
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

1

 
Abstract—A new deep neural network (NN) approach applied 

to antenna array adaptive beamforming is presented in this paper. 
A recurrent NN (RNN) based on the gated recurrent unit (GRU) 
architecture is used as a beamformer in order to produce proper 
complex weights for the feeding of the antenna array. The 
proposed RNN utilizes four hidden GRU layers and one extra 
layer for linear transformation. The produced weights are 
subsequently compared with respective weights derived by a null 
steering beamforming (NSB) technique in order to measure the 
accuracy of the RNN. The RNN training is performed by using a 
large data set derived from an NSB technique applied to a realistic 
microstrip linear antenna array, in order to take into account real-
world effects, like the non-isotropic radiation pattern of an array 
element and the mutual coupling between the array elements. The 
RNN performance is examined by using the root mean square 
error metric, whereas its beamforming performance is evaluated 
by estimating the mean value and the standard deviation of the 
divergences of the main lobe and nulls directions from their 
respective desired directions. A comparison between various NN 
structures and an overall study of the proposed RNN-based 
beamformer are also presented. 
 

Keywords—Adaptive beamforming, antenna beamforming, 
deep learning, neural networks, recurrent neural networks, smart 
antennas. 

I. INTRODUCTION 
HE demand of the modern wireless communications 
landscape for faster and more reliable networks is 

constantly increasing. Smart antennas can potentially be a 
solution to these demands by employing self-regulating 
algorithms to control the transmission and reception of signals. 
From estimating the direction of arrival (DoA) of incoming 
signals, to producing the desired radiation pattern, and to finally 
establishing low level communication noise, intelligent 
algorithms have become an effective solution because they 
significantly decrease the latency of the beamforming process. 
In this way, an antenna array can dynamically steer the main 
lobe of its radiation pattern towards the direction of a desired 
incoming signal (i.e., signal of interest or SoI), while placing 
nulls towards the directions of respective interfering signals 
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(i.e., signals of avoidance or SoAs), to finally maximize the 
signal to interference-plus-noise ratio (SINR). This process 
must be repeated every time a change occurs either in DoA of 
SoI or in DoA of any SoA, and is called “adaptive 
beamforming” (ABF). ABF is the principal real-time process 
performed by smart antennas. It plays a vital role in ensuring 
the quality and stability of wireless communications in an ever-
changing environment. 

An antenna array consists of many small radiating elements, 
which work together as a single antenna. The radiation of each 
element is added to form the total radiation pattern, which 
determines the direction of the main lobe, the side lobes, and 
the nulls. The array elements are often non-isotropic, meaning 
that they do not always behave as ideal signal sources because 
they are influenced by their individual radiation patterns (due 
to their geometry) and mutual coupling phenomena. To force 
an element radiate, a feeding weight must be applied to it. When 
the antenna operates as a transmitter, these weights represent 
either input currents or input voltages (including amplitudes 
and phases), which are applied to the elements by using a proper 
active electronic circuit driven by the processing unit, which 
has calculated the appropriate weights [1]. By controlling the 
amplitude and phase of the feeding weight of each element, we 
can control the radiation pattern of the antenna array. This 
allows the main lobe to be steered towards the desired direction 
while placing nulls to the directions of interfering signals.  

A lot of beamforming applications can be found in the 
literature [2]-[10]. A four-arm spiral antenna with a monolithic 
integration of a modified Butler matrix beamforming network 
is implemented in [2] for operation from 50 to 75 GHz. A 
minimum variance beamforming method with linear constraints 
is presented in [3] to improve the calibration efficiency of an 
array-fed reflector antenna. In [4], various beamforming 
strategies are applied to a quad-mode antenna utilizing four 
available excitation modes to maximize the gain, the signal to 
noise ratio (SNR), and the polarization discrimination, whilst 
retaining minimum noise over the field of view. New digital 
beamforming techniques aiming at improving the performance 
of microwave radiometers used in ocean observation missions 
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are presented in [5]. A miniaturized reconfigurable antenna, 
operating from 3.5 to 5.5 GHz, is proposed in [6] to perform 
beam-steering, by properly controlling eight PIN diodes. 

Furthermore, some studies demonstrate the ability of smaller 
antennas to easily manipulate their radiation. This ability allows 
beamforming to be applied to smaller devices [11]-[13]. An 
effective implementation in [11] shows that the mutual 
coupling problem can be avoided in compact antennas using 
spiral resonators. In [12], a compact antenna array operating in 
the 2.45 GHz band achieves reasonable gain values and high 
directivity despite its small size. In [13], a novel 
implementation using metamaterials significantly improves the 
directive radiation of a dipole antenna.  

So far, several deterministic algorithms have been used as 
ABF techniques [14]-[21]. One of these is the null steering 
beamforming (NSB) technique, which produces feeding 
weights to steer the main lobe and place nulls with high 
accuracy. Despite their near-optimal performance, 
deterministic ABF algorithms suffer from a downgraded 
temporal response, due to high-complexity calculations 
required for the extraction of the feeding weights. Moreover, if 
such an algorithm operates in an iterative manner, then its 
temporal response becomes a major issue [22]-[24]. Therefore, 
the future of wireless networks relies on the implementation of 
ABF techniques that provide not only accuracy, but also instant 
response. 

The fields of machine learning and deep learning have made 
enormous leaps in the past two decades providing solutions to 
problems in a wide range of scientific fields [25]. Neural 
networks (NNs) are known to be able to mimic high-complexity 
functions by implementing simple calculations, such as 
addition, multiplication, division, and some non-linear 
thresholding operations. Their fast temporal response makes 
them not only attractive in the field of signal processing, but 
also a good alternative for DoA estimation and ABF (see Fig. 
1). In addition, their outputs depend exclusively on the input 
values, so they do not rely on the temporal stability of other 
antenna characteristics. Despite that the training process of NNs 
is time-consuming, the great advantage of NNs as beamformers 
lies in the fact that their training may be either an offline process 
or a process that runs as a concurrent thread during their actual 
operation, and therefore the training phase neither affects the 
performance nor delays the actual NN operation. To avoid 
degradation either in performance or in temporal response in a 
fast-changing environment, the processing units of the NNs can 
be updated continuously, based on new data, by applying 
training as a parallel thread during the actual NN operation, as 
previously mentioned.  

NNs have not yet demonstrated optimal accuracy when it 
comes to main lobe and nulls placement. In this paper, we 
attempt to overcome this issue by using particular deep NN 
structures and by training NNs using a large dataset produced 
by very precise ABF techniques, such as the NSB algorithm. To 
further improve the quality of the training samples, we have 
filtered out samples of low accuracy and low SINR. More 
details are mentioned in section V. 

This research focuses on the use of NNs as a low-complexity 

beamforming technique and compares different structures of 
deep NNs in terms of accuracy and temporal response, while 
proposing a new beamformer implementation based on deep 
recurrent neural networks (RNNs), which are built using the 
gated recurrent unit (GRU). The NNs presented here are trained 
by using large datasets produced by an NSB algorithm, which 
has properly been modified for realistic antenna arrays, as 
presented in [18]. In sections VI and VII, we demonstrate the 
process behind the feedforward neural network (FFNN) and 
RNN implementations, we show the procedure of finding the 
best architecture for each NN type, and we finally train and test 
each NN type. In section VIII, we compare all the derived NN 
models together with the NSB technique in terms of accuracy 
and temporal response, to find the most promising NN model. 
Section IX examines the performance of the chosen NN model 
as a beamformer in comparison to the NSB technique for 
various numbers of incoming signals. Finally, the conclusions 
are presented in section X. 

