
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract—A new deep neural network (NN) approach applied

to antenna array adaptive beamforming is presented in this paper.
A recurrent NN (RNN) based on the gated recurrent unit (GRU)
architecture is used as a beamformer in order to produce proper
complex weights for the feeding of the antenna array. The
proposed RNN utilizes four hidden GRU layers and one extra
layer for linear transformation. The produced weights are
subsequently compared with respective weights derived by a null
steering beamforming (NSB) technique in order to measure the
accuracy of the RNN. The RNN training is performed by using a
large data set derived from an NSB technique applied to a realistic
microstrip linear antenna array, in order to take into account real-
world effects, like the non-isotropic radiation pattern of an array
element and the mutual coupling between the array elements. The
RNN performance is examined by using the root mean square
error metric, whereas its beamforming performance is evaluated
by estimating the mean value and the standard deviation of the
divergences of the main lobe and nulls directions from their
respective desired directions. A comparison between various NN
structures and an overall study of the proposed RNN-based
beamformer are also presented.

Keywords—Adaptive beamforming, antenna beamforming,
deep learning, neural networks, recurrent neural networks, smart
antennas.

I. INTRODUCTION
HE demand of the modern wireless communications
landscape for faster and more reliable networks is

constantly increasing. Smart antennas can potentially be a
solution to these demands by employing self-regulating
algorithms to control the transmission and reception of signals.
From estimating the direction of arrival (DoA) of incoming
signals, to producing the desired radiation pattern, and to finally
establishing low level communication noise, intelligent
algorithms have become an effective solution because they
significantly decrease the latency of the beamforming process.
In this way, an antenna array can dynamically steer the main
lobe of its radiation pattern towards the direction of a desired
incoming signal (i.e., signal of interest or SoI), while placing
nulls towards the directions of respective interfering signals

Manuscript received January 9, 2022. This research was supported by the

European Union, through the Horizon 2020 Marie Skłodowska-Curie
Innovative Training Networks Programme “Mobility and Training for beyond
5G Ecosystems (MOTOR5G)” under grant agreement no. 861219..
(Corresponding author: Ioannis Mallioras)

I. Mallioras and S. Pantelopoulos are with the Maggioli S.p.A., 47822
Santarcangelo di Romagna, Italy (e-mail: mallioras@auth.gr;
stelios.pantelopoulos@maggioli.it).

(i.e., signals of avoidance or SoAs), to finally maximize the
signal to interference-plus-noise ratio (SINR). This process
must be repeated every time a change occurs either in DoA of
SoI or in DoA of any SoA, and is called “adaptive
beamforming” (ABF). ABF is the principal real-time process
performed by smart antennas. It plays a vital role in ensuring
the quality and stability of wireless communications in an ever-
changing environment.

An antenna array consists of many small radiating elements,
which work together as a single antenna. The radiation of each
element is added to form the total radiation pattern, which
determines the direction of the main lobe, the side lobes, and
the nulls. The array elements are often non-isotropic, meaning
that they do not always behave as ideal signal sources because
they are influenced by their individual radiation patterns (due
to their geometry) and mutual coupling phenomena. To force
an element radiate, a feeding weight must be applied to it. When
the antenna operates as a transmitter, these weights represent
either input currents or input voltages (including amplitudes
and phases), which are applied to the elements by using a proper
active electronic circuit driven by the processing unit, which
has calculated the appropriate weights [1]. By controlling the
amplitude and phase of the feeding weight of each element, we
can control the radiation pattern of the antenna array. This
allows the main lobe to be steered towards the desired direction
while placing nulls to the directions of interfering signals.

A lot of beamforming applications can be found in the
literature [2]-[10]. A four-arm spiral antenna with a monolithic
integration of a modified Butler matrix beamforming network
is implemented in [2] for operation from 50 to 75 GHz. A
minimum variance beamforming method with linear constraints
is presented in [3] to improve the calibration efficiency of an
array-fed reflector antenna. In [4], various beamforming
strategies are applied to a quad-mode antenna utilizing four
available excitation modes to maximize the gain, the signal to
noise ratio (SNR), and the polarization discrimination, whilst
retaining minimum noise over the field of view. New digital
beamforming techniques aiming at improving the performance
of microwave radiometers used in ocean observation missions

Z. D. Zaharis is with the School of Electrical and Computer Engineering,
Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (e-mail:
zaharis@auth.gr).

P. I. Lazaridis is with the Department of Engineering and Technology,
University of Huddersfield, Huddersfield HD1 3DH, U.K. (e-mail:
p.lazaridis@hud.ac.uk).

A Novel Realistic Approach of Adaptive
Beamforming based on Deep Neural Networks

Ioannis Mallioras, Student Member, ΙΕΕΕ, Zaharias D. Zaharis, Senior Member, IEEE, Pavlos I.
Lazaridis, Senior Member, IEEE, and Stelios Pantelopoulos

T

mailto:mallioras@auth.gr;
mailto:stelios.pantelopoulos@maggioli.it).
mailto:zaharis@auth.gr).
mailto:p.lazaridis@hud.ac.uk).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

are presented in [5]. A miniaturized reconfigurable antenna,
operating from 3.5 to 5.5 GHz, is proposed in [6] to perform
beam-steering, by properly controlling eight PIN diodes.

Furthermore, some studies demonstrate the ability of smaller
antennas to easily manipulate their radiation. This ability allows
beamforming to be applied to smaller devices [11]-[13]. An
effective implementation in [11] shows that the mutual
coupling problem can be avoided in compact antennas using
spiral resonators. In [12], a compact antenna array operating in
the 2.45 GHz band achieves reasonable gain values and high
directivity despite its small size. In [13], a novel
implementation using metamaterials significantly improves the
directive radiation of a dipole antenna.

So far, several deterministic algorithms have been used as
ABF techniques [14]-[21]. One of these is the null steering
beamforming (NSB) technique, which produces feeding
weights to steer the main lobe and place nulls with high
accuracy. Despite their near-optimal performance,
deterministic ABF algorithms suffer from a downgraded
temporal response, due to high-complexity calculations
required for the extraction of the feeding weights. Moreover, if
such an algorithm operates in an iterative manner, then its
temporal response becomes a major issue [22]-[24]. Therefore,
the future of wireless networks relies on the implementation of
ABF techniques that provide not only accuracy, but also instant
response.

The fields of machine learning and deep learning have made
enormous leaps in the past two decades providing solutions to
problems in a wide range of scientific fields [25]. Neural
networks (NNs) are known to be able to mimic high-complexity
functions by implementing simple calculations, such as
addition, multiplication, division, and some non-linear
thresholding operations. Their fast temporal response makes
them not only attractive in the field of signal processing, but
also a good alternative for DoA estimation and ABF (see Fig.
1). In addition, their outputs depend exclusively on the input
values, so they do not rely on the temporal stability of other
antenna characteristics. Despite that the training process of NNs
is time-consuming, the great advantage of NNs as beamformers
lies in the fact that their training may be either an offline process
or a process that runs as a concurrent thread during their actual
operation, and therefore the training phase neither affects the
performance nor delays the actual NN operation. To avoid
degradation either in performance or in temporal response in a
fast-changing environment, the processing units of the NNs can
be updated continuously, based on new data, by applying
training as a parallel thread during the actual NN operation, as
previously mentioned.

NNs have not yet demonstrated optimal accuracy when it
comes to main lobe and nulls placement. In this paper, we
attempt to overcome this issue by using particular deep NN
structures and by training NNs using a large dataset produced
by very precise ABF techniques, such as the NSB algorithm. To
further improve the quality of the training samples, we have
filtered out samples of low accuracy and low SINR. More
details are mentioned in section V.

This research focuses on the use of NNs as a low-complexity

beamforming technique and compares different structures of
deep NNs in terms of accuracy and temporal response, while
proposing a new beamformer implementation based on deep
recurrent neural networks (RNNs), which are built using the
gated recurrent unit (GRU). The NNs presented here are trained
by using large datasets produced by an NSB algorithm, which
has properly been modified for realistic antenna arrays, as
presented in [18]. In sections VI and VII, we demonstrate the
process behind the feedforward neural network (FFNN) and
RNN implementations, we show the procedure of finding the
best architecture for each NN type, and we finally train and test
each NN type. In section VIII, we compare all the derived NN
models together with the NSB technique in terms of accuracy
and temporal response, to find the most promising NN model.
Section IX examines the performance of the chosen NN model
as a beamformer in comparison to the NSB technique for
various numbers of incoming signals. Finally, the conclusions
are presented in section X.

Fig. 1. Adaptive beamforming implemented by using a neural network.

