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A Novel Receiver Architecture for Single-Carrier
Transmission over Time-Varying Channels

Zijian Tang and Geert Leus

Abstract—In this paper, we present a single-carrier transceiver
for rapidly time-varying channels, where the equalization step
is implemented in the frequency domain. When the channel
abides with both fast fading and severe inter-block interference,
our equalizer relies on a band approximation of the frequency-
domain channel matrix to maintain low complexity. We will show
that the band approximation error can be associated in the time
domain to a critically-sampled complex exponential basis expan-
sion modeling error. Based on this property, we propose a novel
receiver architecture that extends the original data model by
inserting zeros at the receiver. The resulting effective channel can
be characterized by an oversampled complex exponential basis
expansion model, which has a considerably reduced modeling
error compared to the critically-sampled one. In other words,
the band assumption that is essential to the equalizer will be
made more accurate and thus the equalization performance can
be improved.

Index Terms—single-carrier, basis expansion model, time-
varying channels, inter-block interference

I. INTRODUCTION

IN A SINGLE-CARRIER transmission system over a

lengthy channel, it is more efficient to equalize the channel

in the frequency domain utilizing a simple one-tap equalizer

[1]. The underlying consideration is that the frequency-domain

(FD) channel is a diagonal matrix, i.e., the subcarriers remain

orthogonal to each other. However, this is only true if there

is no inter-block interference (IBI) present and the channel

stays invariant during at least one block. In the presence of

IBI, a sufficient number of redundant symbols (guard interval)

needs to be inserted between the blocks, which might not be

affordable in practice due to a stringent bandwidth constraint.

In a scenario of high-mobility, on the other hand, the channel

time variation within a block cannot be neglected, and induces

Doppler spread in the frequency domain. In these cases,

the orthogonality among the subcarriers is corrupted and the

FD channel becomes actually a full matrix. A reliable FD

equalizer for such a channel will be much more expensive,

which is the key issue considered in this paper.

To restore the orthogonality among the subcarriers, pre-

processing at the receiver is indispensable. For instance, a

channel shortening technique, in the form of a finite impulse

response (FIR) filter, is proposed in [2] for time-invariant

channels, with the aim of shortening the effective channel

within the given guard interval. In [3], an FIR filter is adopted

to “flatten” the channel’s fluctuation, which can be considered
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as the dual of channel shortening. In [4], both schemes are

combined. Such an approach works well for channels that are

moderately spread in delay and Doppler dimensions.

Often, a perfectly diagonal FD channel matrix is too difficult

to achieve. In a realistic transmission system, the Doppler-

induced channel has most of its power concentrated in the

vicinity of the diagonal in a circular sense, with those entries

that are far away from the diagonal decreasing fast [5], [6].

This implies that it is more practical to assume a banded FD

channel matrix1. Many equalizers exploit this banded (rather

than diagonal) structure to lower the complexity, e.g., the

block linear zero-forcing (ZF) equalizer in [7], the block linear

minimum mean square error (MMSE) equalizer in [8], [9], the

iterative serial MMSE equalizer in [10]–[12], the maximum

likelihood (ML) equalizer in [13]–[15], etc. It can be imagined

that to enhance the equalization performance, especially at

a moderate to high signal-to-noise ratio (SNR), the band

approximation error must be reduced as much as possible. One

solution can be the FIR filter of [4], but it generally requires a

multiple antenna assumption and can still be too complicated.

Since we need not to enforce a diagonal FD channel matrix

but a banded one, a reduced-order FIR filter with just a single

tap could be adequate. Such a filter is referred to as a receiver

window in [9]–[12], [15].

In this paper, we will present two receiver architectures in

combination with windowing to counteract the channel time

variation as well as the IBI for a single-carrier transmission

system. The first receiver will be based on the original data

model (ODM), which describes the actual channel input/output

(I/O) relationship. The second receiver will be based on the

so-called extended data model (EDM), which extends the

ODM by inserting zeros at the receiver. The advantage of

the EDM is that by inserting zeros at the receiver, we are

endowed with some extra design freedom to shape the Doppler

effect better. More specifically, we can choose freely the

part of the channel that corresponds to the inserted zeros.

In both data models, the full FD channel matrix will be

approximated by a banded matrix for the sake of complexity.

Note that unlike [9]–[12], [15] where the banded matrix

is obtained by extracting the significant diagonals from the

original FD channel matrix, the band approximation in this

paper is achieved in a different manner: we will device a

banded matrix that is close to the full FD channel matrix only

in terms of the Frobenius norm. For the ODM, where the

considered full FD channel matrix is the same as the original

one, these two approaches are the same. However, for the

EDM, where part of the considered full FD channel matrix

1Strictly speaking, we actually mean “circularly-banded” here. However,
we will use the term “banded” in the sequel for the sake of brevity.
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can be chosen freely and thus not completely corresponds to

the original one, the proposed approach has an advantage.

A more profound rationale is that we have translated the

band approximation error in the frequency domain into a

basis expansion modeling (BEM) error in the time domain.

Recall that the idea of the BEM is initially documented in

[16] to reduce the number of parameters of a time-varying

channel at the cost of a small modeling error. In this paper,

we can show that the band approximation error in the ODM

corresponds to a modeling error resulting from the critically-

sampled complex exponential BEM ((C)CE-BEM) [17], [18]2,

while the band approximation error in the EDM corresponds

to a modeling error resulting from the oversampled complex

exponential BEM ((O)CE-BEM) [19]–[21]. This idea will be

reflected in our window design. Since the (O)CE-BEM in

general can yield a much tighter fit to a realistic time-varying

channel than the (C)CE-BEM, as reported in [22], it is not hard

to understand that the equalizer for the EDM will be subject to

a much smaller band approximation error than for the ODM,

and could thus be able to render a better performance.

