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Abstract

We present a method that estimates in real-time and un-

der challenging conditions the 3D pose of a known object.

Our method relies only on grayscale images since depth

cameras fail on metallic objects; it can handle poorly tex-

tured objects, and cluttered, changing environments; the

pose it predicts degrades gracefully in presence of large oc-

clusions. As a result, by contrast with the state-of-the-art,

our method is suitable for practical Augmented Reality ap-

plications even in industrial environments. To be robust to

occlusions, we first learn to detect some parts of the tar-

get object. Our key idea is to then predict the 3D pose of

each part in the form of the 2D projections of a few control

points. The advantages of this representation is three-fold:

We can predict the 3D pose of the object even when only

one part is visible; when several parts are visible, we can

combine them easily to compute a better pose of the object;

the 3D pose we obtain is usually very accurate, even when

only few parts are visible.

1. Introduction

3D object detection and tracking methods have under-

gone impressive improvements in recent years [5, 27, 13,

4, 30, 25, 39, 17, 1, 45, 38, 20, 35, 44]. However, each

of the current approaches has its own weaknesses: Many of

these approaches [5, 13, 1, 35] rely on a depth sensor, which

would fail on metallic objects or outdoor scenes; methods

based on feature points [25, 17] expect textured objects;

those based on edges [4, 39] are sensitive to cluttered back-

ground; most of these methods [13, 27, 30, 38, 11, 45, 20]

are not robust to occlusion. We also want a method fast

enough for interactive 3D applications.

Figure 1. Detecting a box in 3D with a regular camera under chal-

lenging conditions. On this dataset, the user removes objects from

the box and leaves them on the table, often occluding large por-

tions of the box. Despite these difficulties, we can accurately esti-

mate the 3D pose of the box, in each image independently.

As Fig. 1 shows 1, we are interested in scenes with poorly

textured objects, possibly visible only under heavy occlu-

sions, drastic light changes, and changing background. A

depth sensor is not an option in our setup, as the target

objects often have specular surfaces. Feature point-based

methods also fail because of the lack of texture. These are

typical conditions of many Augmented Reality applications.

At the core of our approach is the efficient detection of

discriminative parts of the target object. Relying on parts

for 3D object detection is not new [12, 27, 33, 20, 45]. The

1All the figures of this work are best seen in colors.
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(a) (b)

Figure 2. Our representation of the 3D pose of an object part.

(a) We consider seven 3D control points for each part, arranged to

span into 3 orthogonal directions. (b) Given an image patch of the

part, we predict the 2D reprojections of these control points using

a regressor, and the uncertainty of the predictions.

novelty in our approach is a powerful representation of the

pose of each part.

Some previous methods used homographies [16, 12, 45]

to represent a part pose, however this assumes that the ob-

ject is piece-wise planar, and it is not easy to combine the

homographies from several parts together to compute a bet-

ter pose for the target object. Feature point-based methods

simply use the 2D locations of the feature points, which

wastes very useful information.

As shown in Fig 2, we therefore propose to represent the

pose of each part by the 2D reprojections of a small set of

3D control points. The control points are only “virtual”, and

do not have to correspond to specific image features. This

representation is invariant to the part’s image location and

only depends on its appearance. We show that a Convolu-

tional Neural Network [19] (CNN) can predict the locations

of these reprojections very accurately, and can also be used

to predict the uncertainty of these location estimates.

Given an input image, we run a detector to obtain a few

hypotheses on the image locations of each part. We also use

a CNN for this task, but another detection method could be

used. We then predict the reprojections of the control points

by applying a specific CNN to each hypothesis. This gives

us a set of 3D-2D correspondences, some of which may be

erroneous, but from which we can compute the 3D pose of

the target object with a simple robust algorithm.

This approach has several advantages:

• We do not need to assume the parts are planar, as was

done in some previous work;

• we can predict the 3D pose of the object even when

only one part is visible;

• when several parts are visible, we can combine them

easily to compute a better pose of the object;

• the 3D pose we obtain is usually very accurate, even

when only few parts (or a single one) are visible.

