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SUMMARY

Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the 

biallelic loss of the RB1 gene. To identify the mutations that cooperate with RB1 loss, we 

performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very 

low; RB1 was the only known cancer gene mutated. We then evaluated RB1’s role in genome 

stability and considered nongenetic mechanisms of cancer pathway deregulation. Here we show 

that the retinoblastoma genome is stable, but multiple cancer pathways can be epigenetically 

deregulated. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is 

required for tumor cell survival. Targeting SYK with a small-molecule inhibitor induced 

retinoblastoma tumor cell death in vitro and in vivo. Thus, RB1 inactivation may allow 

preneoplastic cells to acquire multiple hallmarks of cancer through epigenetic mechanisms, 

resulting directly or indirectly from RB1 loss. These data provide novel targets for 

chemotherapeutic interventions of retinoblastoma.

Retinoblastoma is a rare childhood cancer of the retina that can develop in a sporadic or a 

heritable form and is fatal if untreated. When the RB1 gene was cloned, it was found to 

undergo biallelic inactivation in virtually all retinoblastoma tumors1. Since then, hundreds 

of genetic lesions have been identified in human cancer. These genetic lesions can be 

grouped based on the signaling pathways they affect that have direct or indirect mechanistic 

links to many of the common cellular properties or “hallmarks” of cancer. Thus, the rate of 

cancer progression is related to the kinetics of acquisition of multiple genetic lesions and/or 

epigenetic changes that ultimately lead to activation of growth-signaling pathways, evasion 

of cell death and senescence, acquisition of limitless replicative potential, sustained 

angiogenesis, and local tissue invasion and metastasis2.

RB1 inactivation confers limitless replicative potential to retinoblasts and it is rate limiting 

for retinoblastoma tumorigenesis3. However, the mechanisms that enable retinoblastoma 
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cells to acquire the additional hallmarks of cancer remain unknown. Evidence from 

molecular, cellular, and cytogenetic studies suggest that the RB1 protein is required for 

maintaining chromosomal stability4,5, and its loss leads to chromosome instability (CIN) in 

cells maintained in culture. These data raise the possibility that RB1 inactivation may 

underlie the rapid acquisition of cooperating mutations in key cancer pathways through CIN. 

Alternatively, epigenetic changes may play a more dominant role in cooperating with the 

loss of RB1 retinoblastoma tumorigenesis. RB1 has been implicated in regulating most 

major epigenetic processes, including miRNA regulation, DNA methylation, histone 

modification, and ATP-dependent chromatin reorganization6–10. Thus, inactivation of RB1 

in retinoblasts may lead to the rapid epigenetic deregulation of cancer genes that contribute 

to the essential cellular properties of retinoblastoma.

In this study, we characterized the genetic and epigenetic landscapes of retinoblastoma and 

explore the role of RB1 in regulating genomic stability. Whole-genome sequencing (WGS) 

of 4 retinoblastomas and their paired germline DNA samples showed no genetic lesions in 

known tumor suppressor genes or oncogenes, other than RB1. More importantly, an 

orthotopic xenograft derived from 1 of the primary tumors showed no evidence of clonal 

variation or new coding-region mutations. This finding suggests that retinoblastoma’s 

genome is more stable than previously believed.

Unlike the genetic landscape of retinoblastoma, the epigenetic profile shows profound 

changes compared to that observed in normal retinoblasts. One of the most striking results 

was the induction of the expression of the proto-oncogene SPLEEN TYROSINE KINASE 

(SYK) in human retinoblastoma. SYK is required for tumor cell survival, and inhibition of 

SYK with a small-molecule inhibitor caused the degradation of MCL1 and caspase-

mediated cell death in retinoblastoma cells in culture and in vivo. These findings highlight 

how comprehensive genetic and epigenetic analyses of tumors can be integrated and lead to 

the discovery of promising new therapeutic approaches and shed light on the mechanisms 

underlying the rapid progression of retinoblastoma following RB1 inactivation.

Retinoblastoma Whole-Genome Sequencing

We performed WGS analysis on 4 primary human retinoblastoma samples (Section S1 and 

Table S1) and from matched normal tissue. Local tumor cell invasion but not metastasis was 

evident in each patient (Fig. 1a–c and Fig. S1). We generated an orthotopic xenograft, 

SJRB001X, of the primary tumor SJRB001 by inoculating primary tumor cells into the 

vitreous of the eyes of immunocompromised mice (Section S2). SJRB001X exhibited 

molecular, genetic and histopathologic features similar to SJRB001 (Fig. 1d–f, Figs. S2–4, 

Tables S2–4 and Section S3).