We assume in this paper that the channel state information

(CSI) is known. Channel estimation for time-varying channels

has for instance been discussed in [18]. In the simulations

section, we will include some results using this channel

estimator.

Notation: We use upper (lower) bold face letters to denote

matrices (column vectors). (·)∗, (·)T and (·)H represent conju-

gate, transpose and complex conjugate transpose (Hermitian),

respectively. Ex{·} stands for the expectation with respect to

x. ⊙ represents the Schur-Hadamard (element-wise) product.

mod(a, b) gives the remainder of a divided by b. tr(X) and

‖X‖ denote the trace and Frobenius norm of X, respectively.

X† denotes the pseudo inverse of X. D{x} stands for a

diagonal matrix with x as the diagonal. We use [x]p to

indicate the (p + 1)st element of x, and [X]p,q to indicate

the (p + 1, q + 1)st entry of X. Further, we let IN denote an

N ×N identity matrix, 0M×N an M ×N all-zero matrix, and

1M×N an M × N all-one matrix. ek stands for a unit vector

with a one at the (k + 1)st position. FN denotes the unitary

N -point DFT matrix with [FN ]p,q = 1√
N

e−j 2π
N

pq .

II. SYSTEM MODEL

Let us consider the discrete-time baseband model of a

communication system, where the channel is assumed to be

an FIR filter with order L, i.e., if we use hp,l to denote the

lth channel tap at the pth time index then hp,l = 0 if l < 0 or

l > L. Conform the FIR assumption, we can express the I/O

relationship as

yp = wp

L∑

l=0

hp,lsp−l + vp, (1)

where wp stands for the pth element of the window that is

deployed at the receiver; yp and vp denote the (windowed)

observation sample and noise at the pth time index, respec-

tively; and sp denotes the pth data symbol.

2As a matter of fact, such a link also underlies the equalizer design in [10],
[12], but is not straightforward to observe.

For this data model, we adopt the following assumptions.

Assumption 1: We deal in this paper with time-varying

channels, which implies that hp,l �= hq,l if p �= q. We assume

that the channel can be statistically characterized by a wide-

sense stationary uncorrelated scattering (WSSUS) model. To

be specific, we assume that

Eh{hp,lhp−m,l−n} = σ2
l γmδn, (2)

where δn denotes the Kronecker delta, σ2
l the variance of the

lth channel tap, and γm the normalized time correlation, i.e.,

γ0 = 1.

Assumption 2: We assume that the data symbols are zero-

mean white with unit variance, i.e., Es{sps
∗
p−m} = δm, and

the noise prior to windowing is zero-mean white with variance

σ2. With the window taken into account, this means that

Ev{vpv
∗
p−m} = σ2δmwpw

∗
p−m.

III. FD EQUALIZATION BASED ON THE ODM

A. Equalization Scheme

Suppose that the received samples are parsed into (possibly

overlapping) blocks of size N . For instance, let us define yt,N

as a vector collecting the observation samples from time index

0 to N − 1, yt,N := [y0, · · · , yN−1]
T . Conform (1), the I/O

relationship for yt,N can be expressed in matrix/vector form

as

yt,N = D{w}H[sT
pre, s

T
N−L, sT

post]
T + vt,N , (3)

where vt,N is similarly defined as yt,N ; w is the N × 1 win-

dow vector, w := [w0, · · · , wN−1]
T ; sN−L is an (N −L)×1

vector collecting data symbols, sN−L := [s0, · · · , sN−L−1]
T ;

and spre and spost represent the L data symbols that are

contiguous to sN−L, spre := [s−L, · · · , s−1]
T and spost :=

[sN−L, · · · , sN−1]
T . The N×(N+L) matrix H stands for the

convolutive channel matrix with entries [H]p,n := hp,p−n+L.

In Fig. 1, it is shown how the relationship (3) can be re-

formulated as a quasi-circulant relationship3. In mathematics,

this leads to

yt,N = D{w}Ht,NsN + ǫt,N + vt,N , (4)

where

sN := [sT
N−L, sT

post]
T , (5)

and the N × N matrix Ht,N has entries [Ht,N ]p,n :=
hp,mod(p−n,N). The term ǫt,N represents the IBI, which can

be expressed as

ǫt,N := D{w}Hi,N (spre − spost), (6)

where Hi,N is an N × L matrix with entries [Hi,N ]p,n :=
hp,p−n+L. Transformed into the frequency domain, (4) be-

comes

yf,N := FNyt,N = Hf,NFNsN + ǫf,N + vf,N , (7)

where ǫf,N and vf,N are similarly defined as yf,N , and

Hf,N := FND{w}Ht,NFH
N stands for the FD channel

matrix. Since D{w}Ht,N is quasi-circulant, and not circulant

due to the channel time variation, Hf,N is not diagonal.

3We use the term “quasi-circulant” when dealing with a time-varying
circular convolution.
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sN−L

spost

spre

=

yt,N D{w}H

= +

D{w}Hi,NsD{w}Ht,N

sN−L

spost

−

(spre − spost)

+

vt,N

+

vt,N

Fig. 1. The original data model.

In (7), except for the windowing and the DFT, we did

not apply any other processing on the received samples, and

the data model is identical to what has actually happened in

reality. We therefore call this data model the original data

model (ODM). It is typical to the ODM that the DFT size

equals the number of observation samples. This will be in

contrast with the EDM scheme discussed in the next section,

where the DFT size is larger than the number of observation

samples.

