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Abstract We present a novel method to iteratively calcu-

late discrete Fourier transforms for discrete time signals with

sample time intervals that may be widely nonuniform. The

proposed recursive Fourier transform (RFT) does not require

interpolation of the samples to uniform time intervals, and

each iterative transform update of N frequencies has com-

putational order N. Because of the inherent non-uniformity in

the time between successive heart beats, an application par-

ticularly well suited for this transform is power spectral

density (PSD) estimation for heart rate variability. We

compare RFT based spectrum estimation with Lomb–Scargle

Transform (LST) based estimation. PSD estimation based on

the LST also does not require uniform time samples, but the

LST has a computational order greater than Nlog(N). We

conducted an assessment study involving the analysis of

quasi-stationary signals with various levels of randomly

missing heart beats. Our results indicate that the RFT leads to

comparable estimation performance to the LST with signif-

icantly less computational overhead and complexity for

applications requiring iterative spectrum estimations.

Keywords Discrete Fourier transform � Spectrum �
Power spectral density � Nonuniform sampling �
Heart rate variability

1 Introduction

We describe a recursive least squares Fourier transform

(RFT) for nonuniform sampled signals. The RFT does

not require interpolation of samples to uniform time

intervals, and is robust to missed samples due to signal

loss or dropout. Additionally, it can be used to perform

power spectral density (PSD) estimation directly on

nonuniform sampled signals. PSD estimation methods

based on the Lomb–Scargle transform (LST) achieve

these same characteristics using least squares estimation

[10, 16]. Although fast LST methods reduce computation

by using the fast Fourier transform (FFT) for internal

computations [13], the LST remains primarily an off-line

analysis method. Real-time usage of the LST on over-

lapped, sliding, weighted time windows (e.g. Hamming,

Bartlett, etc.) is possible [21], but the best computational

efficiency for each iteration, including iterations using a

single new sample, remains of order Nlog(N), where N

is the number of frequencies in the estimated discrete

PSD.

Because of the inherent non-uniformity in the time

between successive heart beats, an application particularly

well suited for these methods is the estimation of the heart

rate variability (HRV) spectrum or time–frequency plane

that are common in HRV based diagnostic methods [8, 11,

14, 17]. The HRV spectrum is the PSD of the instantaneous

heart rate signal, h(n). h(n) is the reciprocal of the variation

in beat to beat time intervals, r(n), or ‘‘RR intervals’’

between successive heart beats. ‘‘R’’ refers to the peak of

the R wave in the electrocardiogram (ECG) ‘‘QRS com-

plex.’’ These RR intervals are themselves nonuniform

spaced in time, and beats are often missing due to envi-

ronmental noise or sometimes due to data networks losing

packets carrying signal data.
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FFT based spectrum estimation methods that first

interpolate heart beat time interval data to uniformly

spaced intervals have significant HRV spectrum estimation

error that is avoided by the LST [9]. In addition to the LST,

adaptive filter banks of finite impulse response (FIR)

bandpass filters can be used to provide real-time estimates

of the total energy in frequency bands of the HRV spec-

trum [19]. The filter bank linearly interpolates the

coefficients of the FIR filters to adaptively adjust for the

nonuniform sampling period. The method is more com-

putationally efficient than the LST, but does not compute

the detailed power spectrum and requires custom digital

filter design to change the desired frequency bands.

The RFT is an on-line transform based on recursive least

squares (RLS) that iteratively updates a previous estimate

using each new data sample. Each update has computa-

tional order N, where N is the number of frequency

coefficients, and can be used to perform PSD estimation

directly on nonuniform sampled signals. Additionally, the

RFT generalizes to estimate other types of transforms

corresponding to other types of discrete orthogonal basis

functions.

RLS has a long venerable history, particularly in signal

processing fields using linear model fitting, such as adap-

tive linear filtering, linear predictive coding, or parametric

spectrum estimation. General computationally efficient

variations on RLS employ matrix factorizations or exploit

matrix structure [3, 15]. QR matrix factorization, for

example, reduces the computational order of the RLS

recursion from N3 to N2. The Levinson–Durbin variation

exploits the Toeplitz structure of the normal equations to

achieve a reduction in computational order from N3 to N2.

Closely related Schur recursions have the same affect, but

are more amenable to parallel implementation. Fast adap-

tive transversal filtering methods reduce computational

order from N3 to N [2, 7, 15], and use of the FFT can

reduce RLS computational order from N3 to N log(N) [12].