 
Fig. 1.  Adaptive beamforming implemented by using a neural network.  

II. PRIOR ART ON NN-BASED BEAMFORMING 
Already, a lot of similar studies have been conducted on the 

subject [14], [16], [17], [26]-[35], while the use of NNs in 
beamforming and other applications of smart antennas is 
constantly increasing [36]. Most of NNs have been trained 
using various ABF techniques, such as the Minimum Variance 
Distortionless Response (MVDR) algorithm [16], [29], [35], an 
Invasive Weed Optimization (IWO) variant [28], and the Least 
Mean Square (LMS) method [37]. When compared in [18], the 
MVDR and NSB techniques demonstrate similar performance, 
with both having an excellent ability to place nulls extremely 
close to DoAs of respective SoAs. We have chosen to use the 
NSB algorithm here, because it requires only the knowledge of 
angles of arrival (AoAs) of incoming signals, while the MVDR 
technique additionally demands the autocorrelation matrix of 
the signals induced at the inputs of the array elements. Some 
researchers have just used the autocorrelation matrix as input 
for their NNs [14], [17], [26], [31], thus implementing a “blind 
beamforming” approach, where a NN performs beamforming 
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without being aware of the directions of the signals. As 
explained in [27], the autocorrelation matrix has a highly 
nonlinear relation with the element weights and thus it makes 
training more difficult, so in this paper we have preferred to 
directly use AoAs of incoming signals, as in [26] and [28].  

An interesting single neuron NN for a dipole antenna array is 
presented in [37] portraying the simplest application of NNs as 
beamformers, thus proving their efficiency and accuracy. In 
[17], a three-layer radial basis function FFNN is used to provide 
robustness against uncertainty in the signal AoA, thus 
improving the SINR. Another shallow FFNN is utilized in [31] 
to steer the radiation power toward the directions of the desired 
users and suppress interfering sources. The presented radiation 
patterns exhibit great main lobe accuracy and side lobe 
suppression, but without any information about the accuracy of 
the interference directions A convolutional NN (CNN) 
approach with three types of hidden layers is also studied in [33] 
to improve the SINR values at the beamformer output and 
suppress both narrowband and wideband interferences. 
Unfortunately, the model’s statistical accuracy in finding the 
proper directions of the main lobe and the nulls is not presented 
numerically for comparison. Some studies focus solely on the 
main lobe steering without placing nulls at the exact directions 
of interference signals [35] or by simply nulling a wider area of 
the radiation pattern [30], [32]. In [28], a FFNN implementation 
is studied on low noise level conditions in comparison to the 
IWO technique, thus demonstrating the efficiency and 
capabilities of the NN as a beamformer. A CNN-inspired model 
[29] shows better performance than a conventional FFNN with 
a mean divergence of the main lobe from the desired direction 
of less than 0.6 degrees. Applications of RNNs in the field of 
beamforming have already shown improvements in the 
behaviour of millimeter wave beamforming transmitters [34]. 
In [35], a long short-term memory (LSTM) and a nonlinear 
autoregressive (NAR) NN are implemented for signal 
prediction, thus showing the great potential of recurrent 
networks as beamformers. In [30], a RNN is used to steer the 
main lobe towards DoA of SoI, while suppressing the sidelobe 
level. This implementation considers an antenna array 
composed of ideal isotropic elements, which are not realistic as 
previously explained. Also, the beamformer’s accuracy is 
measured in terms of the main lobe direction and side lobe level, 
but not in terms of the nulls directions. 

Judging from all this research, the NN-based beamforming is 
very promising and justifies further study. However, previous 
NN implementations either focused exclusively on the main 
lobe steering or created unsatisfactory main lobe and nulls 
divergences from the respective desired directions. Also, 
several NN implementations considered ideal antenna arrays 
and not realistic ones. Of course, an important reason for their 
inefficiencies was evidently the lack of training samples. The 
present study does not directly make comparisons with the ones 
previously mentioned, except for the case of [29] where 
divergences from the desired DoAs were measured. The 
proposed model provides a satisfactory answer to the real-world 
ABF problem by using of a GRU-RNN architecture that offers 
great accuracy both in the main lobe direction and in the 

placement of nulls. For this purpose, a sufficient training set 
was produced by a realistic antenna array ABF algorithm, 
which gave our NNs the diversity and abundance of data they 
needed to reach higher levels of accuracy. 

III. ADAPTIVE BEAMFORMING FUNDAMENTALS 
Let us consider an array composed of M elements, which are 

located in space at positions defined by respective position 
vectors ⃗ݎ௠, ݉ = 1, …  The array receives N+1 .ܯ,
monochromatic signals (where N<M) at wavelength λ. Each one 
of the incoming signals ݏ௡(݇) (where k is the time sample and 
݊ = 0, 1, … , ܰ) reach the antenna array from a DoA defined by 
a respective direction unit vector ݑො௡. We identify ݏ଴(݇) as SoI 
and the rest of ݏ௡(݇), ݊ = 1, … ,ܰ, as SoAs. It is considered that 
all DoAs have been derived by a DoA estimation algorithm, and 
then they are used as information to feed the beamformer. So, 
the beamformer is responsible for producing M proper complex 
weights ݓ௠ (݉ = 1, …  which are consequently multiplied ,(ܯ,
by signals ݔ௠(݇) (݉ = 1, …  induced at the inputs of the (ܯ,
respective array elements to produce the array output ݕ(݇). 

As shown in [29], all input signals ݔ௠(݇) (݉ = 1, …  can (ܯ,
be represented as a column vector ܠ(݇), which can be expressed 
by the following equation: 
 

(݇)ܠ = (݇)଴ݏ଴܉ + (݇)௜ܛ௜ۯ + ,(݇)ܖ (1) 
where  

(݇)ܠ = ்[(݇)ெݔ …  (݇)ଶݔ  (݇)ଵݔ] , (2) 
 

(݇)௜ܛ = ்[(݇)ேݏ  …  (݇)ଶݏ  (݇)ଵݏ] , (3) 
 

௜ۯ = ଶ܉  ଵ܉] ,[ே܉  …  (4) 
and 

௡܉ = ൦

ଵݎ⃗ߚ݆)݌ݔ݁ ∙ (ො௡ݑ
ଶݎ⃗ߚ݆)݌ݔ݁ ∙ (ො௡ݑ

⋮
ெݎ⃗ߚ݆)݌ݔ݁ ∙ (ො௡ݑ

൪ , ݊ = 0, 1, … ,ܰ  (5) 

 
are, respectively, the input vector, the SoA vector, the array 
steering matrix of SoAs, and the array steering vector that 
corresponds to DoA defined by unit vector ݑො௡, while β is the 
free space wavenumber (ߚ =  and superscript T indicates (ߣ/ߨ2
the transpose operation. It has to be noted that the form of ܉௡ 
given by (5) applies to the case of an ideal array, i.e., an array 
composed of M isotropic point sources, with no coupling 
between them. In the case of a realistic array, where the array 
elements are not omni-directional and there is coupling between 
them, a modified form of ܉௡ replaces (5), as shown below. 
Regardless of the type of the array (ideal or realistic), the output 
is calculated as: 
 

(݇)ݕ = ෍ ∗௠ݓ (݇)௠ݔ 
ெ

௠ୀଵ

. (6) 

The above equation can also be written in the form 
 

(݇)ݕ = ,(݇)ܠுܟ (7) 
where 

ܟ = ଵݓ] ଶݓ    ெ]் (8)ݓ  …  
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is the excitation weight vector, while superscript H indicates the 
Hermitian transpose operation. The autocorrelation matrix of 
the input signals, which was mentioned in section II, is 
calculated as: 

௫௫܀ = ,[(݇)ுܠ(݇)ܠ]ܧ (9) 
 
where E[.] denotes the mean value. This definition also applies 
to any type of array, either ideal or realistic. 

