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Abstract

This work introduces a novel reconfiguration strategy for
a Delta-type parallel robot. The robot at hand, whose patent
is pending, is equipped with an intermediate mechanism
that allows for modifying the operational Cartesian
workspace. Furthermore, singularities of the robot may be
ameliorated owing to the inherent kinematic redundancy
introduced by four actuable kinematic joints. The velocity
and acceleration analyses of the parallel manipulator are
carried out by resorting to reciprocal-screw theory. Finally,
the manipulability of the new robot is investigated based
on the computation of the condition number associated
with the active Jacobian matrix, a well-known procedure.
The results obtained show improved performance of the
robot introduced when compared with results generated
for another Delta-type robot.

Keywords Reconfiguration, Kinematics Parallel Robot,
Workspace, Screw Theory, Condition Number

1. Introduction

Nowadays, flexible manufacturing systems are highly
advisable in order to increase, among other issues, the

productivity and competitiveness of small and medium-
sized manufacturing industries. In this context, a reconfig‐
urable mechanism may be implemented owing to the fact
that its topology can be quickly adjusted according to a
specific task.

Industrial parallel robots, such as the well-known Delta
robot, are currently used in electronic, food and pharma‐
ceutical industries to perform pick-and-place tasks and
many other tasks that require translational high-speed
motions. A reconfigurable parallel robot can accomplish
such industrial tasks more efficiently than a Delta robot,
since these mechanisms have high levels of flexibility and
the performance required to carry out complex assembly
tasks.

In robotics, the reconfiguration concept is presented in [1]
as the capacity to change the characteristics of robots when
completing arbitrary operations. The main approaches that
have been proposed for the reconfiguration of parallel
mechanisms, such as the Stewart-Gough platform, are
modular and variable geometric designs [2, 3, 29].

A modular manipulator consists of a set of modules that
can be assembled into robots with different attributes.
Modularity has been used recursively in parallel manipu‐
lators; see for example [4 - 14].
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The reconfiguration of parallel manipulators using variable
geometry consists of changing some dimensions of the
robot with the purpose of generating new postures on the
same parallel manipulator. In this context, the following
should be cited: a double planar parallel reconfigurable
manipulator presented in [15], the reconfigurable platform
based on the Stewart-Gough platform [16], the reconfigur‐
able parallel mechanism with an adjustable base designed
in [17] and a new family of reconfigurable parallel mecha‐
nisms [18]. Furthermore, many authors (including some of
the aforementioned) have used the redundancy sometimes
generated by reconfiguration of the parallel manipulators
for improving characteristics such as stiffness [19, 20, 21],
force [22, 23], accuracy [24], increased workspace and
singularity-free workspace [25 - 27], payload-capacity [28,
29], as well as performance indices like manipulability,
condition number, global condition, dexterity and global
dexterity [30 - 33].

Although reconfigurable parallel manipulators are a well-
documented issue, some aspects thereof deserve in-depth
investigated, primarily problems related to structural
spaces. On the other hand, it is worth noting that the
aforementioned mechanisms have a high level of mechan‐
ical complexity and therefore, the construction of physical
prototypes can be an expensive option. In this regard,
computer simulations generated with virtual prototypes is
a cheaper and more viable alternative.

In this paper, a new reconfiguration of a 3-DOF Delta-type
parallel robot, based on the concept of variable geometry,
is presented. The reconfiguration is applied to a robot
named Parallix LKF-2040, which was designed as a didactic
version of a Delta-type parallel manipulator at the National
Polytechnic Institute (IPN) in CICATA, Queretaro, Mexico
[34]. The reconfiguration strategy proposed here is highly
versatile, extremely simple and capable of returning to the
original configuration and mechanical characteristics of the
Parallix LKF-2040. Furthermore, the redundancy generated
by the new manipulator allows for improving its kinematic
performance, based on the computation of a performance
index according to prescribed trajectories.

The paper is organized as follows: In section 2, the current
mechanism and the proposed new reconfigurable system
is described. The kinematic analysis is presented in section
3. In order to exemplify application of the method, in
section 4, a case study is provided. Finally, conclusions are
given in section 5.