The IBI in the frequency domain ǫf,N can be mitigated

by the utility of a guard interval of length Lz , e.g., a cyclic-

prefix (CP), a zero-postfix (ZP) [23] or a non-zero postfix

(NZP) [24]. In the CP case, we let [s−Lz
, · · · , s−1] =

[sN−L, · · · , sN−L+Lz−1], while in the ZP and NZP case, we

let [s−Lz
, · · · , s−1]

T = [sN−L, · · · , sN−L+Lz−1]
T = p, with

p being a zero or non-zero pilot vector, respectively. When

Lz ≥ L, IBI is completely removed. When there is no guard,

i.e., Lz = 0, IBI is present and has to be dealt with. However,

it is in that case still possible to reduce the amount of IBI.

We can for instance apply a sliding window approach, which

only estimates Ns data symbols out of sN−L at the time.

After that, the equalizer shifts Ns observation samples forward

to estimate the next Ns data symbols. This implies that the

consecutive received sample blocks yt,N will overlap with

each other over N − Ns samples. This is beneficial because

the IBI usually undermines the reliability of the data symbols

at the edges of the block. Note that a similar approach has

been proposed in [12].

The non-zero off-diagonal elements of Hf,N prevent the

viability of a simple one-tap equalizer. To facilitate a low-

complexity equalizer, we will approximate Hf,N with a

banded matrix Ĥf,N , which has only non-zero entries on the

main diagonal, the first Q/2 upper and the first Q/2 lower

diagonals in a circular sense. Here, Q is a design parameter

that can be chosen to make a trade-off between complexity

and performance. The smaller Q, the cheaper the equalizer,

but the worse the performance. A good value for Q is related

to the maximum Doppler spread [11]. It is noteworthy that

the banded matrix Ĥf,N is not simply obtained by taking the

Q + 1 most significant diagonals of Hf,N in a circular sense.

We desire that Ĥf,N should be close to Hf,N in terms of the

Frobenius norm. Therefore, Ĥf,N is designed as

min
Ĥf,N

‖Hf,N − Ĥf,N‖2, s.t. Ĥf,N = Ĥf,N ⊙ TQ. (8)

where TQ is a matrix of proper dimensions, which has ones

on the main diagonal, the first Q/2 upper and the first Q/2
lower diagonals in a circular sense, and zeros on the remaining

entries.

Let us now make things more concrete by applying the

above ideas to a block linear MMSE equalizer. This is just one

possible option, and similar studies can for instance be made

for a serial linear MMSE equalizer or for the iterative versions

of these two MMSE equalizers. Note that a similar study for

the iterative serial MMSE equalizer has been presented in [10],

[12]. Suppose we want to estimate the middle Ns data symbols

of sN−L by applying a block linear MMSE equalizer on (7),

where we neglect the IBI and replace Hf,N by Ĥf,N :

ŝNs
= ΩNFH

NĤH
f,N(Ĥf,NĤH

f,N + Rv,N )−1yf,N , (9)
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Fig. 2. The V-shape of GN .

with

ΩN :=
[

0
Ns×N−L−Ns

2
INs

0
Ns×N+L−Ns

2

]

, (10)

Rv,N := Ev{vf,NvH
f,N}

= σ2FND{w}D{w∗}FH
N . (11)

Since Ĥf,NĤH
f,N is banded with bandwidth 2Q + 1 and

assuming that Rv,N is also banded with bandwidth 2Q + 1
(we come back to this issue later on), we can apply a Cholesky

factorization [25] on the covariance matrix in (9) such that

Ĥf,NĤH
f,N + Rv,N = GNGH

N , (12)

where the upper-triangular matrix GN will assume a sparse

V-shape structure as illustrated in Fig. 2 (note that a similar

structure was observed in [15]). Applying the inverse of

Ĥf,NĤH
f,N + Rv,N can then be implemented by applying

the inverses of GN and GH
N separately using, e.g., Gaussian

elimination. It can be shown that this approach inflicts a

complexity of O(NQ2), i.e., the complexity is linear in N
and square in Q.

It is worth mentioning that in a single-carrier system, the

channel can also be equalized in the time domain. For instance,

we can apply a block linear MMSE equalizer directly on

(3), for which the complexity can be shown to be O(NsL
2).

However, since N/Ns is generally much smaller than L/Q,

it is more appealing to equalize the channel in the frequency

domain than in the time domain.

From the above derivations, it can be understood that to

enhance the equalization performance of the ODM, we need

to design the window w and the banded matrix Ĥf,N such

that the IBI ‖ǫf,N‖2 as well as the band approximation error

‖Hf,N − Ĥf,N‖2 will be minimized in some average sense.

In addition, the window should also be able to make the

noise covariance matrix Rv,N banded. These issues will be

discussed next.

B. Window Design for the ODM

We begin the window design with its noise shaping behav-

ior. Considering Assumption 2, we adopt the approach of [9],

which is summarized in the following proposition (see [9] for

a proof).

Proposition 1: The noise covariance matrix Rv,N will be

banded with bandwidth 2Q + 1 if we let the window w be a

weighted sum of Q + 1 complex exponentials:

w = BNd, (13)

where BN is comprised of the first Q/2+1 and the last Q/2
columns of FN ; and d is a (Q + 1)× 1 vector containing all

the weighting coefficients.

It is worth mentioning that the matrix BN tallies with the

classical definition of the (C)CE-BEM, whose period equals

the BEM window size N [17], [18].

Next, to minimize the band approximation error ‖Hf,N −
Ĥf,N‖2, we need to design the window w and the banded

matrix Ĥf,N jointly. The following theorem proves to be

important (see Appendix A for a proof).

Theorem 1: The minimization of the band approximation

error ‖Hf,N − Ĥf,N‖2 in the frequency domain can be

transformed in the time domain as the minimization of the

(C)CE-BEM modeling error. In mathematics, this can be

expressed as

min
Ĥf,N

‖Hf,N − Ĥf,N‖2 = min
C

‖D{w}H − BNC‖2. (14)

In the above, H stands for the N×(L+1) matrix collecting all

the channel taps, [H]n,l = hn,l, and C for the (Q+1)×(L+1)
matrix collecting all the BEM coefficients, [C]q,l = cq,l.