In this paper, we present the mathematical derivation for

the RFT, a specific type of efficient RLS iteration using

discrete complex Fourier exponentials as basis functions.

We show illustrative spectrum estimation application

examples and the results of a HRV spectrum estimation

performance study that compares performance using the

RFT versus the LST.

2 Transform methods

2.1 Lomb–Scargle

For N discrete time samples r(n) = r(tn) with nonuniform

sample times tn, the Lomb–Scargle transform, LN(x), is

defined as follows: [10, 16],

LNðxÞ ¼
1

2r2

P
iðrðiÞ � �rÞ cos xðti � sÞ

� �2
P

i cos2 xðti � sÞ

þ 1

2r2

P
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� �2
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ð1Þ
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LN(x) represents the PSD. The variable tn is typically time,

but may also represent a discrete value of any other con-

tinuous variable such as space. A fast algorithm with

complexity on the same order as an FFT exists for this

transform [13].

2.2 Fast recursive least squares

The vector/matrix equations,
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represent a general inverse transform from N discrete

transform coefficients wk(n) corresponding to discrete time

samples, r(tn). wk(n) are coefficients that correspond to

frequencies fk, and

bTðnÞ ¼ b0ðnÞ b1ðnÞ . . . bN�1ðnÞ½ � ð5Þ

bkðnÞ ¼ ej2pfk tn and j ¼
ffiffiffiffiffiffiffi
�1
p

For the analysis below, assume equally spaced discrete

frequencies,

fk ¼
kfs

N
ð6Þ

for k = 0, 1,..., N-1, and unequally spaced, but quantized

time samples, tn = n/fs, where n 2 0; 1; . . .;1f g and 1/fs is
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the time measurement quantization. With frequency as the

independent variable and time as constant, the rows of B(n)

are the same basis functions as in the inverse discrete

Fourier transform (DFT), and hence are orthogonal despite

the unequally spaced time samples, as long as no two time

samples are equal modulo N/fs (in which case the rows

would be equal), i.e.

bTðnÞ � b�ðmÞ ¼ 0 for tmfs 6¼ tnfs modðNÞ
N for tmfs ¼ tnfs modðNÞ

�

ð7Þ

where b* (m) is the complex conjugate of b(m), but does

not indicate transpose.

The weighted least mean-square error solution to Eq. 4

is given by

wðnÞ ¼ N B0ðnÞKðnÞBðnÞ½ ��1
B0ðnÞKðnÞrðnÞ

¼ NP�1ðnÞB0ðnÞKðnÞrðnÞ
ð8Þ

where

P�1ðnÞ ¼ B0ðnÞKðnÞBðnÞ½ ��1 ð9Þ

and B0(n) is the complex conjugate of the transpose of

B(n), i.e. B0(n) = BT(n)*, and KðnÞ is a symmetric, positive

definite weighting matrix [18]. KðnÞ is often the inverse of

the measurement error covariance matrix. Measurements

with less noise provide a greater contribution to the esti-

mate than those with more noise, minimizing the expected

mean-square error. In the iterative computation of the

transform frequencies, the weighting matrix discounts

older measurements.

For uniformly spaced time samples ti = i/fs, i = 0, 1, ...,

N - 1 with KðnÞ ¼ I and n = N, Eq. 8 becomes the well-

known forward DFT,

wðnÞ ¼ B0ðnÞrðnÞ ð10Þ

because the columns of B(n) are now also orthogonal in

addition to the rows, and Eq. 4 becomes the inverse dis-

crete Fourier transform (IDFT).

Adding the next time sample, r(n ? 1) = r(tn?1), Eq. 8

becomes

wðnþ 1Þ

¼ N B0ðnÞb�ðnþ 1Þ½ �Kðnþ 1Þ
BðnÞ

BTðnþ 1Þ

� �� ��1

� B0ðnÞb�ðnþ 1Þ½ �Kðnþ 1Þ
rðnÞ

rðnþ 1Þ

� �

ð11Þ

where, for example, a weighting matrix such as

Kðnþ 1Þ ¼ kKðnÞ 0

0 1

� �

ð12Þ

provides filtering to fade older samples relative to newer

ones, where 0 \ k\ 1.

