km × 3km, the

geographical location and types of threat sources are pre-

sented in Table 6. The coordinate of the starting point

is (5, 5, 2)km, and the coordinate of the target point is

(25, 25, 2)km, The numerical results of penetration route

planning which is performed by different algorithms in

the second scenario are depicted in Fig. 13. The variation

of attitude angle which is performed by an improved A-Star

algorithm in the second scenario is depicted in Fig. 14,

the detection probability of netted radar in the second threat

scenario is depicted in Fig. 15, and the statistical result of

flight in the second scenario is presented in Table 7.

Fig. 13 describes the penetration routes for stealth UAV

which is performed by employing three different algorithms

in a scenario with more complex threat sources, and we can

infer some interesting experimental results from Fig. 15 and

Table 7. For the original route planning, stealth UAV can

still achieve safe penetration route planning in the threat

scenario by applying three algorithms. Inversely, for the route

replanning in the presence of POP-UP threats, the routes of

that obtained by D-star algorithm is higher than 0.5, which

means that the route replanning of D-Star algorithm has

failed in the second threat scenario, however, the improved

A-Star algorithm can still achieve the route replanning in

the second scenario with two POP-UP threats. Additionally,

compared with the other two algorithms, the improved A-Star

algorithm takes less run time and has higher route planning

efficiency whether in the original route planning or replan-

ning, and it further proves the effectiveness of the algorithm.

Fig. 14 shows that when the improved A-Star algorithm is

performed to penetration route planning, the variation of

attitude angles are within the preset range, which can sat-

isfy the actual flight requirements. And the attitude angle

of the stealth UAV changes more frequently, the more

maneuvers are needed to reduce the RCS on the routes

to further obtain a shorter flight distance and a safe track

node.

TABLE 9. The statistical result of flight in the third scenario.

C. THE THIRD THREAT SCENARIO

The threat region has a range of 25 km × 25 km × 3km, the

geographical location and types of threat sources are pre-

sented in Table 8. The coordinate of the starting point

is (5, 5, 2)km, and the coordinate of the target point is

(25, 25, 2)km, The numerical results of penetration route

planning which is applied by different algorithms in the third

scenario are depicted in Fig. 16. The variation of attitude

angle which is employed by an improved A-Star algorithm

in the third scenario is depicted in Fig. 17, the detection

probability of netted radar in the third threat scenario is

depicted in Fig. 18, and the statistical result of flight in the

third scenario is presented in Table 9.

Fig. 16 describes the penetration routes for stealth UAV

which are performed by applying three different algorithms

in a scenario with a large number of threat sources and

dynamic threats, Fig. 18 and Table 9 show that thePh of routes

obtained by the SAS algorithm and D-star algorithm is higher

than 0.5 no matter in the original route planning or route

replanning. Obviously, these two algorithms are not suitable

for solving the route planning and replanning problems for

stealth UAV in the third scenario. In contrast, the Ph of

routes obtained by the improved A-Star algorithm are always

lower than 0.5, from which we can infer that the improved

A-Star algorithm can still achieve the security penetration

for stealth UAV in the dynamic threat scenario. Additionally,

compared with the other two algorithms, the improved A-Star

algorithm has many advantages such as higher computational

efficiency, higher route safety, and shorter flight distance,

which also proves the validity of the improved A-Star algo-

rithm in the scenario with high threat density. Fig. 17 shows

that when the improved A-Star algorithm is performed to

penetration route planning, the variation of attitude angle

within the preset range, which can satisfy the actual flight

requirements.

VOLUME 8, 2020 122769



Z. Zhang et al.: Novel Real-Time Penetration Path Planning Algorithm for Stealth UAV in 3D Complex Dynamic Environment

FIGURE 18. The detection probability of netted radar in the third threat scenario.

VI. CONCLUSION

This paper presents a novel real-time path planning algorithm

for stealth unmanned aerial vehicle in 3D complex dynamic

environment. Firstly, an improved A-Star algorithm based

on a multi-step search strategy is designed by model-based

predictive control and the A-Star algorithm. Meanwhile,

the attitude angle information of stealth UAV is added to

the algorithm, which shows the variation characteristics of

dynamic RCS. Further combinedwith the kinematics analysis

of stealth UAV and the detection performance analysis of

netted radar, the original routes and the replanning routes can

satisfy the actual flight requirements. Additionally, compared

with other algorithms, the improved A-Star algorithm can

achieve the penetration route planning for stealth UAV in

dynamic threat scenarios, improve the survivability of stealth

UAV and the efficiency of penetration route planning, and

further verify the validity of the improved A-Star algorithm.

Moreover, the threat scenarios are closer to the real combat

environment. The model and the improved A-Star algorithm

proposed in this paper can quickly generate better penetration

routes in the combat area under a dynamic environment,

exhibiting certain military application value. The future work

will focus on the problem of rapid penetration route planning

for stealth UAV in combat scenarios that includes terrain

concealment and some uncertain motion targets.
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