IV. NULL STEERING BEAMFORMING 

A. Theoretical model applied to ideal antenna arrays 
The theoretical NSB algorithm considers an ideal array, i.e., 

an array composed of M isotropic point sources, with no 
coupling between them. The array is considered here to be a 
linear one, so the sources are considered to be placed along the 
z-axis. As also presented in [18], DoAs of incoming signals 
௡ݏ  (݊ = 0, 1, . . . , ܰ) can be identified by respective AoAs 
݊) ௡ߠ = 0, 1, … ,ܰ), which are defined as angles between DoAs 
of these signals and the z-axis (i.e., polar angles). If ܫ௠ ,݉ =
1, …  are the currents used to feed the sources (array ,ܯ,
elements), then the radiation pattern is expressed by the array 
factor as follows: 
 

(ߠ)ܨܣ = ෍ ௠݁௝ఉ௭೘௖௢௦ఏܫ
ெ

௠ୀଵ

, (10) 

 
where ݖ௠ , ݉ = 1, … ,  are the positions of the point sources ,ܯ
along the z-axis. When the array is in reception mode, the 
currents ܫ௠ become multipliers of the input signals ݔ௠ (݉ =
1, … ௠ܫ We may consider that .(ܯ, = ∗௠ݓ , where ݓ௠ is a 
weight that expresses the conjugate value of the mth current. 
Then, we can write (10) as: 
 

(ߠ)ܨܣ = ෍ ∗௠ݓ ݁௝ఉ௭೘௖௢௦ఏ
ெ

௠ୀଵ

= ,(ߠ)܉ுܟ  (11) 

where  
 

(ߠ)܉ = ൣ݁௝ఉ௭భ௖௢௦ఏ   ݁௝ఉ௭మ௖௢௦ఏ    …   ݁௝ఉ௭ಾ௖௢௦ఏ൧
்

 (12) 
 
is the steering vector for any observation angle θ. The NSB 
algorithm is very accurate when it comes to null placement 
towards the interference directions, thus achieving near-zero 
angular divergences from these directions as shown in [18]. In 
addition, it serves as a precise beam-steering technique 
presenting negligible errors on the positioning of the main lobe. 
To achieve all the above, the NSB algorithm calculates the 
weights of the antenna elements based on the following 
expression: 

ேௌ஻ܟ = ટ(ۯுۯ)ିଵܞଵ , (13) 
 
where 

ۯ = . (ଵߠ)܉   (଴ߠ)܉] .  (14) [(ேߠ)܉  .
 
and 

ଵܞ = [1   0 .  .  . 0]் (15) 

 
are, respectively, the array steering matrix of all the incoming 
signals (ܯ × (ܰ + 1) matrix), and a unit vector of size N+1. 

B. Modified model applied to realistic antenna arrays 
In practice, the NSB algorithm is applied to realistic antenna 

arrays, i.e., arrays composed of M non-isotropic elements, with 
mutual coupling between them. Therefore, some modifications 
must be applied to this algorithm, to be able to calculate the 
proper feeding weights even in the case of a realistic array. The 
main change concerns the total radiation pattern, which now 
cannot be expressed just by the array factor. 

The array considered in this paper has the same geometry 
with the one studied in [18]. It is a linear array composed of 16 
microstrip rectangular patches (M = 16) designed according to 
the inset-feed method to easily achieve impedance matching. 
The patches are developed on a Rogers RT/duroid 5880 
substrate and are uniformly spaced at fixed distance d = λ/2. The 
CST software package is used to model and optimize the array 
geometry under constraint that S-parameters ܵ௠௠ ≤ −20dB,
݉ = 1, … ,16, at the input points of the microstrip elements. 
Given that the input of every element is located in the middle 
of the element side, which is parallel to the z-axis (see Fig. 2), 
the total electric theta-component ܧఏ produced on the xz-plane 
by the whole array is at least 20dB less than the value of the 
total electric phi-component ߃ఝ on the same plane (ܧఏ ≪  (ఝ߃
for values of θ within the angular sector [30°, 150°], as 
explained in [18]. Thus, the total radiation pattern within this 
sector on the xz-plane can be represented only by ܧఝ. In 
addition, ܧఝ can be expressed in the form of a linear 
combination, as follows: 

 
Fig. 2.  Linear microstrip antenna array geometry.  

(ߠ)ఝ߃ =  ෍ (ߠ)௠݁ఝ௠ܫ
ெ

௠ୀଵ

, (16) 

 
where ݁ఝ௠(ߠ) is the electric phi-component of the whole array, 
when only the mth element is fed by a unitary current source, 
while the rest of the elements are not fed by any source 
(parasitic elements). These components are mentioned in the 
literature as the “embedded element patterns” of the array, and 
they can be extracted by performing a full-wave analysis on the 
array using the CST.  

By considering again that ܫ௠ = ∗௠ݓ , the above expression 
can be written as follows: 
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(ߠ)ఝ߃ = ෍ ∗௠ݓ  ݁ఝ௠(ߠ)
ெ

௠ୀଵ

= ுܟ  ,(ߠ)ఝ܍  (17) 

where  
 

(ߠ)ఝ܍ = ൣ݁ఝଵ(ߠ)   ݁ఝଶ(ߠ)  …   ݁ఝ௹(ߠ)൧
ఁ

 (18) 
 
is a vector containing all the electric phi-components that 
correspond to observation angle θ. Equations (11) and (17) 
express the radiation patterns produced, respectively, by an 
ideal and a realistic antenna array. It is obvious that (11) is 
converted to (17) by replacing (ߠ)܉ with ܍ఝ(ߠ). Since (ߠ)܉ 
represents the steering vector of an ideal array (i.e., the 
theoretical steering vector), we can consider that ܍ఝ(ߠ) 
represents the steering vector of a realistic array, and therefore 
it can be called the “realistic steering vector”. Furthermore, if 
 in any equation that applies to an ideal (ߠ)܉ replaces (ߠ)ఝ܍
array, then the derived equation will apply to the respective 
realistic array. By applying such a replacement to (14), we 
derive the form of the realistic steering matrix of all the 
incoming signals, as follows: 
 

ણఝ = ൧(௺ߠ)ఝ܍… (ଵߠ)ఝ܍  (଴ߠ)ఝ܍ൣ (19) 
 
Finally, by replacing A with  ણఝ in (13), we derive the weight 
calculation formula of the NSB algorithm that applies to 
realistic arrays: 

ேௌ஻ܟ = ણఝ(ણఝ௴ ણఝ)ିଵܞଵ (20) 