Algebraic manipulations of Eq. 11 and substitution from

Eq. 8 yield the following recursive least squares update of

the frequencies,

w0¼ðany reasonable initial value, e.g. 0Þ
P�1

0 ¼ Iðinitial value = identity matrixÞ

Kðnþ1Þ¼ I

k
� P�1ðnÞb�ðnþ1Þbðnþ1ÞT

k2þkbTðnþ1ÞP�1ðnÞb�ðnþ1Þ
P�1ðnþ1Þ¼Kðnþ1ÞP�1ðnÞ
wðnþ1Þ¼ kKðnþ1ÞwðnÞþNP�1ðnþ1Þb�ðnþ1Þrðnþ1Þ
wðnþ1Þ¼wðnÞþ Nrðnþ1ÞP�1ðnþ1Þ

	

� bðnþ1ÞT wðnÞP�1ðnÞ
kþbTðnþ1ÞP�1ðnÞb�ðnþ1Þ

!

b�ðnþ1Þ

ð13Þ

Matrix by matrix multiplications imply that this iteration

has complexity of order N3. However, modifications

described next eliminate most of these multiplications.

Using mathematical induction, one can show that b*(i)

is always an eigenvector of P�1ðnÞ: The induction step

yields the following iterative update for these eigenvalues,

�kðnþ 1Þ ¼
�kðnÞ

k when bTðnþ 1Þb�ðiÞ ¼ 0
�kðnÞ

kþN�kðnÞ when bTðnþ 1Þb�ðiÞ ¼ N

(

ð14Þ

where k ¼ tifsmodðNÞ:
Using this eigenvalue iteration, we eliminate explicit

matrix arithmetic with P�1ðnÞ and the iterative update of

P-1(n) in Eq. 13. The recursive least squares method

becomes

wð0Þ ¼ (any reasonable initial value, e.g. 0)

�ið0Þ ¼ 1 for i ¼ 0; 1; . . .;N � 1

�iðnþ 1Þ ¼ �iðnÞ
k

for all i 6¼ tnþ1fsmodðNÞ

�kðnþ 1Þ ¼ �kðnÞ
kþ N�kðnÞ

for k ¼ tnþ1fsmodðNÞ

wðnþ 1Þ ¼ wðnÞ þ �kðnþ 1Þ
N rðnþ 1Þ � bTðnþ 1ÞwðnÞ=N
	 


b�ðnþ 1Þ

ð15Þ

Iterative updating of P�1ðnÞ becomes iterative updating

of its eigenvalues, which is very efficient because it

involves updating scalars only. This iteration includes a

single inner product of vectors of length N and scale/add of

two vectors of length N, so the iterative update now has

complexity of order N.

Because bTðnþ 1ÞwðnÞ=N is an inverse DFT calculated

at one time point, the term rðnþ 1Þ � bTðnþ 1ÞwðnÞ=N in

Eq. 15 is a prediction error that measures how well an

inverse DFT evaluated at time k ¼ tnþ1fsmodðNÞ predicts

the latest input datum r(n ? 1) using the present estimate
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for the coefficients wðnÞ . The update to wðnÞ is propor-

tional to this error. The product of ek(n) and the prediction

error is a scalar weighting factor for b*(n ? 1) that addi-

tively updates wðnÞ: If the inverse DFT of wðnÞ predicts the

new data sample well, or ek(n) is small, then w(n) changes

little.

The forgetting factor k determines whether or not the

eigenvalues (ei(n) and ek(n)) in Eq. 15 grow without bound

or converge to 0. If k = 1, i.e. no forgetting of old data,

each ei(n) stays constant, while ek(n ? 1) \ ek(n) \ 1/N for

all values of ek(n). If all values for k are equally likely, then

all eigenvalues will eventually converge to 0. Because the

estimate of wðnÞ weights all data samples equally and each

new data sample becomes a smaller fraction of all data

samples, it makes sense that the prediction error weight

ek(n ? 1) continually shrinks.

However, we would like the estimator to discount old

data in order to adapt to quasi-stationary conditions when

used for PSD estimation, so in general, 0 \ k\ 1. In this

case, each ei(n) in Eq. 15 grows larger with each iteration,

while ek(n) shrinks. If the forgetting factor is very small,

ek(n) will in general be large and �kðnþ 1Þ � 1=N: This

implies that the exact value of the forgetting factor is not

important, and that we could assume ek(n ? 1) = 1/N and

remarkably remove the eigenvalue updates completely.