II. PRIOR ART ON NN-BASED BEAMFORMING
Already, a lot of similar studies have been conducted on the

subject [14], [16], [17], [26]-[35], while the use of NNs in
beamforming and other applications of smart antennas is
constantly increasing [36]. Most of NNs have been trained
using various ABF techniques, such as the Minimum Variance
Distortionless Response (MVDR) algorithm [16], [29], [35], an
Invasive Weed Optimization (IWO) variant [28], and the Least
Mean Square (LMS) method [37]. When compared in [18], the
MVDR and NSB techniques demonstrate similar performance,
with both having an excellent ability to place nulls extremely
close to DoAs of respective SoAs. We have chosen to use the
NSB algorithm here, because it requires only the knowledge of
angles of arrival (AoAs) of incoming signals, while the MVDR
technique additionally demands the autocorrelation matrix of
the signals induced at the inputs of the array elements. Some
researchers have just used the autocorrelation matrix as input
for their NNs [14], [17], [26], [31], thus implementing a “blind
beamforming” approach, where a NN performs beamforming

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

without being aware of the directions of the signals. As
explained in [27], the autocorrelation matrix has a highly
nonlinear relation with the element weights and thus it makes
training more difficult, so in this paper we have preferred to
directly use AoAs of incoming signals, as in [26] and [28].

An interesting single neuron NN for a dipole antenna array is
presented in [37] portraying the simplest application of NNs as
beamformers, thus proving their efficiency and accuracy. In
[17], a three-layer radial basis function FFNN is used to provide
robustness against uncertainty in the signal AoA, thus
improving the SINR. Another shallow FFNN is utilized in [31]
to steer the radiation power toward the directions of the desired
users and suppress interfering sources. The presented radiation
patterns exhibit great main lobe accuracy and side lobe
suppression, but without any information about the accuracy of
the interference directions A convolutional NN (CNN)
approach with three types of hidden layers is also studied in [33]
to improve the SINR values at the beamformer output and
suppress both narrowband and wideband interferences.
Unfortunately, the model’s statistical accuracy in finding the
proper directions of the main lobe and the nulls is not presented
numerically for comparison. Some studies focus solely on the
main lobe steering without placing nulls at the exact directions
of interference signals [35] or by simply nulling a wider area of
the radiation pattern [30], [32]. In [28], a FFNN implementation
is studied on low noise level conditions in comparison to the
IWO technique, thus demonstrating the efficiency and
capabilities of the NN as a beamformer. A CNN-inspired model
[29] shows better performance than a conventional FFNN with
a mean divergence of the main lobe from the desired direction
of less than 0.6 degrees. Applications of RNNs in the field of
beamforming have already shown improvements in the
behaviour of millimeter wave beamforming transmitters [34].
In [35], a long short-term memory (LSTM) and a nonlinear
autoregressive (NAR) NN are implemented for signal
prediction, thus showing the great potential of recurrent
networks as beamformers. In [30], a RNN is used to steer the
main lobe towards DoA of SoI, while suppressing the sidelobe
level. This implementation considers an antenna array
composed of ideal isotropic elements, which are not realistic as
previously explained. Also, the beamformer’s accuracy is
measured in terms of the main lobe direction and side lobe level,
but not in terms of the nulls directions.

Judging from all this research, the NN-based beamforming is
very promising and justifies further study. However, previous
NN implementations either focused exclusively on the main
lobe steering or created unsatisfactory main lobe and nulls
divergences from the respective desired directions. Also,
several NN implementations considered ideal antenna arrays
and not realistic ones. Of course, an important reason for their
inefficiencies was evidently the lack of training samples. The
present study does not directly make comparisons with the ones
previously mentioned, except for the case of [29] where
divergences from the desired DoAs were measured. The
proposed model provides a satisfactory answer to the real-world
ABF problem by using of a GRU-RNN architecture that offers
great accuracy both in the main lobe direction and in the

placement of nulls. For this purpose, a sufficient training set
was produced by a realistic antenna array ABF algorithm,
which gave our NNs the diversity and abundance of data they
needed to reach higher levels of accuracy.

III. ADAPTIVE BEAMFORMING FUNDAMENTALS
Let us consider an array composed of M elements, which are

located in space at positions defined by respective position
vectors ⃗ݎ௠, ݉ = 1, … The array receives N+1 .ܯ,
monochromatic signals (where N<M) at wavelength λ. Each one
of the incoming signals ݏ௡(݇) (where k is the time sample and
݊ = 0, 1, … , ܰ) reach the antenna array from a DoA defined by
a respective direction unit vector ݑො௡. We identify ݏ଴(݇) as SoI
and the rest of ݏ௡(݇), ݊ = 1, … ,ܰ, as SoAs. It is considered that
all DoAs have been derived by a DoA estimation algorithm, and
then they are used as information to feed the beamformer. So,
the beamformer is responsible for producing M proper complex
weights ݓ௠ (݉ = 1, … which are consequently multiplied ,(ܯ,
by signals ݔ௠(݇) (݉ = 1, … induced at the inputs of the (ܯ,
respective array elements to produce the array output ݕ(݇).

As shown in [29], all input signals ݔ௠(݇) (݉ = 1, … can (ܯ,
be represented as a column vector ܠ(݇), which can be expressed
by the following equation:

(݇)ܠ = (݇)଴ݏ଴܉ + (݇)௜ܛ௜ۯ + ,(݇)ܖ (1)
where

(݇)ܠ = ்[(݇)ெݔ … (݇)ଶݔ (݇)ଵݔ] , (2)

(݇)௜ܛ = ்[(݇)ேݏ … (݇)ଶݏ (݇)ଵݏ] , (3)

௜ۯ = ଶ܉ ଵ܉] ,[ே܉ … (4)
and

௡܉ = ൦

ଵݎ⃗ߚ݆)݌ݔ݁ ∙ (ො௡ݑ
ଶݎ⃗ߚ݆)݌ݔ݁ ∙ (ො௡ݑ

⋮
ெݎ⃗ߚ݆)݌ݔ݁ ∙ (ො௡ݑ

൪ , ݊ = 0, 1, … ,ܰ (5)

are, respectively, the input vector, the SoA vector, the array
steering matrix of SoAs, and the array steering vector that
corresponds to DoA defined by unit vector ݑො௡, while β is the
free space wavenumber (ߚ = and superscript T indicates (ߣ/ߨ2
the transpose operation. It has to be noted that the form of ܉௡
given by (5) applies to the case of an ideal array, i.e., an array
composed of M isotropic point sources, with no coupling
between them. In the case of a realistic array, where the array
elements are not omni-directional and there is coupling between
them, a modified form of ܉௡ replaces (5), as shown below.
Regardless of the type of the array (ideal or realistic), the output
is calculated as:

(݇)ݕ = ෍ ∗௠ݓ (݇)௠ݔ
ெ

௠ୀଵ

. (6)

The above equation can also be written in the form

(݇)ݕ = ,(݇)ܠுܟ (7)
where

ܟ = ଵݓ] ଶݓ ெ]் (8)ݓ …

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

is the excitation weight vector, while superscript H indicates the
Hermitian transpose operation. The autocorrelation matrix of
the input signals, which was mentioned in section II, is
calculated as:

௫௫܀ = ,[(݇)ுܠ(݇)ܠ]ܧ (9)

where E[.] denotes the mean value. This definition also applies
to any type of array, either ideal or realistic.

IV. NULL STEERING BEAMFORMING

A. Theoretical model applied to ideal antenna arrays
The theoretical NSB algorithm considers an ideal array, i.e.,

an array composed of M isotropic point sources, with no
coupling between them. The array is considered here to be a
linear one, so the sources are considered to be placed along the
z-axis. As also presented in [18], DoAs of incoming signals
௡ݏ (݊ = 0, 1, . . . , ܰ) can be identified by respective AoAs
݊) ௡ߠ = 0, 1, … ,ܰ), which are defined as angles between DoAs
of these signals and the z-axis (i.e., polar angles). If ܫ௠ ,݉ =
1, … are the currents used to feed the sources (array ,ܯ,
elements), then the radiation pattern is expressed by the array
factor as follows:

(ߠ)ܨܣ = ෍ ௠݁௝ఉ௭೘௖௢௦ఏܫ
ெ

௠ୀଵ

, (10)

where ݖ௠ , ݉ = 1, … , are the positions of the point sources ,ܯ
along the z-axis. When the array is in reception mode, the
currents ܫ௠ become multipliers of the input signals ݔ௠ (݉ =
1, … ௠ܫ We may consider that .(ܯ, = ∗௠ݓ , where ݓ௠ is a
weight that expresses the conjugate value of the mth current.
Then, we can write (10) as:

(ߠ)ܨܣ = ෍ ∗௠ݓ ݁௝ఉ௭೘௖௢௦ఏ
ெ

௠ୀଵ

= ,(ߠ)܉ுܟ (11)

where

(ߠ)܉ = ൣ݁௝ఉ௭భ௖௢௦ఏ ݁௝ఉ௭మ௖௢௦ఏ … ݁௝ఉ௭ಾ௖௢௦ఏ൧
்

 (12)

is the steering vector for any observation angle θ. The NSB
algorithm is very accurate when it comes to null placement
towards the interference directions, thus achieving near-zero
angular divergences from these directions as shown in [18]. In
addition, it serves as a precise beam-steering technique
presenting negligible errors on the positioning of the main lobe.
To achieve all the above, the NSB algorithm calculates the
weights of the antenna elements based on the following
expression:

ேௌ஻ܟ = ટ(ۯுۯ)ିଵܞଵ , (13)

where

ۯ = . (ଵߠ)܉ (଴ߠ)܉] . (14) [(ேߠ)܉ .

and

ଵܞ = [1 0 . . . 0]் (15)

are, respectively, the array steering matrix of all the incoming
signals (ܯ × (ܰ + 1) matrix), and a unit vector of size N+1.