V. TRAINING DATASET PRODUCTION - PROBLEM CONDITIONS 
Using (20), we are able to produce any dataset for NN 

training. Since the array of this study consists of 16 elements 
and each element is excited with a complex feeding weight, we 
need 32 weight numbers (i.e., 16 real and 16 imaginary parts of 
the complex feeding weights) to produce the radiation pattern 
of the array. To produce a proper dataset, some restrictions 
concerning the desired AoAs and their divergences from the 
respective actual AoAs are applied. Firstly, all the desired AoAs 
must lie within the angular sector [30°, 150°] in order to be able 
to express the total radiation pattern only through ܧఝ (ܧఏ ≪
 ఝ), as explained in the previous section. Secondly, all the߃
desired AoAs have a minimum distance Δߠ, which is defined 
here equal to 6°. The value of Δߠ determines the difficulty of 
the beamforming problem, because it is actually the minimum 
distance between two adjacent nulls or between the main lobe 
peak and its nearest null. The lower the value of Δߠ, the more 
difficult the problem, because the beamformer is forced to 
produce a radiation pattern where a null is generated at a small 
angular distance from another null or from the main lobe peak. 
Thirdly, the SNR is defined equal to 0dB, thus considering high 
noise conditions. Finally, we set some constraints on the 
accuracy of the NSB results that will be included in the training 
dataset. In order to make a NN produce highly accurate results, 
the data we use for its training must be highly accurate as well. 
Thus, we only keep cases where the weights derived by the NSB 
algorithm produce a radiation pattern that has 
 main lobe divergence less than 0.5° from AoA of SoI, and 

 null placement divergences less than 0.1° from AoAs of 
SoAs, 

while we discard the rest. Correspondingly, we expect the 
outputs of our final NN model to perform similarly, with a small 
margin of error, in order to consider the NN implementation 
successful.  

Every record of the dataset consists of: 
 N+1 inputs, which are the polar angles ߠ௡ (݊ = 0, 1, … ,ܰ), 

with the first one (ߠ଴) representing AoA of SoI and the rest 
of the angles representing AoAs of SoAs. 

 2M outputs, which are 32 weight numbers extracted by the 
NSB algorithm, i.e., 16 real and 16 imaginary parts of the 
complex weights used to feed the 16-element array. 

In order to perform more effective NN training, a sufficient 
number of records is produced. In particular, 1.1×104 records 
are used in the process of searching the best model architecture, 
while 5×106 records are used for the training of the final model. 
The time needed for the production of these datasets is 42 
seconds and 5.3 hours respectively (using an Intel® Core™ i7-
7700HQ @2.80GHz and 8GBs of DDR4 RAM). In this way, 
we ensure that we will not face overfitting issues (i.e., situations 
where the training error is much lower than the test error) and 
that we create a well-generalized model.  

VI. FEEDFORWARD NN APPROACH 
In the case of FFNNs, the process of input loading and output 

production is simple and easy to comprehend. AoAs are loaded 
at the input layer of the FFNN in parallel and are consequently 
processed by the neurons of the hidden layers. The NN 
produces 32 output values, which represent the real and 
imaginary parts of the complex feeding weights, as shown in 
Fig. 3.  

 
Fig. 3.  L-layer FFNN implementation. 

In order to find out which architecture is the best for this type 
of NN, we apply grid search with k-fold cross validation to 
figure out the best combination regarding the number of hidden 
layers and their respective sizes. Later on, another grid search 
is applied to figure out the best hyperparameter tuning 
concerning the batch size and the learning rate. The variations 
tested below refer to ABF for 3 incoming signals, i.e., 1 SoI and 
2 SoAs, as shown in Fig. 3. If L is the number of hidden layers, 
then the first L–1 layers will be using the hyperbolic tangent 
(tanh) as an activation function, whereas the last layer (Lth) will 
be using the sigmoid activation function. To calculate the cost 

mailto:@2.80GHz
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for each NN weight update, we use a quadratic cost function 
variant, also known as root mean square error (RMSE), which 
is calculated as follows: 

 

RMSE = ඩ
1
݌
෍൫ ௜݂ − መ݂

௜൯
ଶ

௣

௜ୀଵ

, (21) 

 
where p is the number of neurons on the output layer of the NN 
݌) = 32), መ݂௜ is the actual value of the ith output neuron, and ௜݂  
is the respective desired value of this neuron. 

We also choose Adam as the optimization method and we 
normalize both inputs and outputs of the dataset in the range 
[0,1] to improve the optimization algorithm’s performance and 
the overall training process [38]. These choices are proved to 
be more efficient than other alternatives after a lot of different 
trials. During the search process, we choose a slow learning 
rate, e.g., 0.001, and a batch size equal to 256, which remain the 
same for all our trials. Due to high complexity and non-linearity 
of the ABF problem, the case of one hidden layer is rejected. 
Instead, we test FFNN architectures with 2, 3 and 4 hidden 
layers. The sizes of these layers are purposely chosen to be 
multiples of the output size (32). Due to the size difference 
between input and output, it is considered good practice to 
select hidden layers much larger in size than the output layer, to 
emulate the computational complexity required to transform 3 
input angles into 32 output numbers. Thus, we choose hidden 
layer sizes between 128 and 1024. 

For this grid search, we use 104 records as a training set and 
103 records as a test set. We apply a 5-fold cross validation to 
ensure the validity and accuracy of our results, and train each 
model for 500 epochs. Using this grid search, we intend to find 
which variation provides the lowest training and test RMSEs to 
choose as most promising. Each FFNN architecture is described 
by using the notation: [Input Layer Size, 1st Hidden Layer Size, 
2nd Hidden Layer Size, …, Lth Hidden Layer Size, Output 
Layer Size]. 

The results are given in Tables I, II and III. By comparing 
these three tables, we notice a test RMSE drop, when we move 
from a two-layer FFNN to a four-layer FFNN. This is expected 
as an increase of a NN’s depth increases its ability to model 
functions of high complexity [39]. Despite the increasing 
overfitting risk, NN models that use layers of larger size tend to 
achieve lower errors. This is the answer to the question why we 
mainly focused on using larger layer sizes, when testing a four-
layer FFNN. We also observe that, while layers with size equal 
to 512 contribute to the models’ performances, layers with size 
equal to 1024 simply increase the risk of overfitting. The best 
architecture is the one that provides the lowest training and test 
RMSEs, and is highlighted in bold. 

Next, we look for the best hyperparameter combination by 
comparing different batch sizes and different learning rates. 
From Table IV, it seems that the best initial value for the batch 
size is 256 and for the learning rate is 0.001. This table also 
shows that testing for values of learning rate greater than 0.005 
is redundant as the results become increasingly worse.  
 

TABLE I 
COMPARISON OF FFNNS WITH TWO HIDDEN LAYERS (5-FOLD CROSS 

VALIDATION) 
Layer Sizes Training RMSE Test RMSE 

[3, 128, 128, 32] 0.0492 0.0498 
[3, 128, 256, 32] 0.0481 0.0493 
[3, 256, 256, 32] 0.0483 0.0489 
[3, 256, 512, 32] 0.0482 0.0488 
[3, 512, 512, 32] 0.0475 0.0484 

 
TABLE II 

COMPARISON OF FFNNS WITH THREE HIDDEN LAYERS (5-FOLD CROSS 
VALIDATION) 

Layer Sizes Training RMSE Test RMSE 
[3, 128, 256, 256, 32] 0.0463 0.0479 
[3, 128, 256, 512, 32] 0.0464 0.0477 
[3, 256, 512, 512, 32] 0.0431 0.0462 
[3, 256, 512, 1024, 32] 0.0448 0.0476 
[3, 512, 512, 1024, 32] 0.0422 0.0459 
[3, 512, 1024, 1024, 32] 0.0400 0.0456 

 
TABLE III 

COMPARISON OF FFNNS WITH FOUR HIDDEN LAYERS (5-FOLD CROSS 
VALIDATION) 

Layer Sizes Training RMSE Test RMSE 
[3, 128, 256, 512, 512, 32] 0.0434 0.0465 

[3, 128, 256, 512, 1024, 32] 0.0455 0.0483 
[3, 256, 512, 512, 1024, 32] 0.0339 0.0408 