2. Description of the Proposed Parallel Manipulator

Referring to Fig. 1, the Parallix LKF-2040, used as a base for
creating the reconfiguration strategy, is a translational
Delta-type parallel robot developed at IPN-CICATA. This
manipulator is widely used for teaching purposes, owing
to its convenient open architecture [34]. The Parallix
comprises three stationary motors disposed angularly on
its base through brackets. The motor axes are coupled to a

kinematic chain at the bracket level. Although the proposed
mechanism closely resembles the famous Delta robot, it is
in reality a 3-RUU robot, where R and U represent, respec‐
tively, for revolute and universal joints.

Moving 

base

Stationary 

motor

Fixed triangular 

base
Bracket

Figure 1. The Parallix LKF-2040 parallel manipulator

2.1 Reconfiguration proposal

As demonstrated by [35], the geometry of the fixed plat‐
form is the primary variable that significantly influences
the workspace of the Parallix robot. Hence, in order to
create an improved robot, the following requirements were
considered for implementing a reconfiguration strategy of
the Parallix robot: it must be mechanically simple, without
adding weight and/or actuators to the kinematic chains, be
able to change the entire workspace without modifying the
lengths of links, increasing versatility without coupling or
uncoupling links from the mechanism and minimize the
structural space occupied by the robot. In Fig. 2, the
conceptual design of the reconfigurable robot meeting such
conditions is shown.
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Figure 2. Proposed reconfiguration strategy. Patenting in process at the IMPI
- Mexico: MX2013006781 (A).
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The concept of this proposal is a redundant Delta-type
parallel robot consisting of a reconfigurable fixed platform
comprising a fixed element and mobile elements, which
reconfigure the size and shape of said platform. A linear
displacement mechanism moves the base of a non-redun‐
dant translational parallel manipulator vertically.

The robot shown in Fig. 2 comprises a reconfigurable fixed
platform with a fixed element (6) and three mobile elements
in the form of a framing square (7a, 7b, 7c). These framing
squares simultaneously modify the radius and height
between the axes of the motors (8a, 8b, 8c) and the center
of the fixed element (6). In the center of the fixed platform,
there is a screw (1) driven by a fourth actuator (8d). A nut
(4) coupled to the screw slides along three guide bars (3a,
3b, 3c). The nut moves the framing squares according to the
rotation and pitch of the screw (1) through coupling bars
(5a, 5b, 5c). It is important to note that the set of compo‐
nents, i.e., screw (1), nut (4), motor (8d) and coupling bars
(5a, 5b, 5c), establish a system used here only as a example
of a linear displacement mechanism.
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Figure 3. Vertical displacement position of the mobile elements. (a) Highest
vertical displacement position. (b) Lowest vertical displacement position.

Fig. 3 shows the highest and lowest displacement of the
mobile elements, generated by a fourth actuator. It should
be noted that this configuration is highly versatile, since the

mechanism can also be reconfigured with decoupled
motions for framing squares from the rest of the mecha‐
nism, enabling it to return to the original configuration and
mechanical characteristics of the Parallix LKF-2040.
Furthermore, by the redundancy effect customized solu‐
tions of the kinematic performance of the manipulator, can
be obtained.
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Figure 4. Geometrical parameters of the mechanism

Fig. 4 shows the geometrical parameters of the reconfigur‐
able manipulator Parallix.

3. Kinematic Analysis of the Reconfigurable Manipulator

3.1 Position analysis

The forward position analysis consists of finding the
location of the moving platform, given the generalized
coordinates of the manipulator. This analysis is the equiv‐
alent of computing the coordinates of a point on the moving
platform. In what follows, the forward position analysis is
performed, based on the method introduced in [36, 37].