Theorem 1 establishes the equivalence between the band ap-

proximation error in the ODM and the (C)CE-BEM modeling

error.

Regarding the IBI, the following theorem is needed (see

Appendix B for a proof).

Theorem 2: The average power of the IBI ǫf,N in the ODM

is a function of the window as

Eh,s{‖ǫf,N‖2} = 2wTRǫ,Nw∗, (15)

where Rǫ,N denotes a diagonal matrix with diagonal entries

given by

[Rǫ,N ]n,n =

{∑L

l=n+Lz+1 σ2
l if n ≤ L − Lz − 1,

0 otherwise.
(16)

Using Proposition 1 as well as Theorems 1 and 2, the design

problem of finding a fixed window that minimizes both the

average minimal band approximation error and the average

IBI can now be formulated as

min
w

Eh

{
min

C
‖D{w}H − BNC‖2

}
+ 2wTRǫ,Nw∗,

s.t. w = BNd and ‖w‖2 = N. (17)

Note that the constraint ‖w‖2 = N is imposed to avoid the

trivial all-zero window.

We first solve (17) for C leading to C = B
†
ND{w}H.

Plugging this result into the first term of (17), we obtain

Eh

{
min

C
‖D{w}H− BNC‖2

}

= tr
(
PBN

D{w}RH,ND{wH}PH
BN

)

= wT
(N−1∑

n=0

D{PT
BN

en}RH,ND{PH
BN

en}
)

w∗, (18)
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where

PBN
:= IN − BNB

†
N , (19)

RH,N := Eh{HH
H}. (20)

Note that using Assumption 1, the entries of RH,N can be

expressed as [RH,N ]m,n =
∑L

l=0 σ2
l γm−n.

Substituting (13) and (18) in (17) finally leads to

min
d

dT
X Nd∗, s.t. ‖d‖2 = N, (21)

with

X N := BT
N

(N−1∑

n=0

D{PT
BN

en}RH,N

× D{PH
BN

en} + 2Rǫ,N

)

B∗
N . (22)

As a result, d can be computed as the least significant

eigenvector of X
∗
N .

Remark 1: We can show that the banded matrix Ĥf,N that

is obtained after minimizing the band approximation error

actually corresponds to the Q + 1 most significant diagonals

of Hf,N in a circular sense, i.e., Ĥf,N = Hf,N ⊙ TQ (see

[26] for a proof). It is noteworthy that although this result

coincides with the canonical band approximation approach

in [9]–[12], [15], the underlying consideration [c.f. (8)] is

obviously different.

Remark 2: The windows designed in [10], [12] maximize

the signal to interference (band approximation error and IBI)

and noise ratio directly in the frequency domain. As a matter

of fact, the band approximation error considered in [10], [12]

can also be translated as the (C)CE-BEM modeling error just

like in this paper. Indeed, if there is no noise and IBI, and

the window length is restricted to be equal to the observation

block length, we can show that the window of [10], [12] will

admit the same expression as the window of the ODM (the

proof can be found in [26])4. As will become evident from

the simulations, the performance of the windowing strategies

of [10], [12] is very close to that of the ODM. It is thus not

difficult to understand that a possible drawback of the ODM

window, and that of [10], [12] as well, is associated with a

relatively large modeling error inherent to the (C)CE-BEM

as reported in [22]. For the case no guard band is present,

i.e., Lz = 0, this can partially be solved by taking Ns much

smaller than N − L, so that the edge effects of the (C)CE-

BEM are avoided. But this is more difficult to carry out when

a guard band is present. A more general approach to avoid

this problem consists of extending the data model, as will be

discussed in the next section.

IV. FD EQUALIZATION BASED ON THE EDM

In the previous section, we have shown that the band

approximation error in the ODM can be translated into the

(C)CE-BEM modeling error. While the (C)CE-BEM suffers

from a relatively large modeling error, it is proposed in [19],

[20] that a more generalized form, the (O)CE-BEM, can yield

4Note that [10] considers a CP with Lz ≥ L to remove the IBI and restricts
the length of the window to the observation block length as in the ODM. On
the other hand, [12] considers no guard, i.e., Lz = 0, but does not necessarily
restrict the length of the window to the observation block length.

a much better modeling performance [22]. The (O)CE-BEM

is achieved by simply enlarging the period of the (C)CE-BEM

from N to K with K > N , maintaining the BEM window

length at N . However, the (O)CE-BEM can not be straightfor-

wardly applied to the ODM, because the (O)CE-BEM channel

matrix, if transformed into the frequency domain by FN to

the left and FH
N to the right, will not be banded. We can solve

this problem by enlarging the data model from size N to size

K , meanwhile keeping the observation block length equal to

N . This is explained in more detail next.

A. Equalization Scheme

To derive a larger data model, let us first rewrite the ODM

given in (4) as

yt,N = D{w}H̄NsN−L + D{w}H̄i,N

[
spre

spost

]

+ vt,N , (23)

where H̄N is an N × (N −L) matrix with entries [H̄N ]p,n :=
hp,p−n, and H̄i,N stands for an N ×2L matrix constructed as

H̄i,N :=

⎡

⎣

A 0L×L

0(N−2L)×2L

0L×L B

⎤

⎦ , (24)

where the L ×L matrix A has entries [A]m,n = hm,L−n+m,

and the L×L matrix B has entries [B]m,n = hN−L+m,m−n.

The relationship (23) is illustrated in the upper part of Fig. 3,

which should be compared with the upper part of Fig. 1.