 
TABLE IV 

BATCH SIZE COMPARISON OF FFNNS FOR VARIOUS LEARNING RATES (5-FOLD 
CROSS VALIDATION) 

Batch Size Learning Rate 0.001 0.005 0.010 

32 
Training RMSE 0.0415 0.2945 0.5707 

Test RMSE 0.0437 0.2988 0.5718 

128 
Training RMSE 0.0336 0.1236 0.5713 

Test RMSE 0.0415 0.1215 0.5705 

256 
Training RMSE 0.0339 0.1063 0.5000 

Test RMSE 0.0408 0.1043 0.4992 

512 
Training RMSE 0.0443 0.1990 0.4004 

Test RMSE 0.0479 0.1997 0.4012 

 
After we have found the best settings for FFNNs applied to 

the ABF problem, we proceed to train and test the final model 
using the big dataset (5×106 records). The major part of this set, 
i.e., 4.9×106 records, is used for training, and the remainder, i.e., 
105 records, is used for testing. During training, we use the 
Pytorch function ReduceLRonPlateau, which reduces the 
current learning rate by a factor of 0.8, if the training RMSE 
stops decreasing or it decreases very slowly. This learning rate 
regulation increases the training performance by a factor 
between 2 and 10, because it helps the NN training process to 
escape sharp local minima [40]. The results are presented in Fig. 
4 and Table V. The training curve of Fig. 4 suggests that the 
training presents no overfitting. The sudden RMSE drops 
represent the times where ReduceLRonPlateau decided to 
decrease the learning rate, and it is evident that this reduction 
has a positive impact on the training. 
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Fig. 4.  Learning curves of the FFNN. 

TABLE V 
FFNN TRAINING AND TEST RESULTS 

Epochs Training RMSE Test RMSE Final learning 
rate 

Training time 
(hours) 

300 0.0121 0.0122 0.000055 13.28  

 
Next, the FFNN is tested in terms of accuracy in the produced 

radiation patterns. The test is applied on 105 triads of AoAs 
(every triad corresponds to a SoI and two SoAs), on which the 
FFNN has no prior “experience”. A statistical analysis of the 
results derived from this test is given in Table VI. It seems that 
the FFNN implementation is very good regarding the main lobe 
steering, because the mean value of the main lobe divergence 
derived by the FFNN satisfies the respective requirement (i.e., 
main lobe divergence < 0.5° as defined in section V), and it is 
also very close to the respective divergence derived by the NSB 
algorithm. However, the mean value of the nulls divergence 
does not satisfy the respective requirement defined in section V 
(i.e., nulls divergence < 0.1°), which means that the FFNN faces 
difficulty in placing nulls at the desired directions. This 
inaccuracy is also observed in the reduced mean value of the 
SINR by 0.67dB compared to the respective SINR value 
achieved by the NSB algorithm. 

 
TABLE VI 

COMPARISON BETWEEN NSB AND FFNN 
 NSB [Mean/Std] FFNN [Mean/Std] 
Divergence of main lobe (°) 0.437/0.323 0.438/0.324 

Divergence of nulls (°) 0.000/0.000 0.364/0.412 
SINR (dB) 27.196/2.970 26.530/3.106 

 
Finally, an example of radiation patterns produced by the 

NSB algorithm and the FFNN for a SoI and two SoAs is given 
in Fig. 5. Although the radiation patterns seem to be almost 
identical, the above statistical analysis shows that the FFNN is 
slightly inferior to the NSB algorithm in terms of nulls 
placement accuracy. 
 

 
Fig. 5.  Radiation patterns produced by NSB and FFNN for a SoI received at 
100° and 2 SoAs received at respective AoAs equal to 60° and 140°. 

VII. RECURRENT NN APPROACH 
RNNs belong to another type of NNs, which are mostly used 

for processing sequential data. The applications of RNNs vary 
from speech recognition and translation to sentiment 
classification and music generation. They diverge from FFNNs 
due to their ability to exploit their “memory” to influence their 
outputs. Information from prior inputs can affect the outcome 
of the current input since data enter the RNN in sequence. 
RNNs can be further distinguished into categories depending 
on the way they produce output data. Different applications 
require different types of RNNs.  

For the purpose of ABF, we choose the “many-to-one” 
approach, where AoAs enter the RNN one after another, and 
only the final output of the RNN is kept. When working on 
sentiment classification (another many-to-one approach), the 
input of the RNN, at each time step, is a new word not directly 
linked to or necessarily related to the words that came at the 
previous steps. However, the model is able to output a new 
sentiment each time we add a different word to the sentence. 
The new information influences the general outcome of the 
RNN, but at the same time all previous inputs are taken into 
consideration. Although these inputs do not relate to each other, 
the ability of the RNN to “remember” and “combine” all the 
inputs is what dictates the sentiment of a sentence. We have 
chosen this structure of NNs not because of their potential to 
find a relationship between the data we provide as input to the 
NN, but because of their ability to adapt their output depending 
on the new incoming information. During the prediction 
process of the RNN as a beamformer, the hidden states of the 
units travel along the different time steps. In this way, the RNN-
beamformer adjusts the excitation weights progressively, in 
order to produce the most suitable radiation pattern for each 
new situation. The “progressive adaptation” of weights can be 
well understood in Section VIII by comparing the radiation 
patterns produced by the beamformer in consecutive steps. 

The process followed here can also be explained by looking 
at the RNN structure displayed in Fig. 6. For each time step 
ݐ) = 1, 2, 3), the current input ݔ௧ is processed by the RNN’s 
processing units to influence their hidden states, which are 
consequently passed on to the next time step’s units to use. In 
this way, each input affects the outcome of the RNN. Once all 
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inputs are processed, and the output ݋ଷ has been produced, the 
next input values enter the input layer to continue the training 
process. The basic idea is to have the weight vector initially 
configured by taking into account only AoA of SoI (input x1 of 
Fig. 6), and then AoAs of SoAs (inputs x2 and x3 of Fig. 6) enter 
the RNN to shape the final form of the weight vector at the 
RNN’s output. 

As in the case of the FFNN, input data are fed to the RNN in 
batches, and the Adam optimization algorithm is used to update 
the hidden states, while the RMSE metric shown in (21) is used 
as a cost function. Given that every hidden state and 
consequently the output of the RNN will have a different size 
than 32, an extra linear transformation layer is placed after the 
output layer to ensure that the final outcome is a vector of 32 
numbers (see Fig. 6).  

Two RNN approaches based on different processing units, 
i.e., LSTM and GRU, are tested. Once again, we perform grid 
search in both approaches for the most efficient architecture and 
also for hyperparameter tuning, to finally find out the most 
promising models. During the search process, we choose a slow 
learning rate, e.g., 0.001, and a batch size equal to 256, while a 
5-fold and later a 3-fold cross validation are applied using, 
respectively, 104 records as a training set and 103 records as a 
test set. For the same reasons as in the FFNN case, we choose 
hidden layer sizes between 64 and 1024 and a number of hidden 
layers between 2 and 4. 

 In order to have a fair comparison, the preferred sizes and 
training parameters of the LSTM and GRU implementations 
must be similar. 