As an intermediate step, it is necessary to first calculate the
generalized coordinate α4. According to Fig. 4, it immedi‐
ately emerges that:

( ) ( )
2 2 2

4 3 1 4 2cos( ) sin( ) =fR Rr d d p Rr da j a+ - + + -

where d1 is an offset between point Di and the base plane
of the nut, d2 is the signed distance between points Di and
point Ai and d3 is the perpendicular distance between the
screw axis and point Di. Meanwhile, p is the thread pitch
of the screw. Then, solving the binomial, we have:

3Albert Lester Balmaceda-Santamaría, Eduardo Castillo-Castaneda and Jaime Gallardo-Alvarado:
A Novel Reconfiguration Strategy of a Delta-type Parallel Manipulator



1 4 2 4 3sin( ) cos( ) =k k ka a+ (1)

where
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Following on, solving Eq. (1) for α4, it follows that:

( )( )
( )

2 2 2 2 2 2
1 3 1 3 1 2 3 2

4 2 2
1 2

2 4 4
sin( ) =

2

k k k k k k k k

k k
a

± - + -

+
(2)

Thus, with Eq. (2), the generalized coordinate α4, generated
by the linear displacement system and used as an example
in this paper, is calculated.

Let X0Y0Z0 be a reference frame whose origin is attached to
the center of the fixed platform of the manipulator (see Fig.
4). The coordinates of the point F i = (F xi,F yi,F zi), located by
the vector F i, as well as the coordinates of point
Ai = (Axi,Ayi,Azi), located by the vector Ai, depends on the
rotation φ of the motor. Therefore, α4i(φ)=α4(φ), since α4i is
the same angle for all framing squares, while the coordi‐
nates of point Bi = (Bxi,Byi,Bzi), located by the vector Bi, are
calculated by projections as follows:

1 = 0 0fF Ré ùë û

( ) ( )2,3 2,3 2,3= sin 0 cosf fF R Rq qé ù
ë û

( ) ( )1 4 1 4 1 1= cos sin 0A Rr Fx Rr Fy Fza aé ù+ + +ë û

( ) ( ) ( )
( ) ( )

4 2,3 2,3 4 2,3
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A

Rr Fz
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a q
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ê ú
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( )1 1 1 1 1= cos 0B La Ax By Azaé ù+ +ë û

( ) ( )
( ) ( )
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2,3

2,3 2,3 2,3

cos sin
=

cos cos
iLa Ax By

B
La Az

a q

a q

é ù+
ê ú
ê ú+ë û

where θ2,3 is the orientation angle of kinematic chains 2 and
3, since kinematic chain 1 is coincident with the X o -axis; Rf

is the distance from the fixed reference system X oY oZo to

each point F i. Evidently, Byi = Lasin(αi) + Ayi is equal for all
kinematic chains of the mechanism. Unless otherwise, in
the remaining contribution, i =1,2,3.

In order to formulate the closure equations required to
solve the displacement analysis of the robot, consider that
the moving platform is an equilateral triangle C1C2C3 of side
r  and center P , located by vector P . Furthermore, consider
that C1 =(X ,Y ,Z ). Then, the coordinates of C2 and C3 can be
formulated via the unknown coordinates X , Y  and Z ,
representing point C1 as follows:

( ) ( )( )
( ) ( )( )

2

3

= sin 3 , , cos 3

= sin 3 , , cos 3

C X r Y Z r

C X r Y Z r

p p

p p

- -

- +
(3)

Following on, the three closure equations can be written as:

( ) ( ) 2=i i i i Lb- -C B C Bg (4)

that generate

2 2 2
1 2 3 4 = 0i i i iX Y Z K X K Y K Z K+ + + + + + (5)

In this way, K ij( j =1,2,3,4) are obtained according to the
parameters and generalized coordinates of the mechanism,
e.g., K11 = −2Bx1, K12 = −2By1,
K13 = −2Bz1,K14 = Bz1

2 + By1
2 + Bx1

2 − L b 2 … , etc. Furthermore,
following some computations on Eqs. (5), the unknowns X
and Y  can be expressed in terms of Z  as follows:

1 2 3 4= , =X W Z W Y W Z W+ + (6)

where the coefficients W1,…,W4 are calculated according
to the coefficients K ij, e.g.,

