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Abstract

Supervised topic classifiers for Twitter and other media sources are

important in a variety of long-term topic tracking tasks. Unfortu-

nately, over long periods of time, features that are predictive during

the training period may prove ephemeral and fail to generalize to

prediction at future times. For example, if we trained a classifier

to identify tweets concerning the topic of “Celebrity Death”, indi-

vidual celebrity names and terms associated with these celebrities

such as “Nelson Mandela” or “South Africa” would prove to be

temporally unstable since they would not generalize over long pe-

riods of time; in contrast, terms like “RIP” (rest in peace) would

prove to be temporally stable predictors of this topic over long pe-

riods of time. In this paper, we aim to design supervised learning

methods for Twitter topic classifiers that are capable of automati-

cally downweighting temporally unstable features to improve future

generalization. To do this, we first begin with an oracular approach

that chooses temporally stable features based on knowledge of both

train and test data labels. We then search for feature metrics evalu-

ated on only the training data that are capable of recovering the tem-

porally stable features identified by our oracular definition. We next

embed the top-performing metric as a temporal stability regularizer

in logistic regression with the important property that the overall

training objective retains convexity, hence enabling a globally op-

timal solution. Finally, we train our topic classifiers on 6 Twitter

topics over roughly one year of data and evaluate on the follow-

ing year of data, showing that logistic regression with our temporal

stability regularizer generally outperforms logistic regression with-

out such regularization across the full precision-recall continuum.

Overall, these results establish a novel regularizer for training long-

term temporally stable topic classifiers for Twitter and beyond.

1 Introduction

Twitter represents a massively distributed information source

over topics ranging from social and political events to enter-

tainment and sports news [1, 2]. While recent work has sug-

gested this content can be filtered for the personalized inter-

∗This work has been primarily completed while the author was a visiting

student at The University of Toronto.
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Figure 1: From top to bottom, the effect of successively re-

moving the most temporally unstable features on the average

precision of the topic classifier “Celebrity Death”. Except

“South Africa” which is a location feature, all shown fea-

tures are term features.

ests of individual users by training standard classifiers as top-

ical filters [3, 4, 5, 2, 6], there remain many open questions

about the long-term accuracy of such classification-based fil-

tering approaches. Specifically, over long periods of time,

features that are predictive during the training period may

prove ephemeral and fail to generalize to prediction at future

times.

In this work, we argue that temporally unstable features

may significantly impact the quality of any classifier trained

and evaluated over longitudinal data. Moreover, given the

trend-driven nature of social networks and in particular Twit-

ter, we argue these data sources are especially susceptible to

this problem of temporal feature instability. In this paper,

we aim to study the impact of temporally stable and unstable

features on topic classification in Twitter and leverage the in-

sights gained to explore novel regularization approaches for

learning temporally stable classifiers that are robust to fea-

tures which do not generalize well over time.

To provide insight into the stability of features, we re-

fer to Figure 1. Here, we assume the use of different feature

types such as terms (simple word tokens), hashtags and lo-

cations for the topical classification of English Tweets over
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two years spanning 2013 and 2014. Here we have identified

and ranked features based on a measure of temporal instabil-

ity that we develop later in this paper; we show the effect of

the successive removal of these features on the average pre-

cision of a topic classifier related to “Celebrity Death”. For

example, the term “Mandela” has been identified as the most

unstable feature, and its removal from the training set boosts

the average precision by over 0.13%. Indeed, “Mandela” is

clearly a feature that is related to a particular event (i.e., the

death of the president of South Africa, which happened on

December 5, 2013) that does not generalize well to the pre-

diction of future events under the topic of Celebrity Death.

In contrast, a term like “RIP” (for “rest in peace”) would

generalize well to future events for the Celebrity Death topic.

Here we refer to “Mandela” as a temporally unstable feature,

while “RIP” would be temporally stable.