A. Use of LSTM units 
LSTM units are known for their ability to overcome the 

vanishing gradient problem of RNNs. These units employ two 
vectors, i.e., a “hidden state” vector, which carries information 
from immediately previous events, and a “cell state” vector, 
which provides “long term” memory capabilities as it can carry 
information from past events (see Fig. 6). Using a variety of 
gates, the LSTM units can choose which information is 
valuable to keep and update their hidden states and which can 
be tossed. The results of the grid search for 2, 3 and 4 hidden 
layers are presented in Table VII. It seems that the most 
promising architectures are those with 4 hidden layers. The 
lowest RMSE is observed for hidden layer sizes equal to 512 
and 1024, with the latter achieving better accuracy. However, 
since the RMSE improvement is insignificant compared to the 
size increase from 512 to 1024, we decided to choose an 
architecture with 4 hidden layers and a hidden layer size equal 
to 512. 

Next, we look for the best hyperparameter combination by 
comparing different batch sizes and different learning rates, but 
this time we check for learning rates between 0.001 and 0.005. 
The results are shown in Table VIII. It seems that the best 
performance is achieved when using low learning rates and low 
batch sizes, but in such cases the risk of overfitting increases. 
Additionaly, we need significantly more time for training, 
which makes such choices a hard compromise. By considering 
other alternatives that provide good performance and are less 
time consuming, we finally decided to choose a learning rate 
equal to 0.001 and a batch size equal to 256 as the best 

compromise between time consumption, training performance 
and generalization ability. 

  
Fig. 6.  L-layer LSTM-RNN. 

TABLE VIΙ 
LSTM-RNN GRID SEARCH (5-FOLD CROSS VALIDATION) 

Hidden 
layers 

Hidden Layer 
Size 64 128 256 512 1024 

2 
Training RMSE  0.0499 0.0498 0.0497 0.0491 0.0477 

Test RMSE 0.0509 0.0502 0.0500 0.0488 0.0479 

3 
Training RMSE  0.0501 0.0494 0.0478 0.0442 0.0446 

Test RMSE 0.0505 0.0493 0.0494 0.0456 0.0463 

4 
Training RMSE  0.0504 0.0494 0.0413 0.0327 0.0328 

Test RMSE 0.0502 0.0502 0.0450 0.0402 0.0382 

 
TABLE VIII 

BATCH SIZE COMPARISON OF LSTM-RNNS FOR VARIOUS LEARNING RATES 
(3-FOLD CROSS VALIDATION)  

Batch Size Learning Rate 0.001 0.003 0.005 

32 
Training RMSE 0.0181 0.0273 0.0301 

Test RMSE 0.0373 0.0395 0.0461 

128 
Training RMSE 0.0250 0.0319 0.0294 

Test RMSE 0.0374 0.0416 0.0430 

256 
Training RMSE 0.0354 0.0404 0.0324 

Test RMSE 0.0406 0.0435 0.0442 

512 
Training RMSE 0.0477 0.0485 0.0421 

Test RMSE 0.0496 0.0502 0.0457 

After we have found the best settings for the LSTM-RNN, 
we proceed to train and test the final model using the big dataset 
(5×106 records). The major part of this set, i.e., 4.9×106 records, 
is used for training, and the remainder, i.e., 105 records, is used 
for testing. In comparison to the FFNN, training time is 
significantly increased, as shown in Table IX. The learning 
curves shown in Fig. 7 indicate that the training presents no 
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overfitting, while the sudden RMSE drops are again due to 
decrease in the learning rate caused by the ReduceLRonPlateau 
function. At the end of the training process after 180 epochs, 
the test RMSE has significantly been reduced, as shown in Fig. 
7 and Table IX, thus proving the superiority of the RNNs over 
the FFNNs in ABF. It should be noted that the training process 
could continue for more than 180 epochs, but since the learning 
rate has already been drastically decreased and the training time 
is already very high, a further reduction in RMSE is considered 
unworthy.  

Next, the LSTM-RNN is tested in terms of accuracy in the 
produced radiation patterns. The test is applied on 105 triads of 
AoAs (every triad corresponds to a SoI and two SoAs), on 
which the LSTM-RNN has no prior “experience”. A statistical 
analysis of the results derived from this test is given in Table X. 
It seems that the LSTM-RNN implementation provides high 
accuracy regarding both the main lobe steering and the nulls 
placement. In particular, the mean value of the main lobe 
divergence derived by the LSTM-RNN satisfies the respective 
requirement (i.e., main lobe divergence < 0.5° as defined in 
section V), and it is also very close to the respective divergence 
derived by the NSB algorithm. In addition, the mean value of 
the nulls divergence is very low and satisfies the respective 
requirement defined in section V (i.e., nulls divergence < 0.1°). 
The accuracy provided by the LSTM-RNN is also verified by 
the mean value of the SINR, which is almost identical to the 
respective SINR value achieved by the NSB algorithm. 
 

 
Fig. 7.  Learning curves of the LSTM-RNN. 

TABLE IX 
LSTM-RNN TRAINING AND TEST RESULTS 

Epochs Training RMSE Test RMSE Final learning 
rate 

Training time 
(hours) 

180 0.0026 0.0029 0.00064 18.12 
 

TABLE X 
COMPARISON BETWEEN NSB AND LSTM-RNN 

 NSB [Mean/Std] LSTM-RNN [Mean/Std] 
Divergence of main lobe (°) 0.437/0.323 0.446/0.324 

Divergence of nulls (°) 0.000/0.000 0.072/0.111 
SINR (dB) 27.196/2.970 27.159/2.973 

 
Fig. 8.  Radiation patterns produced by NSB and LSTM-RNN for a SoI received 
at 100° and 2 SoAs received at respective AoAs equal to 60° and 140°. 

Finally, an example of radiation patterns produced by the 
NSB algorithm and the LSTM-RNN for a SoI and two SoAs is 
given in Fig. 8. The radiation patterns seem to be almost 
identical, and they simply verify the above statistical analysis 
given in Table X. 

B. Use of GRUs 
GRUs are known to be a “lighter” version of LSTM units, 

because they use fewer gates and only a hidden state vector, as 
shown in Fig. 9. Their simpler architecture enables easier 
training and faster response than the LSTM units. Some studies 
have shown that this faster response does not affect their 
performance, while in some cases they are able to outperform 
the LSTM units [41]. 
 

  
Fig. 9.  L-layer GRU-RNN. 

Due to their similar architecture, the same types of grid search 
are applied to find the most efficient GRU-RNN model. As 
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shown in Table XI, the most promising architectures are those 
with 4 hidden layers and hidden layer sizes equal to 512 and 
1024. We choose a size equal to 512 for the same reason as in 
the case LSTM units. 

TABLE XI 
GRU-RNN GRID SEARCH (5-FOLD CROSS VALIDATION) 

Hidden 
layers 

Hidden Layer 
Size 64 128 256 512 1024 

2 
Training RMSE  0.0501 0.0508 0.0495 0.0487 0.0476 

Test RMSE 0.0502 0.0501 0.0514 0.0488 0.0482 

3 
Training RMSE  0.0497 0.0495 0.0473 0.0439 0.0397 

Test RMSE 0.0498 0.0503 0.0490 0.0458 0.0441 

4 
Training RMSE  0.0495 0.0490 0.0403 0.0353 0.0323 

Test RMSE 0.0497 0.0509 0.0443 0.0415 0.0392 

 
Then, we look for the best hyperparameter combination by 

comparing different batch sizes and different learning rates. The 
results are shown in Table XII. Once again, as in the case of 
LSTM-RNNs, we avoid choosing low learning rates and low 
batch sizes to stay away from the same overfitting and increased 
training time problems. Therefore, we have chosen a learning 
rate equal to 0.001 and a batch size equal to 256.  