( ) ( ) ( )
( ) ( ) ( )

33 22 12 23 12 32 13 32 22
1

21 32 12 11 32 22 31 22 12

=
K K K K K K K K K

W
K K K K K K K K K

- + - + -

- - + - +
(7)

Finally, substituting Eqs. (6) in any of Eqs. (5) produces a
second-order equation in the unknown Z  as follows:

2 = 0aZ bZ c+ + (8)

where

2 2
1 3

11 1 1 2 13 3 4 12 3
2 2

11 2 4 2 14 12 4

= 1
= 2 2
=

a W W
b K W W W K W W K W
c K W W W K K W

+ +
+ + + +

+ + + +
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Eq. 8 indicates that the moving platform can reach two
different poses. Finally, point P  is calculated using Eq. (9)
as follows:

( )( )= cos 3 , ,P X r Y Zp- (9)

Note that owing to the decoupled motion of the fourth
generalized coordinate, the reconfiguration strategy does
not complicate the forward position analysis as reported
for the Delta-type robot when using this method.

The inverse position analysis is the computation of the
generalized coordinates given the pose of the moving
platform, i.e., when P =(Px, Py, Pz) is known. Since the point
Ci =(Px + rcos(θi), Py, Pz + rsin(θi)) is also known, the
equation of a sphere centered at point Bi can be obtained
as:

( ) ( ) ( )2 2 2 2 0i i i i i iCx Bx Cy By Cz Bz Lb- + - + - - = (10)

Solving Eq. (10) produces:
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Thus, a few algebraic steps later and by substituting for Qi

and Si we have:
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With the aim to solve αi from Eq. (11), the half-angle
trigonometric identity is applied and simplification yields:

( ) ( ) ( ) ( )2

2 2tan 4 tan
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i i
i i i i

i

Q S Ay Py S

Q

a aæ ö- + + - -ç ÷
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+

Finally, solving tan(
αi
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4 8 4
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2

i i
i

i ii

i i

Py PyAy Ay
Py Ay

Q S
Q S

a

- +
- + ±
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(12)

In Eq. (12), it is important to note that Ayi is the coordinate
reflecting redundancy as generated by the reconfiguration.
However, Ayi is only known for the inverse position
analysis, since the redundancy problem is addressed in the
following sections, which is solved based on optimization
of a performance index.

3.2 Manipulator workspace

In order to show the shape of the workspace and obtain its
approximate volume generated by the reconfiguration, the
inverse position analysis is applied. Using Eq. (12) and
defining discrete configurations for 90 ≤α4 ≤ −90  for each
of the framing squares (it is evident that α4 is the same angle
for each one of them), the shape of the workspace generated
by the reconfiguration is obtained by sweeping the three-
dimensional space SO(3) and discarding any non-real
solutions. It should be noted that, when α4i =0° , the
workspace of the original configuration of the Parallix
LKF-2040 is produced.

The dimensions (SI) considered for computing the robot
workspace are: La =0.2, Lb =0.4, r =0.8660, Rf =0.05 and
Rr =0.1118, as shown in Fig. 5.(a). In Fig. 5.(b), this is
0≤ Rr ≤0.1618, because of the reconfiguration effects.

The entire reconfigurable manipulator workspace is shown
in Fig. 5.(b), where the union of workspaces for different
configurations of the mechanism corresponds to a volume
of 0.2359m 3. On the other hand, in Fig. 5.(a), the original
workspace has a volume of 0.0698m 3. Both figures and their
volumes were calculated using the computational software
Geomagic.

Fig. 5.(b) shows that the geometrical shape of entire
workspace is similar to a sphere, which is desirable in a
parallel manipulator. Furthermore, the current workspace
is a paraboloid with three concavities and with a smaller
volume than the workspace generated by the reconfigura‐
ble manipulator. It is worth noting that the significant
increase of the manipulator workspace is one of additional
advantages obtained by the reconfiguration strategy
effects.
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3.3 Velocity analysis

Velocity analysis involves determining the velocity state of
the moving platform with respect to the fixed platform [36,
37] when the joint rates are known as follows:

4 4= , =i i
d dq q
dt dt
a a& &

The joint rate q̇4 can be geometrically computed according
to the linear displacement device installed in the manipu‐
lator (Fig. 4). Hence, in this work q̇4 is the derivative gained
via Eq. (2) and will be used as an independent variable in
the velocity analysis.