As the paper proceeds, we will observe three notable

trends: (i) first, the removal of unstable features improves

classifier performance, (ii) second, unstable features can be

of any type – in this example terms and locations, and (iii)

third, unstable features are often contextualized to specific

events. Although each removal may only provide a small

boost, the cumulative improvement of removing multiple

temporally unstable features may be substantial.

In this paper we aim to answer the following two

research questions: (RQ1) how can we identify temporally

unstable features? And (RQ2) how can we design a learning

algorithm that automatically downweights the influence of

temporally unstable features? To address RQ1, we employ 6

different metrics to measure the instability of features and

evaluate these features using a purpose-built ground truth

dataset. To address RQ2, we propose Temporal Stability

Aware Logistic Regression (TSALR), where we introduce

a novel reguarizer based on the analysis in RQ1. TSALR

is able to automatically reduce the weight of temporally

unstable features during classifier training.

In summary, we make the following contributions:

1. We propose to study the temporally stability of features

in Twitter. Solving this problem is critical for building

a long-term robust classifier for Twitter. To the best of

our knowledge, this work is the first study of temporal

feature stability in a multi-year dataset.

2. We present an empirical analysis of feature stability

using different metrics on 40 TB of uncompressed

data from Twitter spanning 2013-2014 with 6 labeled

topics. We found that temporally unstable features

are usually event related, and we show that removing

temporally unstable features improves the performance

of the classification task.

3. We introduce a novel Temporal Stability Aware Logistic

Regression (TSALR) method using a novel temporal

Table 1: Feature Statistics of our 829, 026, 458 tweet corpus.
#Unique Features

From Hashtag Mention Location Term

95,547,198 11,183,410 411,341,569 58,601 20,234,728

Feature Usage in #Tweets

Feature Max Avg Median Most frequent

From 10,196 8.67 2 running status

Hashtag 1,653,159 13.91 1 #retweet

Mention 6,291 1.26 1 tweet all time

Location 10,848,224 9,562.34 130 london

Term 241,896,559 492.37 1 rt

Feature Usage by #Users

Hashtag 592,363 10.08 1 #retweet

Mention 26,293 5.44 1 dimensionist

Location 739,120 641.5 2 london

Term 1,799,385 6,616.65 1 rt

Feature Using #Hashtags

From 18,167 2 0 daily astrodata

Location 2,440,969 1,837.79 21 uk

stability regularizer to downweight temporally unstable

features during the learning process. We empirically

demonstrate the superiority of TSALR with respect to

standard Logistic Regression.

2 Dataset Description

We crawled Twitter data using the Twitter Streaming API

for two years spanning 2013 and 2014. We collected more

than 40 TB of uncompressed data, which contains a total of

829,026,458 English tweets. In the context of Twitter, we

consider five feature types for each tweet. Each tweet has

a From feature (i.e., the person who tweeted it), a possible

Location (i.e., a string provided as meta-data), and a time

stamp when it was posted. A tweet can also contain one

or more of the following: Hashtag (i.e., a topical keyword

specified using the # sign), Mention (i.e., a Twitter username

reference using the @ sign), Term (i.e., any non-hashtag and

non-mention unigrams). We provide more detailed statistics

about each feature in Table 1. For example, there are over 11

million unique hashtags, the most frequent unique hashtag

occurred in over 1.6 million tweets, a hashtag has been used

on average by 10.08 unique users, and authors (From users)

have made a median value of 2 tweets.

A critical bottleneck for learning targeted topical social

classifiers is to achieve sufficient supervised content label-

ing. Following the approach of [2, 3], we manually curated a

broad thematic range of 6 topics shown in the top row of Ta-

ble 2 by annotating hashtag sets Ht for each topic t ∈ T . We

used 4 independent annotators to query the Twitter search

API to identify candidate hashtags for each topic, requir-
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Table 2: Test/Train Hashtag samples and statistics.
Topics Iran Human Disaster Celebrity Death Social Issues Natural Disaster Health