B. Modified model applied to realistic antenna arrays
In practice, the NSB algorithm is applied to realistic antenna

arrays, i.e., arrays composed of M non-isotropic elements, with
mutual coupling between them. Therefore, some modifications
must be applied to this algorithm, to be able to calculate the
proper feeding weights even in the case of a realistic array. The
main change concerns the total radiation pattern, which now
cannot be expressed just by the array factor.

The array considered in this paper has the same geometry
with the one studied in [18]. It is a linear array composed of 16
microstrip rectangular patches (M = 16) designed according to
the inset-feed method to easily achieve impedance matching.
The patches are developed on a Rogers RT/duroid 5880
substrate and are uniformly spaced at fixed distance d = λ/2. The
CST software package is used to model and optimize the array
geometry under constraint that S-parameters ܵ௠௠ ≤ −20dB,
݉ = 1, … ,16, at the input points of the microstrip elements.
Given that the input of every element is located in the middle
of the element side, which is parallel to the z-axis (see Fig. 2),
the total electric theta-component ܧఏ produced on the xz-plane
by the whole array is at least 20dB less than the value of the
total electric phi-component ߃ఝ on the same plane (ܧఏ ≪ (ఝ߃
for values of θ within the angular sector [30°, 150°], as
explained in [18]. Thus, the total radiation pattern within this
sector on the xz-plane can be represented only by ܧఝ. In
addition, ܧఝ can be expressed in the form of a linear
combination, as follows:

Fig. 2. Linear microstrip antenna array geometry.

(ߠ)ఝ߃ = ෍ (ߠ)௠݁ఝ௠ܫ
ெ

௠ୀଵ

, (16)

where ݁ఝ௠(ߠ) is the electric phi-component of the whole array,
when only the mth element is fed by a unitary current source,
while the rest of the elements are not fed by any source
(parasitic elements). These components are mentioned in the
literature as the “embedded element patterns” of the array, and
they can be extracted by performing a full-wave analysis on the
array using the CST.

By considering again that ܫ௠ = ∗௠ݓ , the above expression
can be written as follows:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

(ߠ)ఝ߃ = ෍ ∗௠ݓ ݁ఝ௠(ߠ)
ெ

௠ୀଵ

= ுܟ ,(ߠ)ఝ܍ (17)

where

(ߠ)ఝ܍ = ൣ݁ఝଵ(ߠ) ݁ఝଶ(ߠ) … ݁ఝ௹(ߠ)൧
ఁ

 (18)

is a vector containing all the electric phi-components that
correspond to observation angle θ. Equations (11) and (17)
express the radiation patterns produced, respectively, by an
ideal and a realistic antenna array. It is obvious that (11) is
converted to (17) by replacing (ߠ)܉ with ܍ఝ(ߠ). Since (ߠ)܉
represents the steering vector of an ideal array (i.e., the
theoretical steering vector), we can consider that ܍ఝ(ߠ)
represents the steering vector of a realistic array, and therefore
it can be called the “realistic steering vector”. Furthermore, if
 in any equation that applies to an ideal (ߠ)܉ replaces (ߠ)ఝ܍
array, then the derived equation will apply to the respective
realistic array. By applying such a replacement to (14), we
derive the form of the realistic steering matrix of all the
incoming signals, as follows:

ણఝ = ൧(௺ߠ)ఝ܍… (ଵߠ)ఝ܍ (଴ߠ)ఝ܍ൣ (19)

Finally, by replacing A with ણఝ in (13), we derive the weight
calculation formula of the NSB algorithm that applies to
realistic arrays:

ேௌ஻ܟ = ણఝ(ણఝ௴ ણఝ)ିଵܞଵ (20)

V. TRAINING DATASET PRODUCTION - PROBLEM CONDITIONS
Using (20), we are able to produce any dataset for NN

training. Since the array of this study consists of 16 elements
and each element is excited with a complex feeding weight, we
need 32 weight numbers (i.e., 16 real and 16 imaginary parts of
the complex feeding weights) to produce the radiation pattern
of the array. To produce a proper dataset, some restrictions
concerning the desired AoAs and their divergences from the
respective actual AoAs are applied. Firstly, all the desired AoAs
must lie within the angular sector [30°, 150°] in order to be able
to express the total radiation pattern only through ܧఝ (ܧఏ ≪
 ఝ), as explained in the previous section. Secondly, all the߃
desired AoAs have a minimum distance Δߠ, which is defined
here equal to 6°. The value of Δߠ determines the difficulty of
the beamforming problem, because it is actually the minimum
distance between two adjacent nulls or between the main lobe
peak and its nearest null. The lower the value of Δߠ, the more
difficult the problem, because the beamformer is forced to
produce a radiation pattern where a null is generated at a small
angular distance from another null or from the main lobe peak.
Thirdly, the SNR is defined equal to 0dB, thus considering high
noise conditions. Finally, we set some constraints on the
accuracy of the NSB results that will be included in the training
dataset. In order to make a NN produce highly accurate results,
the data we use for its training must be highly accurate as well.
Thus, we only keep cases where the weights derived by the NSB
algorithm produce a radiation pattern that has
 main lobe divergence less than 0.5° from AoA of SoI, and

 null placement divergences less than 0.1° from AoAs of
SoAs,

while we discard the rest. Correspondingly, we expect the
outputs of our final NN model to perform similarly, with a small
margin of error, in order to consider the NN implementation
successful.

Every record of the dataset consists of:
 N+1 inputs, which are the polar angles ߠ௡ (݊ = 0, 1, … ,ܰ),

with the first one (ߠ଴) representing AoA of SoI and the rest
of the angles representing AoAs of SoAs.

 2M outputs, which are 32 weight numbers extracted by the
NSB algorithm, i.e., 16 real and 16 imaginary parts of the
complex weights used to feed the 16-element array.

In order to perform more effective NN training, a sufficient
number of records is produced. In particular, 1.1×104 records
are used in the process of searching the best model architecture,
while 5×106 records are used for the training of the final model.
The time needed for the production of these datasets is 42
seconds and 5.3 hours respectively (using an Intel® Core™ i7-
7700HQ @2.80GHz and 8GBs of DDR4 RAM). In this way,
we ensure that we will not face overfitting issues (i.e., situations
where the training error is much lower than the test error) and
that we create a well-generalized model.

VI. FEEDFORWARD NN APPROACH
In the case of FFNNs, the process of input loading and output

production is simple and easy to comprehend. AoAs are loaded
at the input layer of the FFNN in parallel and are consequently
processed by the neurons of the hidden layers. The NN
produces 32 output values, which represent the real and
imaginary parts of the complex feeding weights, as shown in
Fig. 3.

Fig. 3. L-layer FFNN implementation.

In order to find out which architecture is the best for this type
of NN, we apply grid search with k-fold cross validation to
figure out the best combination regarding the number of hidden
layers and their respective sizes. Later on, another grid search
is applied to figure out the best hyperparameter tuning
concerning the batch size and the learning rate. The variations
tested below refer to ABF for 3 incoming signals, i.e., 1 SoI and
2 SoAs, as shown in Fig. 3. If L is the number of hidden layers,
then the first L–1 layers will be using the hyperbolic tangent
(tanh) as an activation function, whereas the last layer (Lth) will
be using the sigmoid activation function. To calculate the cost

mailto:@2.80GHz

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

for each NN weight update, we use a quadratic cost function
variant, also known as root mean square error (RMSE), which
is calculated as follows:

RMSE = ඩ
1
݌
෍൫ ௜݂ − መ݂

௜൯
ଶ

௣

௜ୀଵ

, (21)

where p is the number of neurons on the output layer of the NN
݌) = 32), መ݂௜ is the actual value of the ith output neuron, and ௜݂
is the respective desired value of this neuron.

We also choose Adam as the optimization method and we
normalize both inputs and outputs of the dataset in the range
[0,1] to improve the optimization algorithm’s performance and
the overall training process [38]. These choices are proved to
be more efficient than other alternatives after a lot of different
trials. During the search process, we choose a slow learning
rate, e.g., 0.001, and a batch size equal to 256, which remain the
same for all our trials. Due to high complexity and non-linearity
of the ABF problem, the case of one hidden layer is rejected.
Instead, we test FFNN architectures with 2, 3 and 4 hidden
layers. The sizes of these layers are purposely chosen to be
multiples of the output size (32). Due to the size difference
between input and output, it is considered good practice to
select hidden layers much larger in size than the output layer, to
emulate the computational complexity required to transform 3
input angles into 32 output numbers. Thus, we choose hidden
layer sizes between 128 and 1024.

For this grid search, we use 104 records as a training set and
103 records as a test set. We apply a 5-fold cross validation to
ensure the validity and accuracy of our results, and train each
model for 500 epochs. Using this grid search, we intend to find
which variation provides the lowest training and test RMSEs to
choose as most promising. Each FFNN architecture is described
by using the notation: [Input Layer Size, 1st Hidden Layer Size,
2nd Hidden Layer Size, …, Lth Hidden Layer Size, Output
Layer Size].