The fast update method becomes

wð0Þ ¼ (any reasonable initial value, e.g. 0)

wðnþ 1Þ ¼ wðnÞ þ rðnþ 1Þ � bTðnþ 1ÞwðnÞ=N
	 


� b�ðnþ 1Þ ð16Þ

Figure 1 shows a block diagram for this method, where

equivalently the iteration is shown from n - 1 to n.

Because bT(n) is always a selection from the same finite set

of complex sinusoidal values, computational overhead can

be reduced further by storing pre-computed values in

memory. Because these sinusoids are the same as used in

fast and discrete Fourier transforms, the same well-known

methods that exploit sinusoidal function symmetries for

storage efficiency will also work here (e.g. all values can be

obtained trivially from a quarter cycle of values with a

frequency resolution of 2p/N). Each iterative update

retrieves the values it needs from memory.

In the case of uniform sampling, the Fourier coefficients

computed by this method converge to the DFT after N

iteration steps. Assume uniform sampling for N contiguous

samples spaced 1/fs seconds apart, in which case k ¼
tnfsmodðNÞ ¼ 0; 1; 2; 3; . . .;N � 1 . Let wA represent the

DFT of these N samples and eðnÞ ¼ wðnÞ � wA represent

the error between the present estimate of the frequency

coefficients and the DFT. Subtracting wA from both sides

of Eq. 16 and using the fact that rðnþ 1Þ ¼ bTðnþ 1Þ
wA=N results in the following coefficient error expression,

eðnþ 1Þ ¼ eðnÞ � bTðnþ 1ÞeðnÞ=N
	 


b�ðnþ 1Þ

eðnþ 1Þ ¼ I� b�ðnþ 1ÞbTðnþ 1Þ
N

� �

eðnÞ
ð17Þ

or

eðnþ 1Þ ¼
Yn

i¼0

I� b�ðiþ 1ÞbTðiþ 1Þ
N

� �

eð0Þ ð18Þ

Then

eðNÞ¼
YN�1

i¼0

I�b�ðiþ1ÞbTðiþ1Þ
N

� �

eð0Þ

¼ I�b�ð1ÞbTð1Þ
N

� �

I�b�ð2ÞbTð2Þ
N

� �

I�b�ðNÞbTðNÞ
N

� �

eð0Þ

¼ I�b�ð1ÞbTð1Þ
N

�b�ð2ÞbTð2Þ
N

�b�ðNÞbTðNÞ
N

� �

eð0Þ

ð19Þ

where the last equality follows from the fact that b(1),

b(2),..., b(N) are orthogonal in the case of uniform

sampling. Further simplification leads to

eðNÞ ¼ I� B0ðNÞBðNÞ
N

� �

eð0Þ

¼ I� Ið Þeð0Þ ¼ 0

ð20Þ

where B0(N) is the DFT matrix of Eq. 10 that is well known

to have orthogonal rows and columns. Therefore the error

Fig. 1 Signal flow for the fast recursive least squares method of

Eq. 16 shows an update of the present spectrum coefficients estimate

wðn� 1Þ by using a ‘‘prediction error’’, i.e. the difference between

input data r(tn) and estimate of it using an inverse DFT of wðn� 1Þ:
r(tn) is sampled nonuniform in time, but is measured with a sample

time quantization of 1/fs. Think of fs as the frequency of a digital

counter whose count measures the time of each data sample. N is the

number of equally spaced frequencies within the frequency band of 0

to 2 p/fs
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is 0 after N iterations, no matter what the starting values are

for the coefficients.

A priori information about wðnÞ may further reduce the

amount of computation implied by Eq. 16. If we know that

certain frequency bands in r(n) are 0, for example, we can

remove those frequencies from b(n) and the corresponding

coefficients from wðnÞ . N is the number of remaining non-

zero frequencies or the remaining length of wðnÞ.
Section 3.1 shows an example resulting in significant

computational savings.

3 Performance assessment

We assessed the performance of RFT based spectrum esti-

mation by comparison with LST spectrum estimation.

Because the true nature of field collected physiological signals

is unknown (e.g. which part is true signal versus noise, what is

the true interpretation, etc.), we primarily used simulated

signals whose characteristics are known. However, we also

illustrated usage of the method on real, non-uniformly heart

rate signals. First, we present two illustrative spectrum esti-

mation examples using simulated signals with known spectra.

Next, we do a detailed comparison for estimation of the HRV

spectrum using Monte Carlo methods to simulate quasi-sta-

tionary signals with various levels of randomly missing beats.