#TrainHashtags 12 49 28 31 31 52

#TestHashtags 5 29 16 19 18 33

#TopicalTweets 8,762 408,304 163,890 230,058 42,987 210,217

Sample Hashtags

#irandeal #gazaunderattack #robinwilliams #policebrutality #earthquake #ebola

#iranfreedom #childrenofsyria #ripmandela #michaelbrown #storm #virus

#irantalk #iraqwar #ripjoanrivers #justice4all #tsunami #vaccine

#rouhani #bombthreat #mandela #freetheweed #aboods #chickenpox

#nuclearpower #isis #paulwalker #newnjgunlaw #hurricanekatrina #theplague

ing an inner-annotator agreement of 3 annotators to permit

a hashtag to be assigned to a topic set.

To split our dataset into train, validation and test sets,

we split Ht into three disjoint sets Ht
train, Ht

val and Ht
test

according to two time stamps tvalsplit and ttestsplit for each topic

and the first usage timestamp htime∗ of each hashtag h ∈
Ht. In short, all hashtags h ∈ Ht with htime∗ < tvalsplit are

used to generate positive labels in the training data, those

with htime∗ ≥ ttestsplit are used for positive labels in the test

data and the remainder are used for validation data. The

purpose of this design is to ensure hyperparameters are tuned

to encourage generalization to unseen topical hashtags that

did not occur during training. We remark that a classifier

that simply memorizes training hashtags will fail to correctly

classify the validation data except in cases where a tweet

contains both a training and validation hashtag. We provide

detailed statistics of Hashtags for each topic in Table 2.

Given that we have a total of 538, 365, 507 unique

features in our Twitter corpus, it is critical to pare this

down to a size amenable for efficient learning and robust to

overfitting. To this end, We empirically select the top 1000

features using Pearson’s chi-squared test χ2 for each topic.

3 Temporally Stable/Unstable Feature Analysis

Events and topics that are commonly discussed on Twitter

and other media sources tend to be of short-term interest.

Therefore, they are often intensively discussed during a short

period of time with discussion frequency decaying thereafter.

Consequently, some extracted high chi-squared features may

be irrelevant if they were only associated with a short-lived

event. These temporally unstable features generally do not

contribute to the long-term accuracy of the classifier.

While there is no single agreed-upon definition of a tem-

porally stable feature, assuming we have oracular knowledge

of the train and test data (i.e., we can see into the future to

observe the test labels) we propose the following high-level

working definitions for the purpose of this paper. We will

later clarify our use of “associated” in the context of logistic

regression.

DEFINITION 1. (TEMPORALLY STABLE FEATURE (TSF)) A

temporally stable feature is a measurable characteristic

of the data being observed, which is associated with the

topic label at all times. More precisely, if a feature x is

consistently associated with the corresponding topic label

in both the training data and the test data, then x is a

temporally stable feature.

By analogy, we propose the following definition for

temporal unstable features:

DEFINITION 2. (TEMPORALLY UNSTABLE FEATURE (TUF))

A temporally unstable feature is a measurable characteristic

of the data being observed, which is only associated with

the topic label at a specific time. More precisely, if a feature

x is associated with the topic label in only the training data

or only the test data (i.e., not both), then x is a temporally

unstable feature.

In practice, we will not have oracular knowledge of the

future and hence we must attempt to to distinguish TUF from

TSF solely on the basis of the training data. Hence, in the

following, we attempt to identify the metric that only uses

the training data and best recovers TUF and TSF features

identified through our previously defined oracular definition.

Following this, we then introduce a learning method with a

novel temporal regularizer that embeds this best metric as a

method to downweight TUFs and improve temporal stability

in learning.

3.1 Temporally (Un)Stable Feature Analysis. As our

goal is to build a classifier that is robust to Temporally Un-

stable Features, it is critical to automatically identify them

from the training data only. A straightforward approach is to

(i) divide the training dataset into several time windows, (ii)

measure the importance of each feature in each time slice,

and finally (iii) measure the stability of each feature’s impor-

tance over time.