In the remainder of the paper, we first discuss related

work in Section 2, we describe our approach in sections 3

and 4, and we evaluate it in Section 5 on challenging

datasets.

2. Related Work

3D object detection has a long history, and we focus here

on representative works. A well-established research direc-

tion relies on edges [10, 21, 14], but they are sensitive to

large occlusions and clutter. More recently, keypoint-based

methods became popular [34, 41, 42] probably because key-

points can be extracted and matched more reliably. Un-

fortunately, the use of keypoints is limited when the target

object is poorly textured. Some works combine keypoints

with edges [31, 3] or stereo information [25]. However, ex-

tracting and matching edges remains delicate, and requir-

ing a stereo configuration limits the applicability of the 3D

tracker.

Besides keypoints, silhouettes and region based methods

have also been proposed. In [29, 28], 3D tracking problem

is considered as joint 2D segmentation and 3D pose estima-

tion problem, and the method looks for the pose that best

segments the target object from the background. Contours

and edges are used in [2] with multiple hypotheses to pro-

vide robust pose estimation. Partial occlusions, however,

are difficult to handle with such approaches.

The development of inexpensive 3D sensors such as the

Kinect has recently sparkled different approaches to 3D ob-

ject detection. [5, 32] use votes from pairs of 3D points and

their normals to detect 3D objects. [18] uses a decision tree

applied to RGB-D images. [13] uses a template-based rep-

resentation for dealing with poorly textured objects. The

more recent [1, 38] rely on recognition of local patches.

However all these methods were designed for RGB-D im-

ages, which are not an option in our target applications.

Like [37] and [12], we learn 3D poses. Nonetheless, our

part-based approach allows us to be much more robust to

occlusions, while such approaches are not straightforwardly

generalizable to a part-based framework.

Since our approach is based on object parts, it is also

related to works such as [26, 27, 45, 20] that mostly fo-

cus on category rather than instance detection. These works

were mostly motivated by the success of the Deformable

Part Model [7] developed for 2D detection, which was ex-

tended successfully to 3D, e.g. in [27]. [45] also performs

3D tracking through part-based particle filtering by integrat-

ing multi-view. [26] uses contours as parts. In [20], 3D

shared parts are learned with CAD models and real images

for fine pose estimation. However, these works are not ro-

bust to occlusions of some of the parts, especially because

the 2D location of the part is solely considered to constrain

the object pose.

Finally, a very active and related field is SLAM (Simul-

taneous Localization and Mapping) [15, 24, 6]. On one

hand, SLAM does not require prior 3D knowledge, but on

the other hand it is limited to estimate a relative pose only,

which is not suitable for many Augmented Reality applica-

tions. Moreover SLAM is prone to fail on dynamic scenes.
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(a) (b)
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Figure 3. Detecting the parts. (a) An input image of the box.

(b) The output of the CNN
part-det for each image location. Each

color corresponds to a different part. (c) The output after Gaus-

sian smoothing. (d) The detected parts, corresponding to the local

maximums in (c).

Figure 4. Architecture of CNN
part-det for part detection. The last

layer outputs the likelihoods of the patch to correspond to each

part or to the background.

3. Part Pose Representation and Estimation

Given an input grayscale image2, we want to estimate the

3D pose p of a calibrated projective camera with respect to

a known rigid object. We assume that we are given a 3D

model of the object, for example in the form of a triangular

mesh, and a set of manually labelled parts on the object. A

very small number of parts is required by our framework;

in all our tests we employed at most 4 parts for an object.

We currently select the parts by hand (automatic selection

is left to future work). Ideally, the parts should be easy to

detect in images, and spread over the object.

In this section, we justify our choice for the representa-

tion of the pose parts, and we explain how we detect the

parts and predict their poses. The next section describes our

algorithm to compute the pose of the camera based on the

predicted pose parts. The main notations are resumed in

Table 1.

3.1. Representing the Part Poses

One can think of different ways to represent the 3D poses

of parts of objects. For example, it is possible to use homo-

graphies [16, 12, 45]. However, this assumes that the part

surface is planar, and makes it difficult to merge the contri-

butions of the different parts.