Finally, we illustrate performance on real signals.

3.1 Spectrum estimation examples

The first example provides an illustration of spectrum

estimation performance in a situation where the time

interval between samples varies randomly as multiple of

the basic time quantization, 1/fs. We used the following

sinusoidal signal,

rðtÞ ¼
XðM�1Þ=2

i¼�ðM�1Þ=2

aie
j2pfit þ vðtÞ ð21Þ

with M ? 1 frequencies, fi, and corresponding amplitudes,

ai, which may be complex numbers. vðtÞ�Nð0; r2Þ is a

normally distributed, zero mean additive random noise.

In our particular simulation, we chose a1 = a-1 = a2 =

a-2 = a3 = a-3 = a4 = a-4 = 1, and f1 = 10, f-1 = -10 f2
= 20, f-2 = -20, f3 = 100, f-3 = 100, f4 = 200, f-4

= 200 Hz, and SD of v(t) is r = 0.01. All other parameters

were set equal to zero. The sampling frequency fs = 512,

and we sample the signal at discrete times

tn ¼
3nþ zþ 0:5b c

fs

ð22Þ

where z is a random number uniformly distributed between

-1.5 and 1.5. The offset of 0.5 causes the ‘‘floor function’’,

bzc ¼ maxfn 2 Z j n� zg ð23Þ

to round (vs. truncate). The sample time interval varied

randomly from 1 to 5 times the basic time quantization,

1/fs = 1/512 s. This signal has two closely spaced low

frequency peaks along with two additional more widely

spaced higher frequency peaks. The 200 Hz peak is close

to the 256 Hz Nyquist frequency implied by a sampling

time quantization of 1/512 s.

The second example illustrates how to exploit a priori

knowledge of wðnÞ in order to avoid significant amounts of

computation. For example, if it is known that a certain

portion of the coefficients wðnÞ are zero, they are removed

from the vector wðnÞ in Eq. 16 (and hence are not stored or

updated), and the corresponding components are removed

from the complex exponential vectors.

A simple model for the ‘‘instantaneous heart rate’’ is

hðtÞ ¼ hm þ al cosð2pfltÞ þ ah cosð2pfhtÞ þ vðtÞ ð24Þ

which is the heart rate equal to the reciprocal of the time

interval between successive heart beats. This time interval

varies from beat to beat. Excluding the DC mean, two

frequency peaks roughly model the spectral characteristics

of the heart rate, as discussed in more detail in Sect. 3.2.

We chose a sampling rate of fs = 500, and hm = 60 to be

the mean number of beats per minute (bpm). Let al =

2 bpm, ah = 2.5 bpm, fl = 0.095 Hz, fh = 0.275 Hz, and

the SD of v(t) be r = 0.2. The time interval between heart

beats is r(t) = 1/h(t), and the sequence of time points for

each heart beat is given by,

t0 ¼ 0

tnþ1 ¼ tn þ brðtnÞfs þ 0:5c=fs for n ¼ 0; 1; 2; . . .;
ð25Þ

In this scenario, the time quantization 1/fs is small and

there are many hundreds of quantization intervals between

samples. Each beat arrives about once every second, but

the signal time quantization is 1/500 s controlled typically

by the original electrocardiogram sampling rate of

500 samples/s.

A time resolution or quantization of 1/fs = 1/500

implies a very large number of coefficients, N, to resolve

the low frequencies in this example. To achieve fre-

quency resolution fs/N = 0.01 Hz, for example, Eq. 16

would update N = 50,000 frequency coefficients, where

most of these coefficients are known a priori to be 0.

Instead of updating coefficients over the entire band-

width, we exploit this a priori information by including

in wðnÞ only those frequency coefficients for which there

may be non-zero values. In this particular example, we

updated only N = 512 frequencies that are equally spaced

in the bands 0 to fb = 1 Hz and 255–256 Hz (or equiv-

alently via aliasing to -fb = -1 to 0 Hz). We computed

only 1/256 of the full Nyquist bandwidth implied by

Med Biol Eng Comput (2009) 47:697–707 701
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fs = 512, achieving an equivalent reduction in the amount

of computation.