The results are given in Tables I, II and III. By comparing
these three tables, we notice a test RMSE drop, when we move
from a two-layer FFNN to a four-layer FFNN. This is expected
as an increase of a NN’s depth increases its ability to model
functions of high complexity [39]. Despite the increasing
overfitting risk, NN models that use layers of larger size tend to
achieve lower errors. This is the answer to the question why we
mainly focused on using larger layer sizes, when testing a four-
layer FFNN. We also observe that, while layers with size equal
to 512 contribute to the models’ performances, layers with size
equal to 1024 simply increase the risk of overfitting. The best
architecture is the one that provides the lowest training and test
RMSEs, and is highlighted in bold.

Next, we look for the best hyperparameter combination by
comparing different batch sizes and different learning rates.
From Table IV, it seems that the best initial value for the batch
size is 256 and for the learning rate is 0.001. This table also
shows that testing for values of learning rate greater than 0.005
is redundant as the results become increasingly worse.

TABLE I
COMPARISON OF FFNNS WITH TWO HIDDEN LAYERS (5-FOLD CROSS

VALIDATION)
Layer Sizes Training RMSE Test RMSE

[3, 128, 128, 32] 0.0492 0.0498
[3, 128, 256, 32] 0.0481 0.0493
[3, 256, 256, 32] 0.0483 0.0489
[3, 256, 512, 32] 0.0482 0.0488
[3, 512, 512, 32] 0.0475 0.0484

TABLE II

COMPARISON OF FFNNS WITH THREE HIDDEN LAYERS (5-FOLD CROSS
VALIDATION)

Layer Sizes Training RMSE Test RMSE
[3, 128, 256, 256, 32] 0.0463 0.0479
[3, 128, 256, 512, 32] 0.0464 0.0477
[3, 256, 512, 512, 32] 0.0431 0.0462
[3, 256, 512, 1024, 32] 0.0448 0.0476
[3, 512, 512, 1024, 32] 0.0422 0.0459
[3, 512, 1024, 1024, 32] 0.0400 0.0456

TABLE III

COMPARISON OF FFNNS WITH FOUR HIDDEN LAYERS (5-FOLD CROSS
VALIDATION)

Layer Sizes Training RMSE Test RMSE
[3, 128, 256, 512, 512, 32] 0.0434 0.0465

[3, 128, 256, 512, 1024, 32] 0.0455 0.0483
[3, 256, 512, 512, 1024, 32] 0.0339 0.0408

TABLE IV

BATCH SIZE COMPARISON OF FFNNS FOR VARIOUS LEARNING RATES (5-FOLD
CROSS VALIDATION)

Batch Size Learning Rate 0.001 0.005 0.010

32
Training RMSE 0.0415 0.2945 0.5707

Test RMSE 0.0437 0.2988 0.5718

128
Training RMSE 0.0336 0.1236 0.5713

Test RMSE 0.0415 0.1215 0.5705

256
Training RMSE 0.0339 0.1063 0.5000

Test RMSE 0.0408 0.1043 0.4992

512
Training RMSE 0.0443 0.1990 0.4004

Test RMSE 0.0479 0.1997 0.4012

After we have found the best settings for FFNNs applied to

the ABF problem, we proceed to train and test the final model
using the big dataset (5×106 records). The major part of this set,
i.e., 4.9×106 records, is used for training, and the remainder, i.e.,
105 records, is used for testing. During training, we use the
Pytorch function ReduceLRonPlateau, which reduces the
current learning rate by a factor of 0.8, if the training RMSE
stops decreasing or it decreases very slowly. This learning rate
regulation increases the training performance by a factor
between 2 and 10, because it helps the NN training process to
escape sharp local minima [40]. The results are presented in Fig.
4 and Table V. The training curve of Fig. 4 suggests that the
training presents no overfitting. The sudden RMSE drops
represent the times where ReduceLRonPlateau decided to
decrease the learning rate, and it is evident that this reduction
has a positive impact on the training.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 4. Learning curves of the FFNN.

TABLE V
FFNN TRAINING AND TEST RESULTS

Epochs Training RMSE Test RMSE Final learning
rate

Training time
(hours)

300 0.0121 0.0122 0.000055 13.28

Next, the FFNN is tested in terms of accuracy in the produced

radiation patterns. The test is applied on 105 triads of AoAs
(every triad corresponds to a SoI and two SoAs), on which the
FFNN has no prior “experience”. A statistical analysis of the
results derived from this test is given in Table VI. It seems that
the FFNN implementation is very good regarding the main lobe
steering, because the mean value of the main lobe divergence
derived by the FFNN satisfies the respective requirement (i.e.,
main lobe divergence < 0.5° as defined in section V), and it is
also very close to the respective divergence derived by the NSB
algorithm. However, the mean value of the nulls divergence
does not satisfy the respective requirement defined in section V
(i.e., nulls divergence < 0.1°), which means that the FFNN faces
difficulty in placing nulls at the desired directions. This
inaccuracy is also observed in the reduced mean value of the
SINR by 0.67dB compared to the respective SINR value
achieved by the NSB algorithm.

TABLE VI

COMPARISON BETWEEN NSB AND FFNN
 NSB [Mean/Std] FFNN [Mean/Std]
Divergence of main lobe (°) 0.437/0.323 0.438/0.324

Divergence of nulls (°) 0.000/0.000 0.364/0.412
SINR (dB) 27.196/2.970 26.530/3.106

Finally, an example of radiation patterns produced by the

NSB algorithm and the FFNN for a SoI and two SoAs is given
in Fig. 5. Although the radiation patterns seem to be almost
identical, the above statistical analysis shows that the FFNN is
slightly inferior to the NSB algorithm in terms of nulls
placement accuracy.

Fig. 5. Radiation patterns produced by NSB and FFNN for a SoI received at
100° and 2 SoAs received at respective AoAs equal to 60° and 140°.

VII. RECURRENT NN APPROACH
RNNs belong to another type of NNs, which are mostly used

for processing sequential data. The applications of RNNs vary
from speech recognition and translation to sentiment
classification and music generation. They diverge from FFNNs
due to their ability to exploit their “memory” to influence their
outputs. Information from prior inputs can affect the outcome
of the current input since data enter the RNN in sequence.
RNNs can be further distinguished into categories depending
on the way they produce output data. Different applications
require different types of RNNs.

For the purpose of ABF, we choose the “many-to-one”
approach, where AoAs enter the RNN one after another, and
only the final output of the RNN is kept. When working on
sentiment classification (another many-to-one approach), the
input of the RNN, at each time step, is a new word not directly
linked to or necessarily related to the words that came at the
previous steps. However, the model is able to output a new
sentiment each time we add a different word to the sentence.
The new information influences the general outcome of the
RNN, but at the same time all previous inputs are taken into
consideration. Although these inputs do not relate to each other,
the ability of the RNN to “remember” and “combine” all the
inputs is what dictates the sentiment of a sentence. We have
chosen this structure of NNs not because of their potential to
find a relationship between the data we provide as input to the
NN, but because of their ability to adapt their output depending
on the new incoming information. During the prediction
process of the RNN as a beamformer, the hidden states of the
units travel along the different time steps. In this way, the RNN-
beamformer adjusts the excitation weights progressively, in
order to produce the most suitable radiation pattern for each
new situation. The “progressive adaptation” of weights can be
well understood in Section VIII by comparing the radiation
patterns produced by the beamformer in consecutive steps.

The process followed here can also be explained by looking
at the RNN structure displayed in Fig. 6. For each time step
ݐ) = 1, 2, 3), the current input ݔ௧ is processed by the RNN’s
processing units to influence their hidden states, which are
consequently passed on to the next time step’s units to use. In
this way, each input affects the outcome of the RNN. Once all

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

inputs are processed, and the output ݋ଷ has been produced, the
next input values enter the input layer to continue the training
process. The basic idea is to have the weight vector initially
configured by taking into account only AoA of SoI (input x1 of
Fig. 6), and then AoAs of SoAs (inputs x2 and x3 of Fig. 6) enter
the RNN to shape the final form of the weight vector at the
RNN’s output.

As in the case of the FFNN, input data are fed to the RNN in
batches, and the Adam optimization algorithm is used to update
the hidden states, while the RMSE metric shown in (21) is used
as a cost function. Given that every hidden state and
consequently the output of the RNN will have a different size
than 32, an extra linear transformation layer is placed after the
output layer to ensure that the final outcome is a vector of 32
numbers (see Fig. 6).

Two RNN approaches based on different processing units,
i.e., LSTM and GRU, are tested. Once again, we perform grid
search in both approaches for the most efficient architecture and
also for hyperparameter tuning, to finally find out the most
promising models. During the search process, we choose a slow
learning rate, e.g., 0.001, and a batch size equal to 256, while a
5-fold and later a 3-fold cross validation are applied using,
respectively, 104 records as a training set and 103 records as a
test set. For the same reasons as in the FFNN case, we choose
hidden layer sizes between 64 and 1024 and a number of hidden
layers between 2 and 4.

 In order to have a fair comparison, the preferred sizes and
training parameters of the LSTM and GRU implementations
must be similar.