Another possibility we considered is to predict from the

2All experiments of this work were performed with VGA images

symbol meaning

i index of a training image

j index of a part

k index of a control point or its projection

l index of a detection

Cj 3D center of the j-th part

cij projection of Cj in the i-th image

ĉjl l-th detection for the projection of Cj in an input image

sjl score for this detection

Vjk k-th 3D control point of the j-th part

vijk projection of Vjk in the i-th image

v̂jk prediction for the projection of Vjk (no outlier)

Sjk covariance for prediction for the projection of Vjk (no outlier)

v̂jkl l-th prediction for the projection of Vjk in an input image

q an image patch

Table 1. Main notations.

appearance of the part, a 3D rotation matrix and the depth

value of its center. Assuming an orthogonal projection, it

is possible to retrieve the 3D translation as well, from the

patch center image location and the predicted depth. How-

ever, this representation is not translation invariant in a full

perspective model. Also it is not clear how to merge ro-

tations for estimating the pose of the whole target object.

Finally, it is difficult to predict the depth accurately from

the image patch, as our results will demonstrate.

Since our final solution is based on 3D control points,

as already mentioned, we could also directly predict the 3D

locations of the 3D Control Points in the camera reference

system: This makes combining the poses simpler, as this

only involves computing the rigid motion between two sets

of 3D points [40]. Unfortunately, this representation is not

translation invariant. Moreover, as for the previous option,

it requires to directly predict the depths of the points, which

is far from accurate in our experiments.

This is why we propose to represent the part pose as the

2D reprojections of a set of 3D control points. This repre-

sentation is fully translation invariant; it is straightforward

to combine the poses of an arbitrary number of parts, by

simply grouping all the 2D reprojections together and solv-

ing a PnP problem; we do not need to predict the depth of

the 3D points, which is difficult to do accurately. These ad-

vantages entail a tremendous accuracy gain, as showed by

our results in Section 5.2. In our experiments, we used 7

control points for each part, spanning 3 orthogonal direc-

tions, as shown in Fig. 2(a), however other configurations

could probably be used.

3.2. Detecting the Parts

We use a set of registered training images of the target

object under different poses and lighting (as the one shown

in Fig. 3(a)) to learn to detect the parts and predict their

control points. We will denote our training data as:

T =
n⇣

Ii, {cij}j , {vijk}jk

⌘o
i

, (1)
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Figure 5. Architecture of a CNN CNN
cp-pred-j for predicting the

projections of the control points.

where Ii denotes the i-th training image, cij the projection

of the center Cj of the j-th part on Ii, and vijk the projec-

tion of the k-th control point of the j-th part in this image.

During an offline stage, we train a first CNN with a stan-

dard multi-class architecture shown in Fig. 4 to detect the

parts. The input to this CNN is a 32 × 32 image patch q,

its output consists of the likelihoods P (J = j | q) of the

patch to correspond to one of the NP parts. We train the

CNN with patches randomly extracted around the centers

cij of the parts in images Ii and patches extracted from the

background, and by optimizing the negative log-likelihood

over the parameters w of the CNN:

bw = argmin

NPX

j=0

X

q2Tj

− log softmax(CNNpart-det
w (q))[j] ,

(2)

where Tj is a training set made of image patches cen-

tered on part j and T0 is a training set made of image

patches from the background, CNNpart-det
w (q) is the NP +1-

vector output by the CNN when applied to patch q, and

softmax(CNNpart-det
w (q))[j] is the j-th coordinate of vector

softmax(CNNpart-det
w (q)).

At run time, we apply this CNN to each 32 × 32 patch

in the input images captured by the camera. This can be

done very efficiently as the convolutions performed by the

CNN can be shared between the patches [9]. As shown in

Fig. 3, we typically obtain clusters of large values for the

likelihood of each part around the centers of the parts. We

therefore apply a smoothing Gaussian filter on the output

of the CNN, and retain only the local maximums of these

values as candidates for the locations of the parts.