We now want to extend the data model in (23) from size

N to size K , with K ≥ N . This can be done as shown in the

bottom part of Fig. 3, where the K × (K − N + L) matrix

U, the (K − N + L) × 1 vector svir, and the (K − N) × 1
vector vvir are subject to design, and where we have further

included the K × 1 vector yvir, which equals

yvir = Usvir + [01×N ,vT
vir]

T . (25)

In compact form, we get the following expression:
[

yt,N

0(K−N)×1

]

+ yvir

︸ ︷︷ ︸

yt,K

=

[(
D{w}H̄N

0(K−N)×(N−L)

)

U

]

︸ ︷︷ ︸

Ht,K

[
sN−L

svir

]

︸ ︷︷ ︸

sK

+

[
D{w}H̄i,N

0(K−N)×2L

] [
spre

spost

]

︸ ︷︷ ︸

ǫt,K

+

[
vt,N

vvir

]

︸ ︷︷ ︸

vt,K

. (26)

Note that in contrast to what we were saying before, we

do not only add zeros at the receiver, but we possibly also

include an additional known vector yvir. In any case, we have

introduced some redundancy only at the receiver, which is

completely transparent to the transmitter. Hence, the data rate

is not compromised. A direct implication is that the ODM in

(23) remains valid: it simply becomes a part of the larger data

model in (26). For this reason, we will refer to the resulting

relationship as the extended data model (EDM).

The second term on the RHS of (26), ǫt,K , is due to the

IBI. Removing its last K − N zero elements, we obtain

ǭt,N = D{w}H̄i,N

[
spre

spost

]

. (27)
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spre

spost

sN−L

svir

+=

U

+

D{w}H̄N

+=

yvir

D{w}H̄i,N

D{w}H̄i,N

spre

spost

sN−L

D{w}H̄N

yt,N

0(K−N)×1 0(K−N)×2L0(K−N)×(N−L)

+
yt,N vt,N

vt,N

vvir

+

Fig. 3. Derivation of the extended data model.

Note that it can only be eliminated by the ZP or the NZP,

which is in contrast to the ODM, where we could also

eliminate the IBI using a CP.
Transformed into the frequency domain, the EDM in (26)

becomes

yf,K := FKyK = Hf,KFKsK + ǫf,K + vf,K , (28)

where ǫf,K and vf,K are similarly defined as yf,K , and

Hf,K := FKHt,KFH
K stands for the FD channel matrix,

which is again a full matrix. Like in the previous section, we

use a banded matrix Ĥf,K to replace Hf,K , with Ĥf,K having

non-zero entries only on the main diagonal, the first Q/2
upper and the first Q/2 lower diagonals in a circular sense.

Let us focus again on the block linear MMSE equalizer, and

let us choose svir to contain some random symbols that have

the same distribution as sN−L such that Es{sKsH
K} = IK .

Estimating the middle Ns data symbols of sN−L, where we

neglect the IBI and replace Hf,N by Ĥf,N , we then obtain

ŝNs
= ΩKFH

KĤH
f,K(Ĥf,KĤH

f,K + Rv,K)−1yf,K , (29)

where

ΩK :=
[

0Ns×N−L−Ns
2

INs
0Ns× 2K−N+L−Ns

2

]

, (30)

Rv,K := Ev{vf,KvH
f,K}

= FK

[
σ2D{w}D{w∗}

E{vvirv
H
vir}

]

FH
K . (31)

As explained in the previous section, since Ĥf,KĤH
f,K is

banded with bandwidth 2Q + 1 and assuming that Rv,K is

also banded with bandwidth 2Q + 1 (we come back to this

issue later on), the required complexity to carry out (29) is

O(KQ2).
In summary, to enhance the equalization performance, the

window of the EDM should take a three-fold task: 1) to make

the noise covariance matrix Rv,K banded; 2) to minimize the

IBI ‖ǫf,K‖2 in some average sense; and 3) to minimize the

band approximation error ‖Hf,K − Ĥf,K‖2 in some average

sense.

B. Window Design for the EDM

Regarding the noise-shaping behavior of the window, we

have the following proposition (the proof is similar to the

proof of Proposition 1).

Proposition 2: The noise covariance matrix Rv,K will be

banded with bandwidth 2Q + 1 if the window can be con-

structed as a weighted sum of Q + 1 complex exponentials:

w = B̄
(0)
N d, (32)

where B̄
(0)
N is an N × (Q+1) matrix with entries [B̄

(0)
N ]p,q =

1√
K

ej 2π
K

p(q− Q
2 ); and d is a (Q + 1)× 1 vector containing all

the weighting coefficients. In addition, the virtual noise vvir

must be designed such that

E{vvirv
H
vir} = σ2

D{B̄(N)
K−Nd}D{B̄(N)

K−Nd}H , (33)

where B̄
(N)
K−N is a (K − N) × (Q + 1) matrix with entries

[B̄
(N)
K−N ]p,q = 1√

K
ej 2π

K
(p+N)(q− Q

2 ).

The notations B̄
(0)
N and B̄

(N)
K−N stem from a more general

notation B̄
(l)
M , which is defined next. Let us first define BK as

a K× (Q+1) matrix, which is comprised of the first Q/2+1
and the last Q/2 columns of the K-point DFT matrix FK .

Then B̄
(l)
M will denote an M × (Q + 1) matrix consisting of

the lth until (l + M − 1)st row of BK . In mathematics, this

means that B̄
(l)
M has entries

[B̄
(l)
M ]p,q =

1√
K

ej 2π
K

(p+l)(q−Q
2 ). (34)

Note that if we stack the two matrices B̄
(0)
N and B̄

(N)
K−N

from Proposition 2 on top of each other, then we obtain

BK , i.e., [B̄
(0)T
N , B̄

(N)T
K−N ]T = BK . That is why the proof

of Proposition 2 can easily be derived from the proof of

Proposition 1. The matrix B̄
(l)
M tallies with the definition of the

(O)CE-BEM, which uses an exponential period K and a BEM

window size M with K > M [19], [20]. The (O)CE-BEM

plays an important role in minimizing the band approximation
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error ‖Hf,K − Ĥf,K‖2 as is evident from the following

theorem (see Appendix C for a proof).