3.2 Heart rate variability spectrum estimation

This experiment illustrates how well the RFT performs in a

well-known application where signal sample time intervals

vary widely and missing signal samples are common. The

autonomic nervous and endocrine systems regulate the

cardiac cycle causing beat to beat variation in the heart

rate. Therefore, it is natural to investigate HRV for

assessing organ system and biological feedback interac-

tions. In addition, there are some clinical studies that

indicate HRV measurements are useful guidance for

trauma triage [5, 6] and may be predictive of life threat-

ening arrhythmias [20].

HRV metrics measure time and frequency domain

characteristics of the variation between successive heart

beats. Table 1 lists the most common frequency domain

HRV measures [1]. The low frequency (LF), high fre-

quency (HF) and LF/HF ratio metrics are of particular

interest in our experiment, where the HRV spectrum is of

the instantaneous heart rate, h(n), in bpm. If the time units

are in seconds, s, for example, the power spectrum units are

s2/Hz and total power in a frequency band is in units of s2.

One could also estimate the spectrum for the RR interval,

r(n) = 60/h(n) using exactly the same methods.

The study of Clifford and Tarassenko [4] concluded that

the LST provides more accurate LF/HF estimates for RR

interval data with ectopic beats than do FFT methods that

first interpolate samples to uniform spacings. In order to

compare our RFT estimates with results from this study, we

adopted some of the same signal models, signal configura-

tions, and experimental methods. This provides an

independent verification of our LST implementation and also

indirectly allows us to compare the RFT to FFT methods.

In particular, the heart rate model is that of Eq. 24,

sampled using Eq. 25. We selected the model parameters

to match those of the study [4] and are fs = 1,000, and

hm = 60 bpm, al = 2 bpm, ah = 2.5 bpm. The mean value

for low frequency and high frequency parameters are

fl = 0.095 Hz and fh = 0.275 Hz respectively. In addition, fl
and fh change during the simulation to model non-sta-

tionarity, incrementing as follows,

flðnÞ ¼ 0:077þ 0:00056n for 0� n\66

fhðnÞ ¼ 0:233þ 0:00130n for 0� n\66
ð26Þ

Index n cycles up from 0 to 65 and then back down to 0,

but not regularly. For each frequency, fl and fh, the

following Gaussian functions Sl(fl) and Sh(fh) respectively

determine how many samples to generate at a particular

frequency value before incrementing (decrementing) n to

specify the next frequency value.

SlðflÞ ¼ b8 e�ðfl�0:095Þ2=0:0002c

ShðfhÞ ¼ b8 e�ðfh�0:275Þ2=0:0010c
ð27Þ

Figure 2 approximately replicates Fig. 1a in Clifford

and Tarassenko [4] indicating that we achieve a

comparable model of non-stationarity. The max of 65 for

n leads to approximately 300 beats having this Gaussian

distribution and hence a theoretical LF/HF power ratio of

2/2.5 = 0.64.

We used this quasi-stationary synthetic signal model to

generate 300 heart beats, minus random beats simulated

missing due to abnormal ectopic depolarization or noise,

and ran 1,000 simulations for one randomly missing beat

out of the 300 beats, 1,000 simulations for two randomly

missing beats out of the 300 beats, 1,000 simulations for

three randomly missing beats, continuing for up to 30

randomly missing beats. The results are reported using a

statistical box plot, where each box marks the middle 50%

of the 1,000 estimates made for each LF/HF value at a

particular number of simulated missing beats (1–30). The

line in the box is the median. Vertical whiskers indicate

maximum and minimum data values, except for outlier

data values marked with plus signs.

To illustrate behavior on real heart rate data, we com-

puted the spectrum of ECG and ECG RR interval data

obtained from ‘‘Physionet’’ (http://www.physionet.org). In

particular, we computed the spectrum of ECG record 100

in the ‘‘MIT-BIH Arrhythmia’’ database. This is a 30-min

record, where the original ECG signal from which RR

interval data was extracted had a sample rate of 360 Hz.

We also computed a time–frequency plane for long-term

ECG RR interval record N1 in the ‘‘Exaggerated heart rate

oscillations during two meditation techniques’’ database.

The original ECG sample rate for this signal was 128 Hz.