The result of this step is, for each part j, a set Sj =
{(ĉjl, sjl)}l of 2D location candidate ĉjl for the part to-

gether with a score sjl that is the value of the local maxima

returned by the CNN. We will exploit this score in our pose

estimation algorithm described in Section 4. We typically

get up to 4 detections for each part in a given input image.

3.3. Predicting the Reprojections of the Control
Points and their Uncertainty

Once the parts are detected, we apply a second CNN to

the patches centered on the candidates ĉjl to predict the pro-

jections of the control points for these candidates. Each part

has its specific CNN. As shown in Fig. 5, these networks

take as input a patch of size of 64 × 64. The output layer

is made of 2NV neurons, with NV the number of control

points of the part, which predicts the 2D locations of the

control points. We train each of these CNNs during an of-

fline stage by simply minimizing over the parameters w of

the CNN the squared loss of the predictions:

bw = argmin
X

(q,w)2Vj

||w − CNNcp-pred-j
w (q)||2 , (3)

where Vj is a training set of image patches q centered

on part j and the corresponding 2D locations of the

control points concatenated in a (2NV )-vector w, and

CNNcp-pred-j
w (q) is the prediction for these locations made

by the CNN specific for part j, given patch q as input.

At run-time, we obtain for each ĉjl candidate, predic-

tions {v̂jkl} for the control points projections. In addition,

we estimate the 2D uncertainty for the predictions, by prop-

agating the image noise through the CNN that predicts the

control point projections [43]. Let us consider the matrix:

SV = Jĉ(σI)J
>
ĉ

, (4)

where σ is the standard deviation of the image noise as-

sumed to be Gaussian and affect each image pixel indepen-

dently, I the 642×642 Identity matrix, and Jĉ the Jacobian of

the function computed by the CNN, evaluated at the patch

centered on the candidate ĉ. Such a Jacobian matrix can

be computed easily with a Deep Learning framework such

as Theano, by composing the Jacobians of the successive

layers of the network. We neglect the correlation between

the different control points to finally extract from the block

diagonal of SV the 2 × 2 uncertainty matrix noted Sjkl be-

low for each control point. An example of predicted control

points and their uncertainties is shown in Fig. 2(b). Note

that we can easily compute the Sjkl matrices without hav-

ing to compute the entire, and very large, product in Eq. (4).

4. Estimating the Object Pose

Thanks to our representation for the part poses, estimat-

ing the object pose is straightforward, since each control

point provides a 3D-2D correspondence. We describe here

the method we use, other methods are probably possible.

We assume that we are given a prior on the pose p, in the

form of a Mixture-of-Gaussians {(pm, Sm)}, as was done

e.g. in [23]. This prior is very general, and allows us to de-

fine the normal action range of the camera. Moreover, the

pose computed for the previous frames can be easily incor-

porated within this framework to exploit temporal consis-

tency.

In the following, we will first assume that this prior is de-

fined as a single Gaussian distribution of mean and covari-

ance (p0, S0). We will extend our approach to the Mixture-

of-Gaussians in Section 4.3.
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Figure 6. Visualisation of the pose prior for an electric box: Pro-

jections of the box by each of the 9 Gaussians centers pm.

4.1. Using a single Gaussian Pose Prior

Let us first assume there is no outlier returned by the part

detection process or by the control point prediction, and that

all the parts are visible. Then, the object pose p̂, or equiv-

alently the camera pose, can be estimated as the minimizer

of F (p), with F (p) =

1
NP

P
j,k

dist2(Sjk,Γp(Vjk), v̂jk)+

(p− p0)
>S

−1
0 (p− p0) ,

(5)

where the sum is over all the control points of all the parts,

and Γp(V) is the 2D projection of V under pose p. v̂jk is

the projection of control point Vjk and Sjk its uncertainty

estimated as explained in Section 3.3—since we assume

there is no outlier, we dropped here the l index correspond-

ing to the multiple detections. dist(.) is the Mahalanobis

distance:

dist2(S,v1,v2) = (v1 − v2)
>
S
−1(v1 − v2) . (6)

F (p) is minimized using the Gauss-Newton algorithm ini-

tialized with p0.