 
TABLE XII 

BATCH SIZE COMPARISON OF GRU-RNNS FOR VARIOUS LEARNING RATES (3-
FOLD CROSS VALIDATION) 

Batch Size Learning Rate 0.001 0.003 0.005 

32 
Training RMSE 0.0241 0.0304 0.0373 

Test RMSE 0.0405 0.0419 0.0455 

128 
Training RMSE 0.0310 0.0287 0.0318 

Test RMSE 0.0419 0.0409 0.0472 

256 
Training RMSE 0.0377 0.0364 0.0366 

Test RMSE 0.0414 0.0465 0.0471 

512 
Training RMSE 0.0475 0.0414 0.0390 

Test RMSE 0.0494 0.0435 0.0489 

 
After we have found the best settings for the GRU-RNN, we 
proceed to train and test the final model using the big dataset 
(5×106 records). The major part of this set, i.e., 4.9×106 records, 
is used for training, and the remainder, i.e., 105 records, is used 
for testing. The results are shown in Fig. 10 and Table XIII. 
First of all, it can be observed that the training and test RMSEs 
achieved by the GRU-RNN are approximately the same as 
those achieved by the LSTM-RNN. The main difference is that 
the training of the GRU-RNN takes much less time than the 
training of the LSTM-RNN, proving that the GRUs are as 
efficient as the LSTM units but with lower complexity, thus 
resulting in lower training time. 

Next, the GRU-RNN is tested in terms of accuracy in the 
produced radiation patterns. The test is applied on 105 triads of 
AoAs (every triad corresponds to a SoI and two SoAs), on 
which the GRU-RNN has no prior “experience”. A statistical 
analysis of the results derived from this test is given in Table 
XIV. It seems that the GRU-RNN provides high accuracy 
regarding both the main lobe steering and the nulls placement. 
This accuracy is also verified by the mean value of the SINR, 
which is almost identical to the respective SINR value achieved 
by the NSB algorithm. In addition, the mean values of the main 
lobe divergence and the nulls divergence derived by the GRU-

RNN satisfy the respective requirements (i.e., main lobe 
divergence < 0.5° and nulls divergence < 0.1° as defined in 
section V). 
 

 
Fig. 10.  Learning curves of the GRU-RNN. 

TABLE XIII 
GRU-RNN TRAINING AND TEST RESULTS 

Epochs Training RMSE Test RMSE Final learning 
rate 

Training time 
(hours) 

212 0.00262 0.00274 0.000512 14.83 

 
TABLE XIV 

COMPARISON BETWEEN NSB AND GRU-RNN 
 NSB [Mean/Std] GRU-RNN [Mean/Std] 

Divergence of main lobe (°) 0.437/0.323 0.435/0.323 
Divergence of nulls (°) 0.000/0.000 0.076/0.117 

SINR (dB) 27.196/2.970 27.156/2.976 

 
Finally, an example of radiation patterns produced by the 

NSB algorithm and the GRU-RNN for a SoI and two SoAs is 
given in Fig. 11. The radiation patterns seem to be identical, and 
they simply verify the above statistical analysis given in Table 
XIV. 
 

 
Fig. 11.  Radiation patterns produced by NSB and GRU-RNN for a SoI received 
at 100° and 2 SoAs received at respective AoAs equal to 60° and 140°. 
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VIII. COMPARISON BETWEEN NSB AND NN MODELS 
All the previous results are presented in summary in Table 

XV, to make it easier to compare and choose the best NN 
model. Algorithm complexity is a key indicator for 
demonstrating the computational advantage of the NN approach 
over the NSB model. By considering the number N of the 
incoming SoAs as the main complexity parameter, we 
calculated the complexity of each algorithm for a single input 
sample. The ߃ఝ components needed by the NSB algorithm and 
the RNN parameters have already been imported and thus are 
not involved in the weight calculation process. Thus, the 
complexity of the NSB algorithm turns out to be O(N3) + O(N2) 
+ O(N) + O(1). On the other hand, the complexity of the FFNN 
and both RNN models is derived equal to O(N) + O(1).  

The mathematical simplicity of all NNs compared to the 
computationally expensive calculations performed by the NSB 
algorithm is reflected in the lower mean response time of all 
NN-based beamformers compared to that of the NSB algorithm. 
The mean response time is the mean value of the time required 
by each beamformer to extract the proper feeding weights. The 
same triads of incoming AoAs are used for all the beamformers. 
The measurements were made in the Google Colaboratory 
environment, using an Intel® Xeon® CPU @2.30GHz with 
12GB of RAM (assigned by the Google Colaboratory 
environment), and they prove that all NN models are much 
faster than the NSB algorithm. The FFNN has the lowest 
response time but the highest divergence in terms of nulls 
placement. Therefore, the final choice has to be made between 
the LSTM-RNN and the GRU-RNN. As beamformers, both the 
LSTM-RNN and GRU-RNN models perform similarly with 
very high accuracy and much lower response time than that of 
the NSB algorithm. However, due to its significantly shorter 
training time, the GRU-RNN model is selected as the best 
possible solution. 

TABLE XV 
COMPARISON BETWEEN ALL NN MODELS AND NSB 

 

Mean 
divergence 

of main 
lobe (°) 

Mean 
divergence 
of nulls (°) 

Mean 
SINR 
(dB) 

Training 
time 

(hours) 

Mean 
response 

time 
(sec) 

NSB 0.437 0.000 27.196 - 1.47 
FFNN 0.438 0.364 26.530 13.28 0.00033  

LSTM-RNN 0.446 0.072 27.159 18.12 0.00481 
GRU-RNN 0.435 0.076 27.156 14.83 0.00469 

The “progressive adaptation” of the excitation weights at the 
output of the RNN model (discussed in the second paragraph of 
Section VII) can be verified by observing the radiation pattern 
produced by the RNN model at each time step. For the sake of 
simplicity, we consider again the case of Fig. 11 with a SoI 
received at 100° and 2 SoAs received at respective AoAs equal 
to 60° and 140°. This time, we store the model output for every 
time step (i.e., for every one of AoAs 100°, 60°, or 140° 
entering the RNN input), and we pass every output through the 
same linear transformation layer (shown in Fig. 9) to derive the 
excitation weights for every time step. Using these excitation 
weights, we produce respective radiation patterns (shown in 
Figs. 12 – 14) for every time step. The correct output is only 
derived at the end of the 3rd time step, i.e., when all three AoAs 
are taken into account (see Fig. 14). 

Fig. 12 Radiation pattern generated from the output of the GRU-RNN at the 1st 
time step. 

Fig. 13 Radiation pattern generated from the output of the GRU-RNN at the 
2nd time step. 

 
Fig. 14 Radiation pattern generated from the output of the GRU-RNN at the 
3rd time step. 

As we move from one time step to the next, the radiation 
pattern improves and looks more like that of the NSB algorithm. 
However, there is no correlation between a certain input value 
and an improvement in the radiation pattern. If such a 
correlation existed, the radiation pattern generated by the output 
at the second time step (Fig. 13) should have placed a null at 
60° (AoA of the first SoA), thus verifying the intuition that the 
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output is “adapting” its value by placing respective nulls at 
AoAs of the new incoming SoAs. Nevertheless, this does not 
happen.  