Theorem 3: The minimization of the band approximation

error ‖Hf,K − Ĥf,K‖2 in the frequency domain can be

transformed in the time domain as the minimization of the

(O)CE-BEM modeling error. More explicitly, we can write

min
U,Ĥf,K

‖Hf,K−Ĥf,K‖2 =
L∑

l=0

min
cl

‖D{Υlw}hl−B̄
(l)
N−Lcl‖2,

(35)

where Υl stands for an (N −L)×N selection matrix, Υl :=
[0(N−L)×l, IN−L,0(N−L)×(L−l)]; hl for the (N − L) × 1
vector collecting the lth channel tap from time index l to

N − L + l − 1, hl := [hl,l, · · · , hN−L+l−1,l]
T ; and cl for

the (Q+1)×1 vector collecting the BEM coefficients for the

lth channel tap, cl := [c0,l, · · · , cQ,l]
T .

In Theorem 3, we use for each channel tap hn,l a slightly

different (O)CE-BEM matrix B̄
(l)
N−L to approximate the time

variation of that channel tap in the time interval from time

index l to N −L+ l−1. Adding the resulting BEM modeling

errors for all channel taps accounts for the band approximation

error.
Next, to minimize the IBI, the following theorem is useful

(see Appendix D for a proof).
Theorem 4: The average power of the IBI ǫf,K for the

EDM is related to the window as

Eh,s{‖ǫf,K‖2} = wT R̄ǫ,Nw∗, (36)

with R̄ǫ,N denoting an N ×N diagonal matrix with diagonal

entries given by

[R̄ǫ,N ]n,n =

⎧

⎨

⎩

∑L

l=n+Lz+1 σ2
l if n ≤ L − Lz − 1,

∑n−N+L−Lz

l=0 σ2
l if N − L + Lz ≤ n ≤ N − 1,

0 otherwise.
(37)

The window design problem that jointly minimizes the

average minimal band approximation error and the average

IBI can then be formulated as

min
w

L∑

l=0

Eh

{
min

cl

{‖D{Υlw}hl − B̄
(l)
N−Lcl‖2}

}

+wT R̄ǫ,Nw∗,

s.t. w = B̄
(0)
N d and ‖w‖2 = N. (38)

We solve the above first for cl resulting into cl =

B̄
(l)†
N−LD{Υlw}hl. Plugging this result into the lth term of

(38), and using the property D{Υlw} = ΥlD{w}ΥH
l , we

obtain

Eh

{
min
cl

{‖D{Υlw}hl − B̄
(l)
N−Lcl‖2}

}

= tr
(
P

B̄
(l)
N−L

ΥlD{w}ΥH
l Rhl,N−LΥlD{w∗}ΥH

l P
H

B̄
(l)
N−L

)

= wT
(N−L−1∑

n=0

ΥT
l D{PT

B̄
(l)
N−L

en}Rhl,N−L

× D{PH

B̄
(l)
N−L

en}Υ∗
l

)

w∗, (39)

where

P
B̄

(l)
N−L

:= IN−L − B̄
(l)
N−LB̄

(l)†
N−L (40)

Rhl,N−L := Eh{hlh
H
l }. (41)

Note that using Assumption 1, the entries of Rhl,N−L can be

expressed as [Rhl,N−L]m,n = σ2
l γm−n. Substituting (32) and

(39) in (38), finally results into

min
d

dT
X̄ Nd∗, s.t. ‖B̄(0)

N d‖2 = N, (42)

with

X̄ N := B̄
(0)T
N

( L∑

l=0

N−L−1∑

n=0

ΥT
l D{PT

B̄
(l)
N−L

en}Rhl,N−L

× D{PH

B̄
(l)
N−L

en}Υ∗
l + R̄ǫ,N

)

B̄
(0)∗
N . (43)

To resolve (42), we note that the columns of B̄
(0)
N are not

orthonormal to each other. Therefore, we have to compute d

as the least significant generalized eigenvector of the matrix

pair (X̄
∗
N , B̄

(0)H
N B̄

(0)
N ) [25].

Remark 3: For the EDM, the band approximation error is

minimized by tuning not only the banded matrix Ĥf,K itself

but also the matrix U as part of Hf,K [c.f. (35)], instead of

tuning only the banded matrix Ĥf,N as in the ODM case. This

already shows that the EDM has a better band approximation

error than the ODM. Related to this, for the EDM, we are

able to transform the band approximation error to the (O)CE-

BEM modeling error [c.f. (35)], instead of to the (C)CE-BEM

modeling error as in the ODM case. Since the (O)CE-BEM

is much tighter than the (C)CE-BEM [22], this also explains

why the EDM has an improved band approximation error over

the ODM.

V. NUMERICAL RESULTS

We test the proposed algorithms over a time-varying channel

following Jakes’ Doppler profile [27] using the time-varying

channel generator given in [28]. The channel is assumed to

have L+1 = 31 channel taps with the lth tap having variance

σ2
l = e−

l
10 . The Jakes’ Doppler profile is characterized by

the normalized time correlation γm = J0(2πνm), where J0(·)
denotes the zeroth-order Bessel function of the first kind, and ν
stands for the normalized Doppler spread, which is obtained as

ν =
vf

c
T , where v denotes the vehicle velocity, f the carrier

frequency, T the data symbol duration, and c the speed of

light. We will test two types of time-varying channels, ν =
0.002 and ν = 0.004, through which QPSK data symbols are

transmitted.