4.2. Robust detection of parts

In practice, for the location of the j-th part, the detection

procedure described in Section 3.2 can get a set of hypothe-

ses Sj , and at most one is correct.

Checking all the possible combinations would be time

consuming, so we rank the candidates according to their

score sjl, keep the best four candidates for each part and

greedily examine the possible sets C of correspondences be-

tween a part and the candidate detections.

Similarly to [23], we exploit the pose prior for first

quickly evaluating if the correspondences in C can yield a

good pose estimate.

We only consider a set C if

∀j ∈ C : ρ̃j < T 2

with ρ̃j = ρj − ρĵ
ρj = dist2(Ŝ0(Cj),Γp0

(Cj), ĉjl)

(7)

where T = 40, and where Ŝ0(Cj) = J S0J
>, with J the

jacobian of Γp0
(Cj), is the covariance of the projection

Γp0
(Cj) of Cj , and ρĵ is a random candidate of the set

(since it is reasonable to suppose that at least one candidate

of a part has been reliably detected).

If C passes this test, we compute the average distance

ρ = 1
|C|

P
j ρ̃j of its points. We keep the NC sets with the

lowest average distance (in practice, we set NC = 4 for all

our experiments); we run the Gauss-Newton optimization of

Eq. (5) using each C to obtain a pose estimate, and evaluate

it as explained in Section 4.3.

4.3. Using a Mixture-of-Gaussians for the Pose
Prior

In practice, the prior for the pose is in the form of a

Mixture-of-Gaussians {(pm,Σm)}m with M = 9 com-

ponents (the prior employed for the BOX dataset is shown

in Fig.6). We apply the method described above to each

component, and obtain MNC possible pose estimates:

p̂(1), . . . , p̂(MNC).

To finally identify the best pose estimate, we evaluate

each p̂(n), employing a weighted sum of several cues: the

angle between the quaternions for p̂(n) and the correspond-

ing pm prior; the average reprojection error of the set of

control points C according to p̂(n); the correlation between

the object contours after projection by p̂(n) and the edges

detected in the image. For setting the weights, we train

a simple linear regressor on the training video sequences

to predict the Euclidean distance between p̂(n) and the

groundtruth. At testing time, we use the linear regressor

to evaluate the quality of the computed pose, i.e we keep

the pose that gives the smallest predicted distance.

If the optimization of Eq. (5) converges, we add to the

initial prior the estimated pose and its covariance as part

of the pose prior for the next frame. This helps enforcing

temporal consistency. The pose covariance is obtained us-

ing the Extended Kalman Filter update formula [43] when

optimizing Eq. (5).

5. Experimental Results

In this section, after describing the datasets we used for

evaluating our method, we present and discuss the results

of our evaluation. In Section 5.2 we validate the choice of

reprojections of control points for representing the pose of

each part. Then, in Section 5.3 and 5.4 we present the re-

sults of an extensive comparison with other methods, show-

ing that our approach achieves state-of-the-art performances

on our challenging sequences.

5.1. Datasets

There is currently no standard dataset for benchmarking

3D object detection and tracking methods in presence of
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heavy occlusions and cluttered, dynamic background. We

therefore introduce several datasets for extensive evaluation

of 3D object tracking, consisting of both learning data and

testing video sequences, a CAD model without texture and

the groundtruth pose for all the sequences. For each dataset,

the training set is made of 3000 frames. We test our ap-

proach on the following datasets:

• BOX Dataset: The target object for this dataset is an

electric box. In the test videos, it is manipulated by

a user, filled and emptied with objects, simulating, for

example, a maintenance intervention by a technician.

The training images show the box on a uniform back-

ground, with different objects inside and outside it. A

CAD model is made by a simple parallelepiped. We

use the 4 corners of the box as parts, as shown in Fig. 7.

• CAN Dataset: The target object of this dataset is a

food can. The label is completely blank, and the top

of the can is specular. Distractor objects are present

in the scene and large occlusions occur. Only the can

lid breaks the the cylindrical symmetry of the object,

making the pose estimation almost ambiguous. We use

the top of the can as a single part. A CAD model of the

can is provided.