A. Use of LSTM units
LSTM units are known for their ability to overcome the

vanishing gradient problem of RNNs. These units employ two
vectors, i.e., a “hidden state” vector, which carries information
from immediately previous events, and a “cell state” vector,
which provides “long term” memory capabilities as it can carry
information from past events (see Fig. 6). Using a variety of
gates, the LSTM units can choose which information is
valuable to keep and update their hidden states and which can
be tossed. The results of the grid search for 2, 3 and 4 hidden
layers are presented in Table VII. It seems that the most
promising architectures are those with 4 hidden layers. The
lowest RMSE is observed for hidden layer sizes equal to 512
and 1024, with the latter achieving better accuracy. However,
since the RMSE improvement is insignificant compared to the
size increase from 512 to 1024, we decided to choose an
architecture with 4 hidden layers and a hidden layer size equal
to 512.

Next, we look for the best hyperparameter combination by
comparing different batch sizes and different learning rates, but
this time we check for learning rates between 0.001 and 0.005.
The results are shown in Table VIII. It seems that the best
performance is achieved when using low learning rates and low
batch sizes, but in such cases the risk of overfitting increases.
Additionaly, we need significantly more time for training,
which makes such choices a hard compromise. By considering
other alternatives that provide good performance and are less
time consuming, we finally decided to choose a learning rate
equal to 0.001 and a batch size equal to 256 as the best

compromise between time consumption, training performance
and generalization ability.

Fig. 6. L-layer LSTM-RNN.

TABLE VIΙ
LSTM-RNN GRID SEARCH (5-FOLD CROSS VALIDATION)

Hidden
layers

Hidden Layer
Size 64 128 256 512 1024

2
Training RMSE 0.0499 0.0498 0.0497 0.0491 0.0477

Test RMSE 0.0509 0.0502 0.0500 0.0488 0.0479

3
Training RMSE 0.0501 0.0494 0.0478 0.0442 0.0446

Test RMSE 0.0505 0.0493 0.0494 0.0456 0.0463

4
Training RMSE 0.0504 0.0494 0.0413 0.0327 0.0328

Test RMSE 0.0502 0.0502 0.0450 0.0402 0.0382

TABLE VIII

BATCH SIZE COMPARISON OF LSTM-RNNS FOR VARIOUS LEARNING RATES
(3-FOLD CROSS VALIDATION)

Batch Size Learning Rate 0.001 0.003 0.005

32
Training RMSE 0.0181 0.0273 0.0301

Test RMSE 0.0373 0.0395 0.0461

128
Training RMSE 0.0250 0.0319 0.0294

Test RMSE 0.0374 0.0416 0.0430

256
Training RMSE 0.0354 0.0404 0.0324

Test RMSE 0.0406 0.0435 0.0442

512
Training RMSE 0.0477 0.0485 0.0421

Test RMSE 0.0496 0.0502 0.0457

After we have found the best settings for the LSTM-RNN,
we proceed to train and test the final model using the big dataset
(5×106 records). The major part of this set, i.e., 4.9×106 records,
is used for training, and the remainder, i.e., 105 records, is used
for testing. In comparison to the FFNN, training time is
significantly increased, as shown in Table IX. The learning
curves shown in Fig. 7 indicate that the training presents no

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

overfitting, while the sudden RMSE drops are again due to
decrease in the learning rate caused by the ReduceLRonPlateau
function. At the end of the training process after 180 epochs,
the test RMSE has significantly been reduced, as shown in Fig.
7 and Table IX, thus proving the superiority of the RNNs over
the FFNNs in ABF. It should be noted that the training process
could continue for more than 180 epochs, but since the learning
rate has already been drastically decreased and the training time
is already very high, a further reduction in RMSE is considered
unworthy.

Next, the LSTM-RNN is tested in terms of accuracy in the
produced radiation patterns. The test is applied on 105 triads of
AoAs (every triad corresponds to a SoI and two SoAs), on
which the LSTM-RNN has no prior “experience”. A statistical
analysis of the results derived from this test is given in Table X.
It seems that the LSTM-RNN implementation provides high
accuracy regarding both the main lobe steering and the nulls
placement. In particular, the mean value of the main lobe
divergence derived by the LSTM-RNN satisfies the respective
requirement (i.e., main lobe divergence < 0.5° as defined in
section V), and it is also very close to the respective divergence
derived by the NSB algorithm. In addition, the mean value of
the nulls divergence is very low and satisfies the respective
requirement defined in section V (i.e., nulls divergence < 0.1°).
The accuracy provided by the LSTM-RNN is also verified by
the mean value of the SINR, which is almost identical to the
respective SINR value achieved by the NSB algorithm.

Fig. 7. Learning curves of the LSTM-RNN.

TABLE IX
LSTM-RNN TRAINING AND TEST RESULTS

Epochs Training RMSE Test RMSE Final learning
rate

Training time
(hours)

180 0.0026 0.0029 0.00064 18.12

TABLE X
COMPARISON BETWEEN NSB AND LSTM-RNN

 NSB [Mean/Std] LSTM-RNN [Mean/Std]
Divergence of main lobe (°) 0.437/0.323 0.446/0.324

Divergence of nulls (°) 0.000/0.000 0.072/0.111
SINR (dB) 27.196/2.970 27.159/2.973

Fig. 8. Radiation patterns produced by NSB and LSTM-RNN for a SoI received
at 100° and 2 SoAs received at respective AoAs equal to 60° and 140°.

Finally, an example of radiation patterns produced by the
NSB algorithm and the LSTM-RNN for a SoI and two SoAs is
given in Fig. 8. The radiation patterns seem to be almost
identical, and they simply verify the above statistical analysis
given in Table X.

B. Use of GRUs
GRUs are known to be a “lighter” version of LSTM units,

because they use fewer gates and only a hidden state vector, as
shown in Fig. 9. Their simpler architecture enables easier
training and faster response than the LSTM units. Some studies
have shown that this faster response does not affect their
performance, while in some cases they are able to outperform
the LSTM units [41].

Fig. 9. L-layer GRU-RNN.

Due to their similar architecture, the same types of grid search
are applied to find the most efficient GRU-RNN model. As

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

shown in Table XI, the most promising architectures are those
with 4 hidden layers and hidden layer sizes equal to 512 and
1024. We choose a size equal to 512 for the same reason as in
the case LSTM units.

TABLE XI
GRU-RNN GRID SEARCH (5-FOLD CROSS VALIDATION)

Hidden
layers

Hidden Layer
Size 64 128 256 512 1024

2
Training RMSE 0.0501 0.0508 0.0495 0.0487 0.0476

Test RMSE 0.0502 0.0501 0.0514 0.0488 0.0482

3
Training RMSE 0.0497 0.0495 0.0473 0.0439 0.0397

Test RMSE 0.0498 0.0503 0.0490 0.0458 0.0441

4
Training RMSE 0.0495 0.0490 0.0403 0.0353 0.0323

Test RMSE 0.0497 0.0509 0.0443 0.0415 0.0392

Then, we look for the best hyperparameter combination by

comparing different batch sizes and different learning rates. The
results are shown in Table XII. Once again, as in the case of
LSTM-RNNs, we avoid choosing low learning rates and low
batch sizes to stay away from the same overfitting and increased
training time problems. Therefore, we have chosen a learning
rate equal to 0.001 and a batch size equal to 256.

TABLE XII

BATCH SIZE COMPARISON OF GRU-RNNS FOR VARIOUS LEARNING RATES (3-
FOLD CROSS VALIDATION)

Batch Size Learning Rate 0.001 0.003 0.005

32
Training RMSE 0.0241 0.0304 0.0373

Test RMSE 0.0405 0.0419 0.0455

128
Training RMSE 0.0310 0.0287 0.0318

Test RMSE 0.0419 0.0409 0.0472

256
Training RMSE 0.0377 0.0364 0.0366

Test RMSE 0.0414 0.0465 0.0471

512
Training RMSE 0.0475 0.0414 0.0390

Test RMSE 0.0494 0.0435 0.0489

After we have found the best settings for the GRU-RNN, we
proceed to train and test the final model using the big dataset
(5×106 records). The major part of this set, i.e., 4.9×106 records,
is used for training, and the remainder, i.e., 105 records, is used
for testing. The results are shown in Fig. 10 and Table XIII.
First of all, it can be observed that the training and test RMSEs
achieved by the GRU-RNN are approximately the same as
those achieved by the LSTM-RNN. The main difference is that
the training of the GRU-RNN takes much less time than the
training of the LSTM-RNN, proving that the GRUs are as
efficient as the LSTM units but with lower complexity, thus
resulting in lower training time.

Next, the GRU-RNN is tested in terms of accuracy in the
produced radiation patterns. The test is applied on 105 triads of
AoAs (every triad corresponds to a SoI and two SoAs), on
which the GRU-RNN has no prior “experience”. A statistical
analysis of the results derived from this test is given in Table
XIV. It seems that the GRU-RNN provides high accuracy
regarding both the main lobe steering and the nulls placement.
This accuracy is also verified by the mean value of the SINR,
which is almost identical to the respective SINR value achieved
by the NSB algorithm. In addition, the mean values of the main
lobe divergence and the nulls divergence derived by the GRU-

RNN satisfy the respective requirements (i.e., main lobe
divergence < 0.5° and nulls divergence < 0.1° as defined in
section V).