For the purpose of measuring feature importance in clas-

sification, we propose to evaluate feature weights in Logis-

tic Regression (LR), as done commonly in the literature [7].

Briefly, the loss function to optimize for an LR-based binary
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classifier can be defined as

(3.1) L(θ) =
1

|D|

[

|D|
∑

i=1

log
(

1 + e−y(i)θT
x
(i)
)

+
λ

2
||θ||22

]

,

where x is a vector of inputs with K features (x1, · · · , xK),
y ∈ {−1(false), 1(true)} is a binary label, θ is the learned

vector of K weights (θ1, · · · , θK) associated to the K fea-

tures, and D = {(x, y)} is the training set of tweets (features

x are tweet token frequencies for the top 1,000 feature tokens

previously selected). The final term is a standard L2 norm

regularizer included to avoid overfitting. A large positive

weight value θk of a feature k indicates strong positive as-

sociation with the corresponding topic label, whereas a large

negative θk value indicates a strong negative association with

the topic label. However, a value of θk that is close to 0 typ-

ically indicates a very low association of the corresponding

feature with the topic label.

We extend this analysis to the temporal stability context,

where we identify the strongly associated features for differ-

ent disjoint time windows of data. The temporal LR loss

function for T separate time windows is then defined as

(3.2)

L(W )=

T
∑

t=1

1

|D|t





|D|t
∑

i=1

log
(

1+e−y(i)
w

T

t
x
(i)
)

+
λ

2
||wt||

2
2



 ,

where W is a T×K temporal weight matrix, with entry wt,k

being the weight of the feature k during the time window t.

Later, we will use w:,k to indicate the T -dimensional vector

of weights of feature k for all time windows.

Given the ability to learn time-dependent feature

weights wt,k, we propose to use different metrics to mea-

sure the temporal instability of these feature weights. The

hypothesis behind each of the following metrics is that they

capture some measure of a feature’s weight variation over

time, where higher variation is a stronger indicator of a tem-

porally unstable feature (TUF) defined previously.

Below, we describe each six different metrics to measure

the temporal instability of features:

• Deviation Divide Mean (DDM) is defined as the av-

erage absolute deviation of the weights of a feature k

from it’s mean, normalized by its mean:

(3.3)

DDM(w:,k) =

T
∑

t=1
|wt,k − µk|

T × µk

, ∀k ∈ {1 · · ·K} ,

where µk denotes the mean value of weight vector w:,k

during T time windows.

• Max Absolute Deviation (MAD) is defined as the

maximum absolute deviation of the weights of a feature

k from its mean among T time windows:

(3.4)

MAD(w:,k) = max(|w:,k − µk|), ∀k ∈ {1 · · ·K} .

• Average Absolute Deviation (AAD) is defined as the

average absolute deviation of weights of a feature k

from its mean over T time windows:

(3.5)

AAD(w:,k) =

T
∑

t=1
|wt,k − µk|

T
, ∀k ∈ {1 · · ·K} .

• Max Divide Min (MDM) is defined as the ratio of the

maximal weight of a feature k to its minimal weight:

(3.6)

MDM(w:,k) =
max{w:,k}

min{w:,k}
, ∀k ∈ {1 · · ·K} .

• Variance is defined as the average squared deviations

of the weights of a feature k from its mean µk over T

time windows:

(3.7)

V ariance(w:,k) =

T
∑

t=1
(wt,k − µk)

2

T
, ∀k ∈ {1 · · ·K} .

• Z-score is defined as the average of the ratio between

the absolute deviation and standard deviation of the

weights of a feature k over T time windows:

Z-score(w:,k) =
1

T

T
∑

t=1

|wt,k − µk|
√

V ariance(w:,k)
,

∀k ∈ {1 · · ·K} .