Test case 1. Without IBI. In the first test case, we let the

observation block length in the ODM and EDM be N = 128,

and a sufficiently long ZP of length Lz = L = 30 is used

such that the IBI is completely removed. As a result, we can

estimate the first Ns = 98 data symbols in one shot. Further,

we set Q = 4 for the ODM, while Q = 2 and K = 256 for

the EDM. With those parameters chosen, the complexity of

the ODM O(NQ2) is higher than that of the EDM O(KQ2).
For the sake of simplicity, we will set svir = 0 and vvir = 0

for the EDM. Although this breaks some conditions that we

assumed to hold, we have seen that this simplification only

brings small performance differences (not shown here).

The windows of the ODM and EDM are depicted in Fig. 4,

where we can see that the windows of the ODM take on a

bell-shape with the edges tending to zero, which is beneficial
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Fig. 4. The windows in the absence of IBI.

to the modeling performance of the (C)CE-BEM. In contrast,

the windows of the EDM are almost flat, suggesting that the

(O)CE-BEM itself is quite accurate in modeling the channel

time variation.

The bit error rate (BER) is compared in Fig. 5 and Fig. 6 for

ν = 0.002 and ν = 0.004, respectively. For comparison, we

have also plotted the performance of the same block linear

MMSE equalizer but using the window of [10], which has

the same length as the window of the ODM. Besides, we

also show the performance of the ODM without windowing

and the performance of the block linear MMSE equalizer

applied in the time domain, as discussed at the end of

Section III-A. Note that the latter does not suffer from any

band approximation errors. From Fig. 5 and Fig. 6, we can see

that the ODM without windowing performs the worst while the

time-domain approach performs the best. It is obvious that the

band approximation error plays a significant role. For the same

reason, the EDM renders a better performance than the ODM

even with a lower complexity. This performance lead is larger

at a higher Doppler spread, where the band approximation

error is more pronounced. As we have predicted, the window

of [10] yields a performance that is very close to that of the

ODM. Note though that [10] focuses on an iterative serial

MMSE equalizer, whereas we only implement block linear

MMSE equalizers.

The above equalizers are constructed based on perfect

channel state information (CSI). The performance of the equal-

izers of the ODM and EDM based on estimated CSI is also

exhibited in Fig. 5 and Fig. 6. The channel is estimated in the

time domain with the aid of pilots, which are interleaved with

data symbols as described in Fig. 7. We refer the interested

reader to [18] for more details about the considered channel

estimation scheme. Note that the proposed training scheme is

not very spectrally efficient, but this is the price we have to pay

for estimating such highly time-varying channels. The spectral

efficiency could be somewhat improved by using iterative

channel estimation schemes.

Test case 2. With IBI. Here, we examine the performance

when no guard interval is embedded. To combat the impact of
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Fig. 5. BER in the absence of IBI, ν = 0.002.
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Fig. 6. BER in the absence of IBI, ν = 0.004.

the IBI, we adopt the sliding window approach, where in each

time only the middle Ns = 64 data symbols of a block of N−
L data symbols are estimated, and afterwards, the equalizer

moves forward to estimate the next Ns = 64 data symbols.

The final BER is an average of all these data estimates. In an

effort to present a complete picture, we compare four different

schemes for the ODM and EDM, respectively. The parameters

for these schemes are summarized in Table I and Table II. Note

that the third column represents the order of magnitude of the

complexity per estimated data symbol. For comparison, we

also include the performance of the window proposed in [12],

which only has a slightly longer window length as the ODM

(N + L instead of N ). The windows of the ODM and EDM

for this test case are depicted in Fig. 8, where we can see that

the windows of the EDM are not flat anymore but also take

on a bell-shape to account for the IBI. The windows of the

ODM still have their typical bell-shape.

The performance for channels with ν = 0.002 is plotted

in Fig. 9, where we find that the EDM actually performs

worse than the other methods. Compared with Test Case 1,

the advantage of the EDM due to a better band approximation
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N = 128

17 131

Fig. 7. An illustration of the pilot structure: the black boxes represent data;
the blank boxes zero pilots; and the hatched boxes non-zero pilots.

TABLE I
ODM PARAMETERS

N Q NQ2/64

ODM-I 128 2 8

ODM-II 128 4 32

ODM-III 256 2 16

ODM-IV 256 4 64

is now nullified by the presence of IBI. Indeed, for the same

DFT size, the observation block length of the EDM is chosen

to be much shorter than for the other methods, and thus the

EDM is more susceptible to the impact of IBI.

A different story is depicted in Fig. 10 where the perfor-

mance is shown for channels with ν = 0.004. For such a

high Doppler spread, the band approximation error is more

prominent while the impact of IBI remains unchanged. In this

case, the ODM degrades, and the EDM regains its lead in

some cases.

From Fig. 9 and Fig. 10, it can also be remarked that the

window of [12] renders a performance that is similar to that

of the ODM.

Test case 3. With Partial IBI. In a practical system, it

is reasonable to assume that the IBI from the previous block

can be completely removed by perfectly estimating spre. Then

only the IBI resulting from spost needs to be combatted and the

window design can be adapted accordingly. In this case, we

can see from Fig. 11 that the windows of the EDM are only

bended to zero at the right edge where the IBI is still present,

while the windows of the ODM keep their typical bell-shape.

With less influence from the IBI, the EDM is able to produce

a better performance than the ODM in all situations, as we

can observe from Fig. 12 and Fig. 13.