Fig. 10. Learning curves of the GRU-RNN.

TABLE XIII
GRU-RNN TRAINING AND TEST RESULTS

Epochs Training RMSE Test RMSE Final learning
rate

Training time
(hours)

212 0.00262 0.00274 0.000512 14.83

TABLE XIV

COMPARISON BETWEEN NSB AND GRU-RNN
 NSB [Mean/Std] GRU-RNN [Mean/Std]

Divergence of main lobe (°) 0.437/0.323 0.435/0.323
Divergence of nulls (°) 0.000/0.000 0.076/0.117

SINR (dB) 27.196/2.970 27.156/2.976

Finally, an example of radiation patterns produced by the

NSB algorithm and the GRU-RNN for a SoI and two SoAs is
given in Fig. 11. The radiation patterns seem to be identical, and
they simply verify the above statistical analysis given in Table
XIV.

Fig. 11. Radiation patterns produced by NSB and GRU-RNN for a SoI received
at 100° and 2 SoAs received at respective AoAs equal to 60° and 140°.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

VIII. COMPARISON BETWEEN NSB AND NN MODELS
All the previous results are presented in summary in Table

XV, to make it easier to compare and choose the best NN
model. Algorithm complexity is a key indicator for
demonstrating the computational advantage of the NN approach
over the NSB model. By considering the number N of the
incoming SoAs as the main complexity parameter, we
calculated the complexity of each algorithm for a single input
sample. The ߃ఝ components needed by the NSB algorithm and
the RNN parameters have already been imported and thus are
not involved in the weight calculation process. Thus, the
complexity of the NSB algorithm turns out to be O(N3) + O(N2)
+ O(N) + O(1). On the other hand, the complexity of the FFNN
and both RNN models is derived equal to O(N) + O(1).

The mathematical simplicity of all NNs compared to the
computationally expensive calculations performed by the NSB
algorithm is reflected in the lower mean response time of all
NN-based beamformers compared to that of the NSB algorithm.
The mean response time is the mean value of the time required
by each beamformer to extract the proper feeding weights. The
same triads of incoming AoAs are used for all the beamformers.
The measurements were made in the Google Colaboratory
environment, using an Intel® Xeon® CPU @2.30GHz with
12GB of RAM (assigned by the Google Colaboratory
environment), and they prove that all NN models are much
faster than the NSB algorithm. The FFNN has the lowest
response time but the highest divergence in terms of nulls
placement. Therefore, the final choice has to be made between
the LSTM-RNN and the GRU-RNN. As beamformers, both the
LSTM-RNN and GRU-RNN models perform similarly with
very high accuracy and much lower response time than that of
the NSB algorithm. However, due to its significantly shorter
training time, the GRU-RNN model is selected as the best
possible solution.

TABLE XV
COMPARISON BETWEEN ALL NN MODELS AND NSB

Mean
divergence

of main
lobe (°)

Mean
divergence
of nulls (°)

Mean
SINR
(dB)

Training
time

(hours)

Mean
response

time
(sec)

NSB 0.437 0.000 27.196 - 1.47
FFNN 0.438 0.364 26.530 13.28 0.00033

LSTM-RNN 0.446 0.072 27.159 18.12 0.00481
GRU-RNN 0.435 0.076 27.156 14.83 0.00469

The “progressive adaptation” of the excitation weights at the
output of the RNN model (discussed in the second paragraph of
Section VII) can be verified by observing the radiation pattern
produced by the RNN model at each time step. For the sake of
simplicity, we consider again the case of Fig. 11 with a SoI
received at 100° and 2 SoAs received at respective AoAs equal
to 60° and 140°. This time, we store the model output for every
time step (i.e., for every one of AoAs 100°, 60°, or 140°
entering the RNN input), and we pass every output through the
same linear transformation layer (shown in Fig. 9) to derive the
excitation weights for every time step. Using these excitation
weights, we produce respective radiation patterns (shown in
Figs. 12 – 14) for every time step. The correct output is only
derived at the end of the 3rd time step, i.e., when all three AoAs
are taken into account (see Fig. 14).

Fig. 12 Radiation pattern generated from the output of the GRU-RNN at the 1st
time step.

Fig. 13 Radiation pattern generated from the output of the GRU-RNN at the
2nd time step.

Fig. 14 Radiation pattern generated from the output of the GRU-RNN at the
3rd time step.

As we move from one time step to the next, the radiation
pattern improves and looks more like that of the NSB algorithm.
However, there is no correlation between a certain input value
and an improvement in the radiation pattern. If such a
correlation existed, the radiation pattern generated by the output
at the second time step (Fig. 13) should have placed a null at
60° (AoA of the first SoA), thus verifying the intuition that the

mailto:@2.30GHz

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

output is “adapting” its value by placing respective nulls at
AoAs of the new incoming SoAs. Nevertheless, this does not
happen.

The important thing to notice here is that all these outputs are
“interpreted” and transformed into weight vectors of size 32 as
they pass through the linear transformation layer. This layer has
been trained to transform the 512 numbers of the output at the
last time step to a vector of size 32. There is no way to know
which parts of the 512 output numbers correspond to the
placement of the main lobe or a certain null, and it is unknown
whether these parts are located in the same position for all the
outputs of previous time steps. For these reasons, the radiation
patterns of Figs. 12 – 14 only portray the fact that the RNN
output improves as the model receives new information at each
time step, thus verifying the initial motivation for the use of
RNNs, as described in Section VII.

IX. EVALUATION OF THE GRU-RNN BEAMFORMER
In this section, we evaluate the performance of the GRU-

RNN beamformer in comparison with the NSB algorithm for
various numbers of SoAs. For this purpose, the NSB algorithm
has been employed to produce datasets for cases of 2 to 10
SoAs, and then we use these datasets to train the GRU-RNN.
Next, the GRU-RNN is tested in terms of accuracy in the
produced radiation patterns. The test is applied on 105
combinations of AoAs (every combination corresponds to a SoI
and N SoAs, where N = 2, 3,…, 10), on which the GRU-RNN
has no prior “experience”. These combinations of AoAs are
also applied to the NSB algorithm. The statistical analyses of
the results derived by the NSB algorithm and the GRU-RNN
beamformer are respectively given in Tables XVI and XVII.

TABLE XVI
NSB PERFORMANCE FOR VARIOUS NUMBERS OF SOAS

Number
of SoAs

Divergence of
main lobe (°)

Divergence of
nulls (°)

SINR
(dB)

[Mean/Std] [Mean/Std] [Mean/Std]
2 0.437/0.323 0.000/0.000 27.196/2.970
3 0.427/0.317 0.000/0.000 27.276/2.931
4 0.420/0.310 0.000/0.000 27.331/2.892
5 0.416/0.305 0.000/0.000 27.369/2.882
6 0.413/0.301 0.000/0.000 27.405/2.872
7 0.412/0.296 0.000/0.000 27.425/2.869
8 0.412/0.292 0.000/0.000 27.427/2.899
9 0.418/0.290 0.000/0.000 27.397/2.947
10 0.425/0.288 0.000/0.000 27.338/3.046

TABLE XVII

GRU-RNN PERFORMANCE FOR VARIOUS NUMBERS OF SOAS

Number
of SoAs

Divergence of
main lobe (°)

Divergence of
nulls (°)

SINR
(dB)

[Mean/Std] [Mean/Std] [Mean/Std]
2 0.435/0.323 0.076/0.117 27.156/2.976
3 0.427/0.317 0.098/0.155 27.192/2.951
4 0.422/0.313 0.095/0.157 27.229/2.916
5 0.415/0.306 0.096/0.160 27.245/2.917
6 0.415/0.303 0.096/0.163 27.260/2.918
7 0.412/0.297 0.110/0.187 27.216/2.931
8 0.418/0.296 0.127/0.223 27.107/3.003
9 0.418/0.290 0.141/0.234 26.990/3.127
10 0.428/0.291 0.152/0.261 26.823/3.279

A simple comparison between Tables XVI and XVII proves
that the GRU-RNN beamformer is capable of providing high
accuracy, even when increasing the number of SoAs. This is
also verified by the radiation patterns of Figs. 15-22. The
patterns have been produced by the NSB algorithm and the
GRU-RNN beamformer for a SoI and various numbers of
SoAs.

Fig. 15. Radiation patterns produced by NSB and GRU-RNN for a SoI received
at 100° and 3 SoAs received at respective AoAs equal to 60°, 80°, and 140°.

Fig. 16. Radiation patterns produced by NSB and GRU-RNN for a SoI received
at 100° and 4 SoAs received at respective AoAs equal to 60°, 80°, 120°, and
140°.

Fig. 17. Radiation patterns produced by NSB and GRU-RNN for a SoI received
at 100° and 5 SoAs received at respective AoAs equal to 40°, 60°, 80°, 120°,
and 140°.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Fig. 18. Radiation patterns produced by NSB and GRU-RNN for a SoI received
at 100° and 6 SoAs received at respective AoAs equal to 40°, 60°, 80°, 120°,
140°, and 150°.