(3.8)

3.2 Ground Truth TSFs and TUFs. To evaluate the abil-

ity of the above described metrics to identify TUFs, we con-

struct a ground truth set of TSFs and TUFs (recalling our

previous respective oracular Definitions 1 and 2) in the fol-

lowing procedure: (1) We used LR to learn the importance

of each feature on the training data and the test data. (2) We

rank features using the weights learned by the LR in both

training data and test data. (3) If a feature xk appears in the

Top-n features in both training data and test data, xk is con-

sidered as a TSF. However, if xk appears only in the Top-n

of the training data but not test data (or vice versa), then we

consider xk as a TUF. Note that in our experiment we used

n = 100 features, a value that we determined empirically by

running LR on a validation data set with TUF features re-

moved (for different thresholds n) and choosing the n that

provided the best validation accuracy.

An overview of the top five features generated for both

TSF and TUF using the above described process for our

6 topics are shown in Table 3. For example, terms like
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Table 3: Top 5 Ground truth temporally stable features (TSFs) and temporally unstable features (TUFs) for each topic.

Features starting with ’H ’, ’M ’, ’L ’, and ’U ’ respectively denote hashtag, mention, location and user name, and features

without these marks are general terms.

Iran Nuclear Deal

TSF TUF

H iran H freethe7

Iran H news

Iranian H iranelection

H syria H obama

H iraq president

Human Disaster

TSF TUF

H terrorism H raqqa

U rk70534 H iraq

M statedept H speakup4syrianchildren

M ifalasteen ghouta

displace H saa

Celebrity Death

TSF TUF

rip Mandela

sad Nelson

tribute M nelsonmandela

inspire Avery

angel uncle

Social Issue

TSF TUF

police abuse

abort cost

black H nj2as

christy veto

kill M hindarifka

Natural Disaster

TSF TUF

M weatherchannel M jonleebrody

H smem H floodph

H flooding H lightning

quake M twc hurricane

M usgs H phillipines

Health

TSF TUF

M who H h7n9

H nurses H globalhealth

outbreak H worldaidsday

alert H pregnancy

virus allergic

0 10 20 30 40 50
Expectation of Improvements (%)

DDM
MAD
AAD
MDM

Variance
Z-score

Figure 2: Average improvement percentage when removing

the top 100 features identified by each metric over all topics.

95% confidence intervals are shown.

“nelson” and “mandela” have been identified as being TUF

for the Celebrity Death topic; this is quite reasonable as most

tweets mentioning the death of the former South African

president Nelson Mandela were generated during a short

period of time (mainly during December 2013). In general,

we observed that for the topic of Celebrity Death topic,

proper nouns (e.g., names) tend to be TUF as they fail to

generalize to new celebrity death events. In contrast, TSF

are usually general, not proper nouns such as “sad” and

“inspire”, which are more appropriate features for building

a temporally stable classifier for this topic.

3.3 Metrics Evaluation. Now, we proceed to evaluate the

ability of the different training data metrics we defined in

Section 3.1 to identify our oracular ground truth TUFs de-

fined in Section 3.2. Here we measure Mean Average Preci-

sion for the top 100 ranks (MAP@100) with the mean taken

0.0 0.1 0.2 0.3 0.4
MAP@100

DDM
MAD
AAD
MDM

Variance
Z-score

Figure 3: MAP for different metrics over all topics. 95%

confidence intervals are shown.

over the 6 topics – metrics which rank more of the ground

TUFs in the top-ranks will achieve a higher MAP@100. The

results obtained for this analysis are reported in Figures 3. In

short, these results suggest that Variance and MAD perform

best, followed by AAD, with their performances statistically

indistinguishable.

Next, we evaluate whether or not the removal of the

top TUFs identified by the 6 metrics can improve the per-

formance of the learning algorithm. In order to answer this

question, for each metric, we measure the average accuracy

improvement of the classifier if the top-100 unstable features

identified by that metric are removed. The results are shown

in Figure 2, where we note that the best metric is again Vari-

ance, though this is not statistically significant compared to

other methods given the large confidence intervals. The ob-

tained results here are consistent with the results of MAP

in Figure 3, where the Variance metric also had the highest
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mean performance. Since Variance also has convenient con-

vexity properties that allow global optimization, we select it

as a temporal stability regularizer for logistic regression that

we detail next.