• DOOR Dataset: This datasets consists of one video

showing a daily set-up where a non-textured door is

opened and closed by a user. Despite the apparent triv-

iality of the sequence, our tests show that it is particu-

larly challenging to track the pose of the door along the

full video, when it moves on a cluttered background.

For this dataset, we track the 3 parts shown in Fig.9,

the knob, the keyhole and the lock of the door. A CAD

model of the door is provided as well.

The images of the training and testing videos of the

datasets were registered using the ARUCO marker tracking

tool [8]. As showed in Fig. 7, we used a full grid of markers

for the learning sequences, while a small set of markers has

been placed far from the objects for the testing sequences.

We then cropped them so that they could not influence de-

tection and tracking performance when testing the methods.

5.2. Validation of the Part Pose Representation

To validate the part pose representation introduced in

Section 3.1, we trained several regressor CNNs for predict-

ing the object pose of all the frames of the first video of the

BOX Dataset. Each CNN was trained to predict a different

part pose representation:

• Averaging Poses: The output of the CNN is a 3D ro-

tation and a depth for each part. The in-plane compo-

nents of the translation are retrieved from the position

of the patch on the image. The full object pose is then

obtained by averaging the parts poses. Rotations were

averaged as proposed in [22].

• 3D Control Points: The output of the CNN are the

(a) (b)

(c)

Figure 7. Training images and control points we used for the

BOX, the CAN and the DOOR datasets.

coordinates of the projected control points shown in

Fig. 2 on the patch and a depth for each control point.

So, the 3D coordinates of the control points in the cam-

era reference system can be computed; the poses of

the parts are then combined by computing the 3D rigid

transform aligning the points in the camera and in the

world reference system in a least-square sense.

• 2D Control Points and PnP: The output of the CNN

is given by the coordinates of the reprojections of the

control points, as described in Section 3.1. The pose is

computed by solving the PnP problem after gathering

all the 3D-2D correspondences given by all the parts.

The results are shown in Fig. 8. The last choice entails a

tremendous accuracy gain over the previous ones.

We also performed two other experiments:

• we replaced the predicted 2D reprojections in the case

of the 3D Control Points experiment by the ground

truth (3D Control Points - GT X and Y);

• as the previous experiment, but replacing the predicted

depths by the ground truth (3D Control Points - GT

Depth);.

In the first case, the results did not improve much. In the

second case, the results are equivalent to the ones of 2D

Control Points and PnP (for sake of clarity, the 3D Con-

trol Points - GT Depth curve is not shown in Fig. 8). This

shows that predicting the depths is a difficult task, while

predicting the 2D locations is much easier.

5.3. Comparison Framework

We compared our approach with three state-of the art

methods, LINE-2D [13], PWP3D [28] and LSD-SLAM [6].

LINE-2D is one of the best methods for rigid object recog-

nition and it proceeds using very fast template matching.

PWP3D is an accurate and robust model-based 3D tracking

method based on segmentation. LSD-SLAM is a recent,

powerful and reliable SLAM system: amongst other things,

it does not require prior 3D knowledge, while we know the
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Figure 8. Pose estimation results for the BOX dataset - video #1 for different parametrizations of the part poses. After computing the

absolute pose error for all the frames, we report the empirical cumulative distribution functions for the rotation and translation components.

Experiment
BOX dataset CAN Dataset DOOR Dataset

Video #1 Video #2 Video #1 Video #2 Video #1

nb. of frames 892 500 450 314 564

LSD-SLAM 0.37 - 0.39* 0.42 - 0.56 0.17 - 0.27 0.38 - 0.58 0.50 - 0.37

PWP3D 0.10 - 0.20* 0.21 - 0.49 0.12 - 0.56 0.13 - 0.51 0 - 0

LINE-2D 0.31 - 0.38 0.34 - 0.45 0.10 - 0.53 0.11 - 0.46 0.12 - 0.06

Our method 0.73 - 0.84 0.60 - 0.85 0.37 - 0.86 0.47 - 0.74 0.78 - 0.66

Table 2. Experimental results. We report the AUC scores for the rotation and the translation errors for the five video sequences of our

datasets. A * after the scores indicates that the method was re-initialized with the groundtruth for frame 500.