Let V = 0,v T  be the velocity state of the moving platform
as observed from the fixed platform, where v is the velocity
vector of any point on the moving platform. The velocity
state V  can be expressed in screw form through the limbs
of the robot as follows:

0 1 1 2 2 3 3 4 4 5
4 2 3 3 4 4 5

5 6
5 6

$ $ $ $ $
$

i i i
i i i i i i

i
i

q q w w w
w

+ + + + +

=V
& &

(13)

where i denotes the i-th kinematic chain. In order to obtain
an input-output velocity equation for the reconfigurable
manipulator, consider that
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Figure 5. Workspace of reconfigurable parallel Parallix manipulator

L i = l xi l yi l zi L xi L yi L zi
T  is a line in the Plücker

coordinates that passes through the points Bi and Ci (Fig.
4) and is reciprocal to all the screws in the same limb, except
for the screw associated with the actuated revolute joint.
Therefore, the systematic application of the Klein form,
which is denoted as { * ; * }, of the line L i to both sides of Eq.
(13) can be expressed as follows:

{ } { }0 1 1 2 2 3 5 6
4 2 3 5 6$ $ $ $ ; ;i i

i i i i i i iq q L Lw w+ + + + = V& & K

And reducing terms we have

{ } { } { } { }2 3 3 4 4 5 5 6$ ; = $ ; = $ ; $ ; 0i i i i i i i iL L L L= =

Accordingly, q̇4{0$i
1; L i} + q̇ i{1$i

2; L i}= {V ; L i} yields the
input-output velocity equation as:

4= ¢ +A B q Bqv & & (14)

In this way,

A= l xi l yi l zi
T  is the active Jacobian matrix of the

manipulator, while q̇4 = q̇4 q̇4 q̇4
T  and q̇= q̇1 q̇2 q̇3

T  are
the first-order generalized coordinates of the mechanism.

B′ =diag {0$1
1; L 1} {0$2

1; L 2} {0$3
1; L 3}  and

B=diag {1$1
2; L 1} {1$2

2; L 2} {1$3
2; L 3}  are the passive

Jacobian matrices.

3.4 Acceleration analysis

Reduced acceleration state analysis using screw theory for
robot manipulators was introduced by [38].

Let A= 0,a T  be the acceleration state of the moving
platform as observed from the fixed platform, where a is
the acceleration vector of any point on the moving platform
and can be expressed in screw form via the limbs of the
robot as follows:

0 1 1 2 2 3 3 4
4 2 3 3 4

4 5 5 6
4 5 5 6

$ $ $ $
$ $ =

i i
i i i i i
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& & L
(15)

Where L i is the screw of acceleration computed as:
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In this way, the brackets * *  denote the Lie product of
the Lie algebra se(3) of the Euclidean group SE (3). Hence,
applying the Klein form analogously to velocity analysis
we have:

{ } { } { } { }0 1 1 2
4 $ ; $ ; ; = ;i i i i i i i iq L q L L L+ + A&& && L

Therefore, the input-output equation of acceleration for the
manipulator is:

4= ¢ + +A B q Bq Ca && && (17)

where q̈4 = q̈4 q̈4 q̈4
T  and q̈= q̈1 q̈2 q̈3

T  are the second-
order generalized coordinates of the mechanism, while
C= {L 1; L 1} {L 2; L 2} {L 3; L 3} T  is the complementary
matrix of acceleration.

3.5 Evident singular configurations

The singular configurations or singularities, according to
[39, 40], can be deduced from Eq. (14). Such configurations
are distinct for the fixed platform and the rest of the
mechanism, since they are uncoupled mechanisms.
However, when there exist combined singularities between
these two mechanisms, the reconfigurable manipulator
itself will be in a fully singular pose.