4 TSALR: Temporal Stability Aware Logistic

Regression

Motivated by the ability of Variance to identify TUFs, we

now move beyond simple feature selection to describe a new

method that automatically embeds the Variance as a temporal

stability regularizer in logistic regression. Specifically, this

approach uses feature Variance to encourage lower weights

for unstable features without entirely removing them from

the classifier as a hard feature selection approach would do.

4.1 Model Description. As described in Section 3.1, Lo-

gistic Regression gives a high weight to important features

during the learning process of a classification. Thus, we

leverage this property and extend it to develop a Temporal

Stability Aware Logistic Regression (TSALR). TSALR com-

bines the global LR model in Equation 3.1 with the temporal

LR models in Equation 3.2 and introduces a temporal regu-

larization term that causes a global feature weight θk to be

downweighted when it deviates significantly from the time-

dependent weights w:,k.

To understand the rationale for this behavior, recall that

according to the definition of TSF, the temporal weight wt,k

of a temporally stable feature k in a time window t should

be consistent with its global weight θ. On the other hand,

based on the definition of TUF, the temporal weight wt,k of

a temporally unstable feature k in a time window t should

significantly deviate from θk. In addition, we previously

observed in Section 3.3 that the “Variance” metric performs

among the best methods for TUF identification. Hence we

add a regularization term that penalizes Variance of w:,k

from the effective mean value θk, the logistic regression

learner can only reduce this penalty by downweighting all

w:,k and θk for feature k as desired for TUF features.

Formally, the objective to optimize in TSALR is defined as:

(4.9)

L(θ,W ) =
1

|D|

|D|
∑

i=1

log
(

1 + e−y(i)
θ
T
x
(i)
)

+

T
∑

t=1





1

|D|t

|D|t
∑

i=1

log
(

1 + e−y(i)
w

T

t
x
(i)
)





+ λ1

T
∑

t=1

||θ −wt||
2
2 + λ2(||θ||

2
2 +

T
∑

t=1

||wt||
2
2)

There are four components in the proposed model. The

first part is the global Logistic Regression model that is

parameterized by θ. The second part is a set of temporal

LR models that parameterized by wt associated to each

month t (i.e., each temporal LR model is fitted to data for

disjoint subsets of time in the training data). The third part

is a mutual constraint that regularizes the global weights

θ and temporal wt to be similar. This part models our

novel temporal regularizer and we critically note that when

weights for a feature tend to be unstable over different

periods of time, only a small (or near-zero) weight for the

feature in each wt and θ will prevent a large penalty from

this regularizer. Hence, temporally unstable feature weights

are inherently downweighted. In contrast, when weights

are stable across all time subsets, the feature weight is not

penalized and may be large. The last part is an L2 regularizer

for all parameters in this model to prevent overfitting. λ1 and

λ2 are hyperparameters that are tuned using the validation

dataset. Note that we only use the global model to do the

prediction after training. In other words, the time-dependent

models are only used to temporarily regularize the global

model used for final prediction.

We remark that we jointly train θ and wt rather than

pretraining and freezing wt. We do this since our aim is

not to penalize θ for deviating from wt, which would just

encourage θ to settle at the average of the wt’s. Rather, the

intent is to allow the joint model over all time windows to

find a compromise θ and wt that balance improvements in

likelihood with penalties from variance.

A final critical observation for effective learning is that

TSALR is convex since each additive component in TSALR

is convex (notably, including the Variance-based temporal

regularizer), which guarantees a global minimum can be

found efficiently.