VI. CONCLUSIONS

In this paper, we have discussed how a single-carrier system

that is plagued by fast fading and IBI can be effectively

equalized in the frequency domain. For the sake of complexity,

the FD channel matrix is approximated to be banded. Two

data models have been discussed that can both reduce the

band approximation error: 1) the original data model (ODM);

2) the extended data model (EDM). We have established a

link between the band approximation error in the ODM and

the modeling error of the (C)CE-BEM, and a link between

the band approximation error in the EDM and the modeling

error of the (O)CE-BEM. The (O)CE-BEM is known to yield

a much tighter fit than the (C)CE-BEM. It has been shown in

the simulations that although the EDM is not really effective

in combating the IBI, its superior band approximation perfor-

mance makes it still an appealing alternative for equalizing a

fast varying channel in the frequency domain.

APPENDIX A

PROOF OF THEOREM 1

It can be shown that for the banded Ĥf,N , its time-domain

counterpart Ĥt,N := FH
NĤf,NFN can be uniquely expressed

TABLE II
EDM PARAMETERS

N K Q KQ2/64

EDM-I 94 128 2 8

EDM-II 94 128 4 32

EDM-III 158 256 2 16

EDM-IV 158 256 4 64

as

Ĥt,N =

Q
∑

q=0

D{BNeq}Cq, (44)

where Cq stands for a circulant matrix with

[cq,0, · · · , cq,N−1]
T as its first yet-to-be-designed column.

Hence, the band approximation error in the frequency domain

can be expressed in the time domain as

‖Hf,N − Ĥf,N‖2 = ‖D{w}Ht,N − Ĥt,N‖2. (45)

If we want to minimize (45) it is clear that since D{w}Ht,N

has zeros outside its first L + 1 lower diagonals in a circular

sense, we should also design Ĥt,N to have zeros outside its

first L + 1 lower diagonals in a circular sense (note that the

main diagonal is assumed to be included here), which can be

realized by taking cq,L+1, · · · , cq,N−1 = 0. So, D{w}Ht,N

and Ĥt,N are different only in these L + 1 diagonals, which

for D{w}Ht,N can be written as D{w}H and for Ĥt,N can

be written as BNC. This concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

By the definition of ǫt,N in (6) and using Assumption 2,

we understand that

Eh,s{‖ǫf,N‖2} = Eh,s{‖D{w}Hi,N (spre − spost)‖2}
= 2tr

(
D{w}Eh{Hi,NΦLHi,N}D{wH}

)
,

(46)

where an L×L diagonal matrix ΦL is introduced to account

for a possible guard interval in spre and spost:

ΦL := D{[11×(L−Lz),01×Lz
]T }. (47)

It can be shown that under Assumption 1, we obtain

Eh{Hi,NΦLHH
i,N} = Rǫ,N , (48)

with Rǫ,N defined as in (16). Substituting the above in (46)

concludes the proof.

APPENDIX C

PROOF OF THEOREM 3

Similar to Appendix A, we can show that for the banded

Ĥf,K , its time-domain counterpart Ĥt,K := FH
KĤf,KFK can

be expressed as

Ĥt,K =

Q
∑

q=0

D{BKeq}Cq, (49)

where Cq stands for a circulant matrix with

[cq,0, · · · , cq,K−1]
T as its first yet-to-be-designed column.

As a result, the band approximation error in the frequency

domain can be transformed in the time domain as

‖Hf,K − Ĥf,K‖2 = ‖Ht,K − Ĥt,K‖2. (50)
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Fig. 8. The windows in the presence of IBI.
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Recall from (26) that Ht,K contains the K × (K − N + L)
matrix U, which is subject to design. Hence, if we want to

minimize (50), we should take U equal to the last K−N +L
columns of Ĥt,K . In this way, Ht,K and Ĥt,K will be different

only in their first N − L columns. Moreover, since Ht,K

has zeros outside its L + 1 most significant diagonals of
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Fig. 10. BER in the presence of IBI, ν = 0.004.

its first N − L columns, we should also design Ĥt,K to

have zeros outside its L + 1 most significant diagonals of

its first N − L columns, which can be realized by taking

cq,L+1, · · · , cq,K−1 = 0. This way, we come to a point

where Ht,K and Ĥt,K are different only in their L + 1 most

significant diagonals of their first N − L columns.
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Fig. 11. The windows in the presence of partial IBI.
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The lth diagonal of the first N − L columns of Ht,K

corresponds to the lth channel tap from time index l to

(N − L + l), which can thus be expressed as

[wlhl,l, · · · , wN−L+lhN−L+l,L]T = D{Υlw}hl. (51)

From (49), it can further be derived that the lth diagonal of

the first N − L columns of Ĥt,K can be expressed as

[
[Ĥt,K ]l,0, · · · , [Ĥt,K ]N−L−1,N−L−l−1

]T
= B̄

(l)
N−Lcl.

(52)

Hence, if we want to minimize (50) over both U and Ĥt,K , we

have to minimize the norm squared of the difference between
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Fig. 13. BER in the presence of partial IBI, ν = 0.004.

(51) and (52) over cl for every l = 0, 1, · · · , L. This is

quivalent to (35), which concludes the proof.

APPENDIX D

PROOF OF THEOREM 4

By the definition of ǭt,N in (27) and using Assumption 2,

we understand that

Eh,s{‖ǫf,K‖2} = Eh,s{‖D{w}H̄i,N

[
spre

spost

]

‖2}
= tr

(
D{w}Eh{H̄i,NΦ̄NH̄H

i,N}D{wH}
)
,

(53)
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with

Φ̄N := D{[11×(L−Lz),01×2Lz
,11×(L−Lz)]

T }, (54)

which is introduced to account for the presence of a guard

interval (ZP or NZP). Under Assumption 1, it can be shown

that

Eh{H̄i,NΦ̄NH̄H
i,N} = R̄ǫ,N , (55)

with R̄ǫ,N defined as in (37). Substituting the above in (53)

concludes the proof.
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