In this context, singularities of the Delta-type robot occurs
when:

1. If det(A)=0, then the links Lb are collinear or parallels.
In these configurations, the moving platform gains
degrees of freedom.

2. If det(B)=0, then links La are completely folded or
unfolded. In such configurations, the mobile platform
loses degrees of freedom.

3. If det(A)=0 and det(B)=0, then the fixed platform and
the moving platform are coplanar, e.g., when the
moving platform has an identical geometry to that of
the fixed platform and the limbs are vertical.

It should be noted that the singularity locus remains the
same as for a Delta-type robot. This condition shows that
the reconfiguration strategy does not drastically affect the
structure of this parallel robot. It is also important to note
that the Delta-type mechanism is capable of avoiding
singularities by using the redundancy of the reconfigurable
robot, which is an additional advantage of the proposed
strategy in this paper.

On the other hand, the fixed platform, which is reconfig‐
urable, has its own singular configurations that may occur
when det(B′)=0, e.g., when the mobile elements are folded
or unfolded.

4. Numerical Example

In this section, a numerical example is provided to show
that by redundancy customized solutions of the kinematic

performance can be obtained. To do so, computation of the
condition number is used as a performance index and
according to prescribed trajectories.

Three Cartesian trajectories of the center P  of the moving
platform are generated by solving the forward position
analysis by considering α1,3(t)=0.25sin(t) and
α2(t)=0.25cos(t), where the interval for time t  is selected as
0≤ t ≤2π, with values defined as α4 =45 ,0 ,−45  (see Fig. 6).
The link lengths are the same as in subsection 3.2 and the
direction of the rotation axes of the active joints are defined
by û1 = − k̂ , û2 = −0.866 î + 0.5k̂  and û3 =0.866 î + 0.5k̂ .

−0.02
−0.01

0
0.01

0.02

−0.05
0

0.05

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

 

X-axis (m)Z-axis (m)
 

Y
-a

x
is

(m
)

α
4
=45°

α
4
=0°

α
4
= −45°

Figure 6. Trajectories of the center P at different angles of the reconfiguration
coordinate α4

In Fig. 6, the blue and red trajectories are very similar in
size, because in the blue trajectory, the mobile elements
reconfigure the fixed platform to a length close to that of
the original configuration of the mechanism (red trajecto‐
ry). On the other hand, the third trajectory (black color) has
a large radius, because the length and height of the fixed
platform is lower than for the other configurations, thereby
producing greater angular movement in the actuated links.

The resulting temporal behaviour of the velocity and
acceleration of the moving platform, associated with each
trajectory shown in Fig. 6, is shown in Fig. 7 and Fig. 8,
respectively.

It is evident that the velocity and acceleration components
of the black circle (see Fig. 6) have greater amplitude than
in the other two circles, since the length of the fixed
platform is shorter than in the other two configurations. In
other words, when α4 = −45° , the reconfigurable robot
carries out the black circle faster, meaning greater angular
movement of actuated links.

4.1 Reconfiguration effects on the manipulator’s performance

The Reference [41] defines the condition number as
describing the accuracy/dexterity and the closeness to a

7Albert Lester Balmaceda-Santamaría, Eduardo Castillo-Castaneda and Jaime Gallardo-Alvarado:
A Novel Reconfiguration Strategy of a Delta-type Parallel Manipulator



 

0 1 2 3 4 5 6

−0.03

−0.02

−0.01

0

0.01

0.02

T ime (s)

Ṗ
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singular configuration of a parallel manipulator. In the case
of a Delta-type robot, the condition number has often been
used as a performance index (see the aforementioned
references) for evaluating its kinematic performance. In this
subsection, the result of this performance index is im‐
proved by using the redundancy of the reconfiguration.
The condition number is expressed as:

1=k -J J (18)

As a first step, it is necessary to calculate the Jacobian matrix
J of the manipulator and then compute the condition
number. The Jacobian matrix J is obtained from Eq. (14) as:

( )1= =-A B q Jqv & & (19)

We here use the matrix J of the well-known architecture of
the Delta-type robot to demonstrate that it is possible to
enhance its kinematic performance through redundancy of
the proposed reconfiguration. Therefore, the first term of
Eq. (14) depends on q̇4, as well as k (α4), given that the best
solution of k  is computationally obtained by sweeping all
possible combinations of α4 in a range of 90° ≤α4 ≤ −90°  and
seeking locally for each one of the trajectory points.