Fig. 19. Radiation patterns produced by NSB and GRU-RNN for a SoI
received at 100° and 7 SoAs received at respective AoAs equal to 30°, 40°,
60°, 80°, 120°, 140°, and 150°.

Fig. 20. Radiation patterns produced by NSB and GRU-RNN for a SoI
received at 100° and 8 SoAs received at respective AoAs equal to 30°, 40°,
60°, 80°, 110°, 120°, 140°, and 150°.

Fig. 21. Radiation patterns produced by NSB and GRU-RNN for a SoI
received at 100° and 9 SoAs received at respective AoAs equal to 30°, 40°,
50°, 60°, 80°, 110°, 120°, 140°, and 150°.

Fig. 22. Radiation patterns produced by NSB and GRU-RNN for a SoI received
at 100° and 10 SoAs received at respective AoAs equal to 30°, 40°, 50°, 60°,
80°, 110°, 120°, 130°, 140°, and 150°.

X. CONCLUSIONS
The comparative results have shown that the GRU-RNN

architecture, with four hidden layers, is the most optimal
solution to the ABF problem, and has a similar performance
compared to the LSTM-RNN architecture, but with less training
time. The GRU-RNN model is capable of producing radiation
patterns with an accuracy similar to that of radiation patterns
produced by the NSB technique, thus meeting all the
requirements defined in an environment with high noise
conditions. To further demonstrate the capabilities of the GRU-
RNN model as a beamformer, scenarios with different numbers
of interference signals, from two to ten SoAs, have been
implemented. After its training in all these different scenarios,
the GRU-RNN model produces results with an accuracy similar
to that of the NSB technique.

The improvement of the training process with different
configurations, the exploitation of modified or even new
optimization techniques and generally the investigation for a
better and more efficient way of training could be the next steps
in the current implementation of the GRU-RNN model, in order

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

to reduce the time cost of training. In this paper, we aimed
exclusively at finding the NN model that meets the accuracy
criteria of the produced radiation patterns. The reduction of the
overall size of the model came second as a priority, although
when we had to decide on the size of the hidden layers (i.e., 512
or 1024), we deliberately chose the computationally cheaper
solution in terms of training time. However, smaller in size NN
models could potentially achieve similar performance with less
training time and less response time. Therefore, since the ABF
is a real-time process performed in a real environment, the
investigation of the most efficient NN model should aim not
only at optimal performance but also at shorter training time
and shorter response time.

This research focuses on finding the most appropriate NN
type as an alternative ABF method. For this reason, it was
considered good practice to approach the ABF problem in its
simplest form. Of course, the simplest form of this problem is
the application of the beamformer to a linear (1D) antenna
array, as was done in this paper. Now that we are more
confident about the NN type for the problem in question, we
can extend this research to realistic 2D antenna arrays in the
future. Since the proposed GRU-RNN model is capable of
accurately mapping the incoming AoAs to appropriate
excitation weights for 1D arrays, the usability of this model in
2D arrays is very high.

Finally, the ABF is just one of the two processes performed
by a smart antenna to control the reception of incoming signals.
The integration of a DoA estimation process into the current
GRU-RNN model will significantly enhance the operation of
smart antennas in practice.

REFERENCES
[1] I. P. Gravas, Z. D. Zaharis, T. V. Yioultsis, P. I. Lazaridis, and T. D.

Xenos, “Adaptive beamforming with sidelobe suppression by placing
extra radiation pattern nulls,” IEEE Trans. Antennas Propag., vol. 67, no.
6, pp. 3853–3862, June 2019.

[2] N. A. Sutton and D. S. Filipovic, “V-band monolithically integrated four-
arm spiral antenna and beamforming network,” presented at the 2012
IEEE Int. Symp. Antennas Propag., Chicago, IL, USA, July 2012.

[3] A. Young, M. V. Ivashina, R. Maaskant, O. A. Iupikov, and D. B.
Davidson, “Improving the calibration efficiency of an array fed reflector
antenna through constrained beamforming,” IEEE Trans. Antennas
Propag., vol. 61, no. 7, pp. 3538–3545, July 2013.

[4] D. S. Prinsloo, M. V. Ivashina, R. Maaskant, and P. Meyer, “Beamforming
strategies for active multi-mode antennas: Maximum gain, Signal-to-Noise
ratio, and polarization discrimination,” presented at the Int. Conf.
Electromagnetics in Advanced Applications (ICEAA), Palm Beach, Aruba,
Aug. 2014.

[5] O. A. Iupikov, M. V. Ivashina, C. Cappellin, and N. Skou, “Digital-
beamforming array antenna technologies for future ocean-observing
satellite missions,” presented at the IEEE Int. Symp. Antennas Propag.
(APSURSI), Fajardo, PR, USA, July 2016.

[6] O. Manoochehri, D. Erricolo, A. Darvazehban, and F. Monticone,
“Design of compact beam-steering active slot antennas with a metasurface
reflector,” presented at the United States National Committee of URSI
National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO,
USA, Jan. 2019.

[7] P. Rocca, N. Anselmi, M. Salucci, G. Gottardi, L. Poli, and A. Massa, “A
novel analytic beam steering approach for clustered phased array
architectures,” presented at the IEEE Int. Symp. Antennas Propag. &
USNC/URSI National Radio Science Meeting, San Diego, CA, USA, July
2017.

[8] S. Zhou, F. Yang, S. Xu, and M. Li, “Beam nulling designs of reflectarray
antenna using alternating projection method,” presented at the Cross
Strait Radio Science & Wireless Technology Conf. (CSRSWTC), Fuzhou,
China, Dec. 2020.

[9] C. Constantinides, S.K. Podilchak, S. Rotenberg, C. Mateo-Segura, G.
Goussetis, J.-L. Gomez-Tornero, and G. Toso, “Leaky-Wave antenna
with beam steering capability based on a meandered metallic waveguide,”
presented at the 15th European Conf. Antennas Propag. (EuCAP 2021),
Dusseldorf, Germany, Mar. 2021.

[10] F. Vidal, H. Legay, G. Goussetis, and J.-P. Fraysse, “Joint precoding and
resource allocation strategies applied to a large direct radiating array for
GEO telecom satellite applications,” presented at the 15th European Conf.
Antennas Propag. (EuCAP 2021), Dusseldorf, Germany, Mar. 2021.

[11] O. Isik and K. P. Esselle, “Backward wave microstrip lines with
complementary spiral resonators,” IEEE Trans. Antennas Propag., vol.
56, no. 10, pp. 3173–3178, Oct. 2008.

[12] T. Kokkinos and A. P. Feresidis, “Electrically small superdirective endfire
arrays of metamaterial-inspired low-profile monopoles,” IEEE Antennas
Wireless Propag. Lett., vol. 11, pp. 568–571, May 2012.

[13] T. Negishi, D. Erricolo, and P. L. E. Uslenghi, “Metamaterial spheroidal
cavity to enhance dipole radiation,” IEEE Trans. Antennas Propag., vol.
63, no. 6, pp. 2802–2807, June 2015.

[14] A. H. El. Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “Neural
network-based adaptive beamforming for one- and two-dimensional
antenna arrays,” IEEE Trans. Antennas Propag., vol. 46, no. 12, pp.
1891–1893, Dec. 1998.

[15] M. Abualhayja'a and M. Hussein, “Comparative study of adaptive
beamforming algorithms for smart antenna applications,” presented at the
Int. Conf. Communications, Signal Processing, and their Applications
(ICCSPA), Sharjah, United Arab Emirates, Mar. 2021.

[16] Z. Zaharis, K. Gotsis, and J. N. Sahalos, “Comparative study of neural
network training applied to adaptive beamforming of antenna arrays,”
Prog. Electromagn. Res., vol. 126, pp. 269–283, Mar. 2012.

[17] X. Song, J. Wang, and X. Niu, “Robust adaptive beamforming algorithm
based on neural network,” presented at the IEEE Int. Conf. Automation and
Logistics, Qingdao, China, Sep. 2008.

[18] Z. D. Zaharis, I. P. Gravas, P. I. Lazaridis, T. V. Yioultsis, C. S.
Antonopoulos, and T. D. Xenos, “An effective modification of
conventional beamforming methods suitable for realistic linear antenna
arrays,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5269–5279,
July 2020.

[19] P. Kasemir, N. Sutton, M. Radway, B. Jeong, T. Brown, and D. S.
Filipovič, “Wideband analog and digital beamforming,” presented at the
9th Int. Conf. Telecommunication in Modern Satellite, Cable, and
Broadcasting Services, Nis, Serbia, Oct. 2009.

[20] G. Gottardi, L. Poli, P. Rocca, A. Montanari, A. Aprile, and A. Massa,
“Optimal monopulse beamforming for side-looking airborne radars,”
IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1221–1224, Nov.
2017.

[21] G. Gottardi, N. Ebrahimi, P. Rocca, and A. Massa, “Optimal synthesis of
monopulse beamforming weights for airborne radars through convex
optimization,” presented at the Int. Applied Computational
Electromagnetics Society Symp. - Italy (ACES), Firenze, Italy, Mar. 2017.