4.2 Evaluating TSALR. In this section, we evaluate

TSALR by comparing it to LR with regularization via the L2

norm and the L1 norm (i.e., absolute values of weights). In

addition, we also compare TSALR to LR-Decay, a baseline

method based on the intuition that the newer (more recent) a

feature is, the more temporally stable it is for future predic-

tion. LR-Decay is formulated as follows:

(4.10)

L(θ) =
1

|D|

[

|D|
∑

i=1

log
(

1 + e−y(i) ∑
k
[θkx

(i)
k

z
(i)
k

]
)

+
λ

2
||θ||22

]

where z is a vector of decay factors (z1, · · · , zk) with each

element zk = e−γ(t0−tk), t0 denotes the current time slice,

tk denotes the first time the feature xk appeared in the

dataset, and γ is a parameter that controls the decay rate of

the contribution of feature xk. In the experiments, t ranges

over the T = 12 months. All hyperparameters are tuned on

held-out validation data.

First, we show in Table 4 a comparison of TSALR

against the baselines in terms of average precision for the top

1000 results (AP@1000). Briefly, we observe that TSALR
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Figure 4: Precision-Recall at k curve of LR and TSALR. TSALR generally improves future predictive performance across

the Precision-Recall continuum for all topics.

Table 4: Performance comparison using AP@1000.

LR-L1 LR-L2 LR-Decay TSALR

Iran Nuclear Deal
0.757 0.777 0.778 0.801

5.81% 3.08% 2.95% Improvement

Human Disaster
0.019 0.021 0.021 0.023

21.05% 9.52% 9.52% Improvement

Celebrity Death
0.054 0.091 0.094 0.100

85.18% 9.89% 6.38% Improvement

Social Issue
0.043 0.050 0.052 0.054

25.58% 8.00% 3.84% Improvement

Natural Disaster
0.175 0.180 0.153 0.188

7.42% 4.44% 22.87% Improvement

Health
0.030 0.015 0.015 0.026

-13.33% 73.33% 73.33% Improvement

outperforms the baselines on 5 topics. In particular, TSALR

improves AP@1000 by roughly 73% over LR-L2 and LR-

Decay on the Health topic, and 10% over LR-L2 and LR-

Decay on the Celebrity Death topic. We also observe that

LR-L1 performed the best on the Health topic, but performed

the worst on the other 5 topics, which means its performance

is not consistent. LR-Decay is better than LR-L2 on the

topics Iran Nuclear Deal, Celebrity Death and Social Issue,

but is not better than LR-L2 on the other 3 topics. While LR-

Decay is sensitive to time, it effectively only uses the subset

of most recent features when doing prediction; however,

new features can be temporally unstable features, which may

mislead LR-Decay’s predictions. These results confirm our

general hypothesis that reducing the contribution of TUF

through Variance-based temporal regularization can improve

generalization over future data.

Finally, we show in Figure 4 the comparison using

precision-recall curves for the 6 topics. In summary, we

clearly observe that TSALR outperforms the competitors in

most cases. In general, we observe that TSALR outperforms

LR-L2 and LR-Decay at almost all points on the precision-

recall curve. While LR-L1 sometimes provides better preci-

sion at low recall, it performs very poorly on Social Issue and

Celebrity Death and poorly on Human Disaster. Thus LR-L1

proves to be much less consistent than TSALR, which is al-

ways near the top performance of any method.

5 Related Work

Below, we review the major work related to feature selection

and topic classification, specifically for social network data

that was the target application of this paper.

5.1 Feature Selection. Feature selection algorithms rank

features according to metrics such as Pearson correlation co-

efficient, Pearsons chi-squared test χ2 and Mutual Informa-

tion as the principle criteria for selecting the top-ranked fea-

tures [8]. Those algorithms generally belong to one of the

three categories: filter approaches [9], wrapper approaches

[10] and embedding approaches [11].

Filter methods are usually applied as a preprocessing

method to filter out the less informative features indepen-

dently of any classification algorithm [9]. They are particu-

larly effective in terms of computational complexity by ig-

noring the impact of the selected features on the actual clas-
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sification task objective.