Noted that the inverse of the condition number k −1 is used,
since it has a range between 0≤k −1 ≤1, where 0 indicates that
the Jacobian matrix is not invertible and hence, the manip‐
ulator cannot generate velocities in some directions; this
condition has been referred to as being a singular configu‐
ration [39]. When k −1 =1, the manipulator is capable of
generating velocities in any direction, in other words, to be
in an isotropic pose [41].

The best values of k −1 are obtained for the 181 points of each
trajectory by using the redundancy of the reconfiguration
and they are compared with k −1 values, obtained with the
original architecture of a Delta-type robot, namely with the
Parallix robot (see Fig. 9)

In Fig. 9.(a) it can be seen that the performance of the
proposed mechanism is better than for the Delta-type
robot, despite the fact that such a mechanism is close to a
singularity at specific trajectory points (e.g., points 43 and
101). In fact, the values of k −1 remain constant in the last 41
points of such a trajectory. On the other hand, the Parallix
robot is not able to carry out the trajectory at intervals
between 0 - 86 and 156 - 181; therefore, at these intervals,
such a robot cannot reach the corresponding trajectory
points.

Figure 9.(b) shows that values obtained for the Delta-type
robot are for the most part less than 0.01; however, by using
redundancy, the performance of such a robot can be
significantly increased, except in points 102 and 116, where
the reconfigurable mechanism is close to a singular pose.

Nevertheless, it is worth noting that the reconfigurable
robot is capable of avoiding many singularities, much more
so than the original robot.
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Figure 9. Value of k-1 for each trajectory of Fig. 6. (a) First circle (blue). (b)
Second circle (red). (c) Third circle (black).
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On the other hand, Fig. 9.(c) shows similar behaviour of the
condition number for both robots, given that a part of this
trajectory is performed within the boundaries of the
manipulator workspace and therefore, the manipulators
are close to a singularity in points 27 and 111. However, it
is evident that an improvement in performance of the
Delta-type robot has been obtained, primarily at the
beginning and end of the trajectory.

It is important to note that by using redundancy, it is
possible to achieve better performance in all the trajectories,
compared to the performance achieved only with the Delta-
type configuration, i.e., when α4 =0° . Hence, as the condi‐
tion number is improved in each trajectory by the
reconfiguration, all other performance indices that depend‐
ent on matrix J of the manipulator, e.g., manipulability
index, minimum singular value, global conditioning index,
global manipulability index, etc., will also be improved.

5. Conclusions

In this paper, a reconfiguration strategy for a Delta-type
parallel robot is proposed. The proposal is currently in the
patenting process at IMPI - Mexico. The proposed recon‐
figurable manipulator is highly versatile, since it is able
return to the original configuration and initial mechanical
characteristics.

Customized solutions of the manipulator kinematic
performance can be obtained by using redundancy gener‐
ated by the reconfiguration. Additional advantages include
an increased workspace and avoiding singularities.

The kinematic analysis was calculated by resorting to
reciprocal-screw theory and evident singular configura‐
tions were analysed. It is worth noting that the manipulator
did not change its singularity locus; this represents a
significant advantage, since the original mechanism is not
drastically affected by the reconfiguration strategy, thereby
preserving mechanical simplicity.

Finally, a numerical example of the effects of the reconfi‐
guration on the manipulator performance is presented. A
calculation for the best condition number according to
prescribed trajectories at different heights of the manipu‐
lator workspace was obtained. The results show that by
using redundancy, the condition number is improved in
each trajectory; accordingly, all performance indices that
dependent on the Jacobian matrix are also improved.
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