4 Results

Figure 3 compares spectrum estimates of the LST of Eq. 1

with the RFT of Eq. 16 for the first example signal of

Table 1 Typical HRV frequency domain measures

Spectral Power Abbrev. Frequency range (Hz)

All frequencies Total HRV 0.000–0.500

Ultra-low frequency ULF 0.000–0.003

Very low frequency VLF 0.003–0.040

Low frequency LF 0.040–0.150

High frequency HF 0.150–0.400

Very high frequency VHF 0.400–0.500

Low/high frequency ratio LF/HF NA
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Eq. 21 with four sinusoidal frequencies and a sample time

interval that varies randomly from 1 to 5 times the basic

time quantization of 1/512 s. In this example case, both

estimators show all four frequency peaks. However, the

RFT is more consistent for this stationary signal example in

the sense that signal to noise ratio improves as more data

samples are used in computing the estimate.

Figure 4 compares spectrum estimates of the LST of

Eq. 1 with the RFT of Eq. 16 for the signal of Eq. 24

where 99.6% of the frequency coefficients in the full signal

band (fs/2) are known to be 0 and therefore not stored or

updated. Both the RFT and LST estimators perform com-

parably in having very similar signal peak to noise floor

ratios. The estimates of both methods do not appear to

improve when using more data samples.

Figure 5 shows the results of the Monte Carlo HRV

simulation experiment described in Sect. 2. As in Clifford

and Tarassenko [4], the LST method produces accurate

estimates with mean value within 3–6% of the true value

and with a few additinoal percent variance increasing as

missing beats increase. The RFT method performs equally

well as the LST (the RFT estimate has slightly less bias in

this particular experiment), and hence by inference from

results in Clifford and Tarassenko [4], performs better than

FFT methods that first interpolate beats to create uniformly

sampled data.

Figure 6 shows a power spectrum of ECG record 100 in

the ‘‘MIT-BIH Arrhythmia’’ database from ‘‘Physionet’’

(http://www.physionet.org). The Physionet ‘‘RR Intervals,

Heart Rate, and HRV Howto’’uses this record to illustrate

HRV spectrum computation, and compares the LST based

spectrum with FFT and maximum entry (MEM) based

methods on this record. The sharp peaks at 0.167, 0.28,

and 0.42 Hz are artifacts from the analog tape recorder

and playback used to record the data. The Physionet LST

and FFT plots better distinguished this artifact of non-

physiological origin than MEM, and the Physionet LST

was the only method that clearly showed the respiratory

sinus arrythmia peak. Both our LST and RFT spectrum

plots have the same features and qualitative character as

the Physionet LST plot.

Figure 7 shows a time frequency plane computation for

long-term ECG record N1 of normal breathing taken from

Physionet’s ‘‘Exaggerated heart rate oscillations during two

meditation techniques’’ database. We compute the power

spectrum over a moving window of 512 beat samples to

compute the spectrum at each new heart beat (i.e. we use

the present and last 511 beats). The respiratory sinus

arrhythmia peak around 0.3 Hz is visible in these plots.

The original ECG signal from which RR interval data was

extracted was sampled at 128 samples/s. A higher sample

rate is more desirable for the RFT for better time

resolution.

5 Discussion

We described a new method for calculating the DFT iter-

atively and our results demonstrate that the proposed

method works for discrete time signals whose sample time

intervals may be widely nonuniform. Specifically, we

showed equivalent performance with Lomb–Scargle perio-

dogram methods.

One advantage of the RFT is that it enables high quality

spectrum estimation implementations in many embedded

applications where other methods would be impractical or

would not work nearly as well. As an example, suppose

one desires to estimate the HRV spectrum, but the time

series is missing a few heart beats in a sequence of RR

intervals that are naturally nonuniform spaced, as noted

above. Typically a running 5 min of data or longer is the

spectral window for which HRV frequencies are estimated.

In these situations it is best to display no answer for the

period of missing beats rather than ‘‘manufacture’’ beats,

but this might mean no answer for 5 min until a full set of

beats are obtained. The LST and the RFT methods work

despite missing beats because they bypass the necessity for

re-sampling or interpolation. For similar computational

performance to RFT of Eq. 16, the LST must either buffer

a minute or two of data (a beat only comes about every

second), causing a minute or so of time delay before a

spectrum can be computed, or for typical configuration take

almost two orders of magnitude more CPU bandwidth than

the RFT to compute an estimate on every beat.