[22] L. Poli, P. Rocca, G. Oliveri, and A. Massa, “Harmonic beamforming in
time-modulated linear arrays,” IEEE Trans. Antennas Propag., vol. 59,
no. 7, pp. 2538–2545, July 2011.

[23] N. Anselmi, P. Rocca, A. Massa, and E. Giaccari, “Synthesis of robust
beamforming weights in linear antenna arrays,” presented at the IEEE
Conf. Antenna Measurements & Applications (CAMA), Antibes Juan-les-
Pins, France, Nov. 2014.

[24] N. Anselmi, P. Rocca, M. Salucci, and A. Massa, “Optimisation of
excitation tolerances for robust beamforming in linear arrays,” IET
Microw. Antennas Propag., vol.10, pp. 208–214, Jan. 2016.

[25] T. Shan, X. Pan, M. Li, S. Xu, and F. Yang, “Coding programmable
metasurfaces based on deep learning techniques,” IEEE Trans. Emerg.
Sel. Topics in Circuits and Systems, vol. 10, no. 1, pp. 114–125, Mar.
2020.

[26] A. H. El Zooghby, C.G. Christodoulou, and M. Georgiopoulos, “A neural
network-based smart antenna for multiple source tracking”, IEEE Trans.
Antenna Propagat., vol. 48, no. 5, pp. 768–776, May 2000.

[27] M. Sarevska and A.-B. M. Salem, “Antenna array beamforming using
neural network”, World Academy of Science, Engineering and
Technology, vol. 24, Jan. 2006.

[28] Z. D. Zaharis, C. Skeberis, T. D. Xenos, P. I. Lazaridis, and J. Cosmas,
“Design of a novel antenna array beamformer using neural networks
trained by modified adaptive dispersion invasive weed optimization based
data,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 455–460, Sep. 2013.

[29] Z. D. Zaharis et al., “Implementation of antenna array beamforming by
using a novel neural network structure,” presented at the Int. Conf.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

Telecommunications and Multimedia (TEMU), Heraklion, Greece, July
2016.

[30] H. Che, C. Li, X. He, and T. Huang, “A recurrent neural network for
adaptive beamforming and array correction,” Neural Networks, vol. 80,
pp. 110–117, Apr. 2016.

[31] A. H. Sallomi and S. Ahmed, “Multi-layer feed forward neural network
application in adaptive beamforming of smart antenna system,” presented
at the Al-Sadeq Int. Conf. Multidisciplinary in IT and Communication
Science and Applications (AIC-MITCSA), Baghdad, Iraq, May 2016.

[32] X. Xiao and Y. Lu, “Data-based model for wide nulling problem in
adaptive digital beamforming antenna array,” IEEE Antennas and
Wireless Propag. Lett., vol. 18, no. 11, pp. 2249–2253, Nov. 2019.

[33] P. Ramezanpour, M. J. Rezaei, and M. R. Mosavi, “Deep‐learning‐based
beamforming for rejecting interferences,” IET Signal Process., vol. 14,
pp. 467–473, Sep. 2020.

[34] Y. Yu, H. Yin, J. Zhai, and C. Yu, “Behavioral modeling of millimeter
wave beamforming transmitters with vector decomposition time delay
recurrent neural network,” presented at the Int. Conf. Microwave and
Millimeter Wave Technology (ICMMT), Shanghai, China, Sep. 2020.

[35] P. Bhadauria, R. Kumar, and S. Sharma, “Performance dependency of
LSTM and NAR beamformers with respect to sensor array properties in
V2I scenario”, arXiv, 2021.

[36] D. Erricolo et al., “Machine learning in electromagnetics: A review and
some perspectives for future research,” presented at the Int. Conf.
Electromagnetics in Advanced Applications (ICEAA), Granada, Spain,
Sep. 2019.

[37] K. S. Senthilkumar, K. Pirapaharan, P. R. P. Hoole, and H. R. H. Hoole,
“Single perceptron model for smart beam forming in array antennas,” Int.
Journal of Electrical and Computer Engineering, vol. 6, no. 5, pp. 2300–
2309, Oct. 2016.

[38] J. Sola and J. Sevilla, “Importance of input data normalization for the
application of neural networks to complex industrial problems,” IEEE
Trans. Nucl. Sci., vol. 44, no. 3, pp. 1464–1468, June 1997.

[39] M. Bianchini and F. Scarselli, “On the complexity of neural network
classifiers: A comparison between shallow and deep architectures,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 25, no. 8, pp. 1553–1565, Aug.
2014.

[40] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y.
Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” Advances in neural information
processing systems, pp. 2933–2941, June 2014.

[41] S. Yang, X. Yu, and Y. Zhou, “LSTM and GRU neural network
performance comparison study: Taking yelp review dataset as an
example,” presented at the Int. Workshop on Electronic Communication
and Artificial Intelligence (IWECAI), Shanghai, China, June 2020.

Ιoannis Mallioras (S’22) received the
Integrated Master’s Degree in electrical and
computer engineering from the Aristotle
University of Thessaloniki, Thessaloniki,
Greece, in 2021, where he is currently pursuing
his Ph.D. degree. As of 2021, he is an early-
stage researcher within the context of an
Horizon 2020 Marie Skłodowska-Curie
Innovative Training Networks Program entitled
“Mobility and Training for beyond 5G

Ecosystems (MOTOR5G)”. The subject of his doctoral dissertation is
machine learning algorithms for network prediction. His research
interests include machine learning techniques, deep neural networks,
beamforming and massive MIMO techniques, network traffic
prediction, and optimization of network operations.

Zaharias D. Zaharis (M’13–SM’15) received
the B.Sc. degree in physics, the M.Sc. degree in
electronics, the Ph.D. degree in antennas and
propagation modeling for mobile
communications, and the Diploma degree in
electrical and computer engineering from the
Aristotle University of Thessaloniki,
Thessaloniki, Greece, in 1987, 1994, 2000, and
2011, respectively. From 2002 to 2013, he was

with the Administration of the Telecommunications Network of the
Aristotle University of Thessaloniki. Since 2013, he has been with the
School of Electrical and Computer Engineering of the Aristotle
University of Thessaloniki. He has been involved in several
international research projects, such as EU Horizon 2020 MOTOR5G
and RECOMBINE. He is the author of 73 scientific journal papers, 55
international conference papers, 5 book chapters, and one book.
Recently, he was elected as Chairman of the Electron Devices /
Microwave Theory and Techniques / Antennas and Propagation Joint
Chapter of the IEEE Greece Section. His current research interests
include design and optimization of antennas and microwave circuits,
signal processing on smart antennas, development of evolutionary
optimization algorithms, and neural networks. Dr. Zaharis is a member
of the Technical Chamber of Greece, and is currently serving as an
Associate Editor for IEEE ACCESS.

Pavlos I. Lazaridis (M’13–SM’15) received
the Diploma degree in electrical engineering
from the Aristotle University of Thessaloniki,
Thessaloniki, Greece, in 1990, the M.Sc. degree
in electronics from Université Pierre and Marie
Curie (Paris 6), Paris, France, in 1992, and the
Ph.D. degree from the École Nationale
Supérieure des Télécommunications (ENST)
Paris and Université Paris 6, in 1996. From
1991 to 1996, he was involved in research at

France Télécom, and teaching at ENST Paris. In 1997, he became the
Head of the Antennas and Propagation Laboratory, Télédiffusion de
France/the France Télécom Research Center (TDF–C2R Metz). From
1998 to 2002, he was a Senior Examiner with the European Patent
Office (EPO), The Hague, The Netherlands. From 2002 to 2014, he
was involved in teaching and research with the ATEI of Thessaloniki,
Thessaloniki, Greece, and Brunel University, London, U.K. He is
currently a Professor of electronics and telecommunications with the
University of Huddersfield, UK. He has been involved in several
international research projects, such as EU Horizon 2020 MOTOR5G
and RECOMBINE, NATO-SfP ORCA, and he has published over 150
research articles and several national and European patents. He is a
member of the IET (MIET), Senior Member of URSI, and a Fellow of
the Higher Education Academy (FHEA). He is currently serving as an
Associate Editor for IEEE ACCESS.

Stelios Pantelopoulos received the Diploma
degree in electrical engineering from the
University of Patras, Patras, Greece, in 1990,
and the M.Sc. degree in robotics (D.E.A. de
robotique) from Université Pierre et Marie
Curie - Paris VI of Paris, in 1992. From 1994 to
1997, he was with Athens Technology Center,
Athens, Greece, first as a software developer
and later as a researcher-analyst, while
participating in commercial projects, and

research and development projects. From 1997 to 1999, he was with
Intrasoft, Athens, Greece, as a researcher-analyst. From 1999 to 2020,
he was with SingularLogic, Athens, Greece, as the director of
European projects. Since the end of 2021, he has been the director of
the Greece branch of the Italian company Maggioli S.p.A. The branch
belongs to the International Development Unit and acts as the
Innovation Center of Maggioli Group participating in R&D funded
European research and development projects, while at the same time
dealing with the group’s commercial activities in Greece and
southeastern Europe.