3D locations of the control points and their appearances.

The comparison should therefore be taken with caution, as

this method does not aim to achieve exactly the same task

as us. Nevertheless, we believe the comparison highlights

the strengths and weaknesses of the compared methods.

For every testing video, we compare the poses computed

by each method for all frames. Following the evaluation

framework in [36], we align each of the trajectories with

respect to the same reference system. Then, we compute

the absolute pose error for each frame, the empirical cumu-

lative distribution functions for the rotation and translation

components (as shown in Fig.10 for one of the videos), and

report the Area Under Curve (AUC) scores for each of them

in Table 2. The rotation error is computed as the distance

between the exponential maps of the poses.

In each test, the templates for LINE-2D were ex-

tracted by the same 3000 images we employed for train-

ing our method; PWP3D was manually initialized using the

ground-truth pose data, while LINE-2D, LSD-SLAM and

our method do not require any initial pose.

5.4. Results

Quantitative results of our tests are shown in Table 2.

LINE-2D, LSD-SLAM and PWP3D actually fail very fre-

quently on our sequences, drifting or loosing tracking.

In the BOX dataset, on the longest of our video se-

quences, we also re-initialized LSD-SLAM and PWP3D

using the ground-truth pose at roughly half of the video,

but their accuracy over the whole sequence remains outper-

formed by our method. LINE-2D, on the other hand, often

fails matching the templates not only when the contours of

the box are occluded, but also because its appearance is con-

stantly changed by objects put inside and outside it.

For the CAN dataset, we use a single part to track the

full object. In the first video the silhouette of the can is sel-

dom occluded: LINE-2D and PWP3D achieve similar per-

formances, while the lack of texture and the distractor ob-

jects make LSD diverge. In the second video, where occlu-

sions occur more often but the background color is different

from the one of the can, LSD-SLAM performs better. On

both videos, our method consistently outperforms all other

methods.

In the DOOR dataset test, LSD-SLAM fails as soon as

the door starts to move. LINE-2D fails very often because

of the ambiguous contours present in the scene. Finally,

PWP3D immediately looses tracking, while our method

manages to track frames across the whole video. This re-

sult is somehow surprising, since PWP-3D exploits the ap-

pearance of the whole door, while our method just exploits

a minimal part of its structure. We only use the CAD model

for predicting contours and evaluating the computed poses.

5.5. Runtimes

Our current implementation on an Intel Core i7-4820K

desktop with GeForce GTX 780 Ti takes 22 ms for the part

detection, plus 30 ms to predict the control points for each
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Figure 9. Results for the Door and the Can dataset. Top-Middle: Our method detects the door knob, the keyhole and the lock and

successfully retrieves the correct pose of the door. Bottom: Our method correctly estimates the 3D pose of the can using the can tab only.

The video sequences are provided as the supplementary material.
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Figure 10. The rotation and translation error Cumulative Distribution Functions (CDF) on the BOX dataset - Video #1: LSD-SLAM and

PWP3D were both re-initialized with the groundtruth at frame 500.

detected part. The pose estimation takes about 150 ms.

Many optimizations are possible; for example, the control

point predictions for each part could be run in parallel.

6. Conclusion

We introduced a method for detecting an object and esti-

mating its 3D pose in the challenging conditions that occur

in practical applications. The core of our contribution is in

the representation of the 3D pose of discriminative parts of

the target objects. The parameters of this representation—

the projections of the control points—can be inferred from

images using statistical methods; each part provides enough

information to estimate the object pose, and when several

parts are visible, they can be easily combined to obtain a

better estimate than a single part alone.

We believe that this representation, simple and power-

ful, could be useful not only for object instance detection,

but also for the 3D pose estimation of categories of objects,

where the current approaches drastically suffer from partial

occlusions.
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