In many embedded instruments, a single CPU is typi-

cally asked to handle many functions, and the arithmetic

ones tend to use the bulk of its computational bandwidth—

e.g. multiple filters applied to multiple signal channels,
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Fig. 2 In order to model non-stationarity in the instantaneous heart

rate signal model of Eq. 24, the low frequency peak fl and high

frequency peak fh increment and then decrement around a mean. Sl(fl)
and Sh(fh) are integer valued Gaussian functions (see Eq. 27] that

respectively determine how many samples to generate at each

frequency value before incrementing (decrementing) the frequency to

the next value
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signal feature detection algorithms, pattern recognition,

etc. For typical practical configurations as described above,

the Fast LST method from the classic ‘‘Numerical

Recipes’’ book [13] requires more than 10 9 log(N) times

as many mulitply/adds for each spectrum update than does

the RFT of Eq. 16. For a 512 point spectrum this is about
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Fig. 3 Power spectrum

estimate comparing the LST of

Eq. 1 with the RFT of Eq. 16 at

512 equally spaced frequencies

for a synthetic signal having

four cosine frequencies and 1%

noise. The sample time interval

varies randomly from 1 to

5 times the basic time

quantization of 1/512 s
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Fig. 4 These power spectrum

estimates compare LST of Eq. 1

with the RFT of Eq. 16. The

input is a synthetic signal with

two sinusoids emulating the

variability in heart rate and

having 1% noise. The estimate

is of 512 equally spaced

frequencies over the frequency

band 0 to 1 Hz (a small fraction

of the full 0–256 Hz band

implied by the time quantization

of 1/fs = 1/512). Because

samples are spaced on average

1-s apart, these estimates cover

approximately 8.5 and 17-min

time windows
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10 9 log2(512) = 90 times the CPU bandwidth used by

the RFT, no matter what is the particular CPU or its

multiplication efficiency. Overall, the ratios and scaling of

trigonometric functions in the LST are also more complex

to implement using fixed-point arithmetic, which is

sometimes a more significant embedded computational

issue than total arithmetic operations.

However, the Fast LST could in theory gain compara-

tively in computational efficiency by updating the spectrum

1/90 as often as the RFT method of Eq. 16, i.e. iteratively

sliding the 5-min estimation time window 90 s forward and

computing a new estimate, versus sliding it 1-s forward and

computing a new estimate. The relative total computational

efficiency between Eq. 16 and the Fast LST depends on the

data time window used for spectrum updates and the

amount of window overlap. However, the requirement to

buffer a history of data to minimize computation using the

Fast LST introduces an additional time delay, which is

sometimes undesirable in biomedical contexts (e.g. QRS

detection delay for cardioversion synchronization). For
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Fig. 5 These statistical box plots compare LST and RFT estimates of

the ratio of heart rate low frequency power (LF) power to high

frequency (HF) power as a function of number of randomly missing

beats in the input data. Each estimation uses 300 consecutive heart

beat intervals minus random beats simulated missing due to abnormal

ectopic depolarization or noise. The input is a synthetic heart rate

signal with non-stationary LF and HF peaks in its spectrum (see

Eqs. 26, 27]. The LF/HF power ratio is a known constant 0.64. Each

box marks the middle 50% of the 1,000 estimates made for each LF/

HF value. The line in the box is the median. Vertical whiskers indicate

maximum and minimum data values, except for outlier data values

marked with plus signs
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Fig. 6 These plots of ECG

record 100 in the MIT-BIH

Arrhythmia database from

Physionet recreate the same

features and qualitative

character as the LST plot in

the‘‘RR Intervals, Heart Rate,

and HRV Howto’’ at

http://www.physionet.org. The

sharp peaks at 0.167, 0.28, and

0.42 Hz are artifacts from the

analog tape recorder and play-

back used to record the data
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HRV, waiting 90 beats for a calculation, means an estimate

comes out every minute 30 s, compared to every second for

the RFT method.

The RFT method of Eq. 16 works analogously for any

discrete basis functions. In particular, the method only

demands that the discrete basis functions satisfy Eq. 7, and

therefore could be applied to estimate the transform coef-

ficients in transform domains other than discrete Fourier, as

in discrete Wavelets, for example.

6 Conclusion

In this paper, we have described a new method for calcu-

lating the DFT iteratively that works for discrete time

signals whose sample time intervals may be widely non-

uniform. The new method is a recursive least squares

estimator that iteratively updates a spectrum estimate with

each new sample, where each iteration has computational

order N. We provided a mathematical derivation and

showed equivalent performance with Lomb–Scargle peri-

odogram methods. In particular, we provided illustrative

performance examples on both synthetic and real data, and

a detailed heart-rate variability estimation study aimed at

assessing the proposed method.
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