The important thing to notice here is that all these outputs are 
“interpreted” and transformed into weight vectors of size 32 as 
they pass through the linear transformation layer. This layer has 
been trained to transform the 512 numbers of the output at the 
last time step to a vector of size 32. There is no way to know 
which parts of the 512 output numbers correspond to the 
placement of the main lobe or a certain null, and it is unknown 
whether these parts are located in the same position for all the 
outputs of previous time steps. For these reasons, the radiation 
patterns of Figs. 12 – 14 only portray the fact that the RNN 
output improves as the model receives new information at each 
time step, thus verifying the initial motivation for the use of 
RNNs, as described in Section VII. 

IX. EVALUATION OF THE GRU-RNN BEAMFORMER 
In this section, we evaluate the performance of the GRU-

RNN beamformer in comparison with the NSB algorithm for 
various numbers of SoAs. For this purpose, the NSB algorithm 
has been employed to produce datasets for cases of 2 to 10 
SoAs, and then we use these datasets to train the GRU-RNN. 
Next, the GRU-RNN is tested in terms of accuracy in the 
produced radiation patterns. The test is applied on 105 
combinations of AoAs (every combination corresponds to a SoI 
and N SoAs, where N = 2, 3,…, 10), on which the GRU-RNN 
has no prior “experience”. These combinations of AoAs are 
also applied to the NSB algorithm. The statistical analyses of 
the results derived by the NSB algorithm and the GRU-RNN 
beamformer are respectively given in Tables XVI and XVII.  
 

TABLE XVI 
NSB PERFORMANCE FOR VARIOUS NUMBERS OF SOAS 

Number 
of SoAs 

Divergence of 
main lobe (°) 

Divergence of 
nulls (°) 

SINR 
(dB) 

[Mean/Std] [Mean/Std] [Mean/Std] 
2 0.437/0.323 0.000/0.000 27.196/2.970 
3  0.427/0.317 0.000/0.000 27.276/2.931 
4  0.420/0.310 0.000/0.000 27.331/2.892 
5  0.416/0.305 0.000/0.000 27.369/2.882 
6  0.413/0.301 0.000/0.000 27.405/2.872 
7  0.412/0.296 0.000/0.000 27.425/2.869 
8 0.412/0.292 0.000/0.000 27.427/2.899 
9  0.418/0.290 0.000/0.000 27.397/2.947 
10 0.425/0.288 0.000/0.000 27.338/3.046 

 
TABLE XVII 

GRU-RNN PERFORMANCE FOR VARIOUS NUMBERS OF SOAS 

Number 
of SoAs 

Divergence of 
main lobe (°) 

Divergence of 
nulls (°) 

SINR 
(dB) 

[Mean/Std] [Mean/Std] [Mean/Std] 
2 0.435/0.323 0.076/0.117 27.156/2.976 
3  0.427/0.317 0.098/0.155 27.192/2.951 
4  0.422/0.313 0.095/0.157 27.229/2.916 
5  0.415/0.306 0.096/0.160 27.245/2.917 
6  0.415/0.303 0.096/0.163 27.260/2.918 
7  0.412/0.297 0.110/0.187 27.216/2.931 
8 0.418/0.296 0.127/0.223 27.107/3.003 
9  0.418/0.290 0.141/0.234 26.990/3.127 
10 0.428/0.291 0.152/0.261 26.823/3.279 

A simple comparison between Tables XVI and XVII proves 
that the GRU-RNN beamformer is capable of providing high 
accuracy, even when increasing the number of SoAs. This is 
also verified by the radiation patterns of Figs. 15-22. The 
patterns have been produced by the NSB algorithm and the 
GRU-RNN beamformer for a SoI and various numbers of 
SoAs. 

 
Fig. 15.  Radiation patterns produced by NSB and GRU-RNN for a SoI received 
at 100° and 3 SoAs received at respective AoAs equal to 60°, 80°, and 140°. 

 
Fig. 16.  Radiation patterns produced by NSB and GRU-RNN for a SoI received 
at 100° and 4 SoAs received at respective AoAs equal to 60°, 80°, 120°, and 
140°. 

 
Fig. 17.  Radiation patterns produced by NSB and GRU-RNN for a SoI received 
at 100° and 5 SoAs received at respective AoAs equal to 40°, 60°, 80°, 120°, 
and 140°. 
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Fig. 18.  Radiation patterns produced by NSB and GRU-RNN for a SoI received 
at 100° and 6 SoAs received at respective AoAs equal to 40°, 60°, 80°, 120°, 
140°, and 150°. 

 
Fig. 19.  Radiation patterns produced by NSB and GRU-RNN for a SoI 
received at 100° and 7 SoAs received at respective AoAs equal to 30°, 40°, 
60°, 80°, 120°, 140°, and 150°. 

 
Fig. 20.  Radiation patterns produced by NSB and GRU-RNN for a SoI 
received at 100° and 8 SoAs received at respective AoAs equal to 30°, 40°, 
60°, 80°, 110°, 120°, 140°, and 150°. 

 
Fig. 21.  Radiation patterns produced by NSB and GRU-RNN for a SoI 
received at 100° and 9 SoAs received at respective AoAs equal to 30°, 40°, 
50°, 60°, 80°, 110°, 120°, 140°, and 150°. 

 
Fig. 22.  Radiation patterns produced by NSB and GRU-RNN for a SoI received 
at 100° and 10 SoAs received at respective AoAs equal to 30°, 40°, 50°, 60°, 
80°, 110°, 120°, 130°, 140°, and 150°. 

X. CONCLUSIONS 
The comparative results have shown that the GRU-RNN 

architecture, with four hidden layers, is the most optimal 
solution to the ABF problem, and has a similar performance 
compared to the LSTM-RNN architecture, but with less training 
time. The GRU-RNN model is capable of producing radiation 
patterns with an accuracy similar to that of radiation patterns 
produced by the NSB technique, thus meeting all the 
requirements defined in an environment with high noise 
conditions. To further demonstrate the capabilities of the GRU-
RNN model as a beamformer, scenarios with different numbers 
of interference signals, from two to ten SoAs, have been 
implemented. After its training in all these different scenarios, 
the GRU-RNN model produces results with an accuracy similar 
to that of the NSB technique. 

The improvement of the training process with different 
configurations, the exploitation of modified or even new 
optimization techniques and generally the investigation for a 
better and more efficient way of training could be the next steps 
in the current implementation of the GRU-RNN model, in order 
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to reduce the time cost of training. In this paper, we aimed 
exclusively at finding the NN model that meets the accuracy 
criteria of the produced radiation patterns. The reduction of the 
overall size of the model came second as a priority, although 
when we had to decide on the size of the hidden layers (i.e., 512 
or 1024), we deliberately chose the computationally cheaper 
solution in terms of training time. However, smaller in size NN 
models could potentially achieve similar performance with less 
training time and less response time. Therefore, since the ABF 
is a real-time process performed in a real environment, the 
investigation of the most efficient NN model should aim not 
only at optimal performance but also at shorter training time 
and shorter response time. 

This research focuses on finding the most appropriate NN 
type as an alternative ABF method. For this reason, it was 
considered good practice to approach the ABF problem in its 
simplest form. Of course, the simplest form of this problem is 
the application of the beamformer to a linear (1D) antenna 
array, as was done in this paper. Now that we are more 
confident about the NN type for the problem in question, we 
can extend this research to realistic 2D antenna arrays in the 
future. Since the proposed GRU-RNN model is capable of 
accurately mapping the incoming AoAs to appropriate 
excitation weights for 1D arrays, the usability of this model in 
2D arrays is very high. 

Finally, the ABF is just one of the two processes performed 
by a smart antenna to control the reception of incoming signals. 
The integration of a DoA estimation process into the current 
GRU-RNN model will significantly enhance the operation of 
smart antennas in practice. 
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