Wrapper methods treat the classification algorithm as a

black box, and wrap the algorithm in various search methods

that look for a feature subset to maximize the classification

performance [10, 12, 13]. There are two types of wrapper

methods: Sequential selection [14, 15] and heuristic search

algorithm [12]. Sequential selection algorithms are iterative

methods in which we start with no feature (or all the features)

and add features (or remove features) until the best perfor-

mance of the learning algorithm is obtained. On the other

hand, the heuristic search algorithms adopt greedy heuristic-

guided strategies to evaluate different subsets to optimize the

overall objective function. Despite being effective, the com-

putational complexity of wrapper methods is their key draw-

back and would prevent them from being applied to our 40

TB of Twitter data.

Embedded feature selection methods [16, 11] combine

the advantages of filter and wrapper methods, which incorpo-

rate feature selection as part of the classifier training process.

A typical example of this method is LASSO [17] regression

whose objective inherently encourages weight sparsity that

has the ultimate effect of performing feature selection as a

byproduct of training.

The above methods, as generic feature selection tech-

niques, are not specialized to any notion of temporal sta-

bility in feature selection. While there is a lot of active re-

search aiming to select features that are insensitive to varying

conditions such as data perturbations [18, 19, 20], none of

these works directly address the long-term temporal stability

of features that we address in this paper. The consequence

is that features selected by those methods do not explicitly

control for temporal stability over long-time horizons that

is crucial to topical classification on persistent social media

platforms such as Twitter.

5.2 Twitter Topic Classification. The first challenge of

classification on Twitter is labeling a sufficient quantity of

data to enable reliable and generalizable training. Previous

related work has assigned labels to the tweets either with a

single hashtag [3, 2], a user-defined query for each topic [5],

or co-training based on the URLs and text of the tweet [4].

We slightly expand on [3] by labeling with a set of hashtags

instead of a single hashtag.

The next challenge of classification on Twitter is defin-

ing appropriate features. Sriram et al. [21] leverages the user

profile as features in addition to the sparse linguistic features

of tweets (i.e., bag of words) for classification. Kurka et

al. [22] explored the use of retweet information. Li et al. [23]

use an Entity knowledge base (Entity KB) to enrich the Twit-

ter features. Mehrotra et al. [24] build augmented document

representations from tweets to improve density of the train-

ing data. More recently, supervised Latent Dirichlet Alloca-

tion (LDA) is proposed by augmenting tweets with content

from embedded URLS [25]. While all of these works ad-

dress different ways to construct and select rich features for

social media topic classifiers, they all focus on how to build

a strong classifier for a given training dataset and neglect the

temporal stability of features explored in this paper. How-

ever, the temporal stability regularization proposed in this

paper can be applied to any set of (rich) features including

the feature sets defined in these works.

6 Conclusion

In this paper, we proposed a study of the temporal stability

of features for topical classification in Twitter. For this pur-

pose, we proposed 6 metrics to identify temporally unstable

features. We compared the proposed metrics with an oracu-

lar method (i.e., using the test data) for generating a ground

truth set of temporally unstable features (TUF). Our results

showed that the metrics proposed are, to some extent, able

to identify TUF features. In particular, the Variance metric

has demonstrated strong performance to identify TUFs and

also permits incorporation into a convex temporally stable

logistic regression framework.

We empirically showed the performance improvement

for standard classification by eliminating TUFs over 6 clas-

sification topics. Finally, we leveraged the Variance metric to

design a novel temporally regularized variant of logistic re-

gression, i.e., Temporal Stability Aware Logistic Regression

(TSALR). TSALR avoids some difficulties of feature selec-

tion by directly downweighting the influence of temporally

unstable features in an embedded approach. We empirically

demonstrated that TSALR is effective for learning TSFs for

topical classification in Twitter.

Overall, this paper is an initial step towards a new re-

search direction on temporally stable feature selection and

learning for tweet classifiers. Our proposed temporal sta-

bility regularizer is not restricted to Logistic regression, but

can be employed by other machine learning methodologies

as well. To this end, we hope this paper paves the way for

future studies on long-term temporally stable learning and

extends it to other machine learning problems where tempo-

ral stability issues also arise.
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