Using a paired-end sequencing approach, we generated 1,040.9 Gb of sequence data for the 

samples described; 956.8 Gb (92%) were successfully mapped to the NCBI 36.1 reference 

genome (Section S4, Table S5). The average genome coverage was 28.9×, and the average 

exon coverage was 23.8× with 98.4% of SNPs detected across all 9 genomes showing 

concordance with their corresponding SNP array genotype calls at the same genomic 
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positions (Table S5). To provide additional sequence coverage, we performed transcriptome 

sequencing of SJRB001-4 (Section S5, Table S6).

We identified 668 validated somatic sequence mutations and 40 structural variations (SVs) 

across the 4 cases (Table 1). These included 23 tier-1 mutations in genes, 35 tier-2 mutations 

in evolutionarily conserved regions of the genome (Section S6), 309 tier-3 mutations in 

nonrepetitive regions of the genome that are not part of tiers 1 and 2; and 301 tier-4 

mutations in repetitive sequences in the genome (Table 1 and Table S7). The average 

number of sequence mutations was 167 per case (range, 56–258), with only 3.25 mutations 

per case (range, 0–5) resulting in amino acid changes (Table 1). The estimated mean 

mutation rate was 6.7×10−7 per base (range 1.03×10−7–2.17×10−8), which is 15-fold less 

than that in adult tumors analyzed by WGS, except for AML11. The predominant changes 

were C>A and G>T transversions (Fig. S5), which is consistent with the possibility that 

some of the transversions result from production of 8-Oxoguanine during oxidative stress. 

SJRB002 had no somatic sequence variations that resulted in amino acid changes; the only 

SVs were the loss of heterozygosity (LOH) at the RB1 locus and a gain of chromosome 6p. 

This suggests that very few genetic lesions are required for retinoblastoma progression after 

RB1 inactivation.

RB1 gene inactivation in retinoblastoma

Both RB1 alleles were inactivated in each sample (Figs. S6, S7). SJRB002 and SJRB003 had 

mutations in RB1 combined with copy number–neutral LOH, and SJRB001 and SJRB004 

had somatic sequence mutations combined with RB1-promoter hypermethylation (Figs. S6–

8). Deep-sequence analysis of the germline sample from SJRB002 revealed that about 10% 

of reads contained the R445 nonsense mutation, suggesting the presence of germline 

chimerism for the RB1 mutation (Fig. S6). Combining the WGS data with SNP array data of 

an additional 42 samples, we found that tumors from patients with lower regional nucleotide 

diversity were much less likely to undergo LOH at the RB1 locus (Tables S8, S9, Section 

S7). These data show for the first time a significant association (p=8×10−8, Fisher’s exact 

test) between a germline genetic variation and mechanism of biallelic RB1 inactivation in 

retinoblastoma.

Recurrent lesions in retinoblastoma

To determine whether any of the 11 genes with somatic mutations that caused amino acid 

changes or a frameshift in the coding region (Table 1, Fig. 2a,b, Figs. S9, S10, Section S8, 

Table S10), were recurrently mutated in retinoblastoma, we sequenced all exons from the 11 

genes in our recurrent screening cohort of 42 retinoblastomas (Section S4). Only BCOR was 

recurrently mutated in of retinoblastoma (6/46, 13%). Five of the samples had BCOR 

mutations that resulted in premature truncation of the encoded protein, and 1 sample had a 

focal gene deletion (Fig. 2c, Table S11, Fig. S11).

We also used the WGS data to identify somatic SVs including whole-chromosome gains and 

losses, focal deletions (DEL), insertions (INS), inversions (INV), intrachromosomal 

rearrangements (ITX), interchromosomal rearrangements (CTX), and regions of LOH (Fig. 

2a–c, Section S9, Table S12, Fig. S12). The average number of SVs was 10 per case (range, 
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0–24) (Table 1). SJRB001 had 4 SVs (2 DEL and 2 INS) including a gain of a region of 

chromosome 2 spanning MYCN (Table S12) and the only chromosomal lesion in SJRB002 

was a gain of 6p, which occurs in about 40% of human retinoblastomas12 (Fig. 2b). Only a 

few genomic regions were affected by the SVs in SJRB003 and SJRB004 (Figs. S10, S13, 

S14, Table S12).

Orthotopic retinoblastoma xenograft

The genomic landscape of the orthotopic xenograft was remarkably similar to that of the 

primary tumor, despite continuous growth and multiple passages in vivo over 9 months (Fig. 

2, Table 1). All of the single-nucleotide variants (SNVs) and SVs detected in SJRB001 were 

retained in SJRB001X. Only 67 new SNVs and 4 SVs were identified in the xenograft, and 

none targeted annotated genes (Fig. 2, Table 1). Moreover, each mutation was identified at a 

subclonal level (range, 20%–30%) and the mutant allele frequency for the Tier1-4 lesions in 

SJRB001 was retained in SJRB001X (Supplementary Fig. 15). This result was surprising 

because several studies in mice and cell cultures have linked RB1 inactivation to defects in 

chromosome segregation that result in aneuploidy 4,5,13–15 and CIN4. We measured the 

distance between sister chromatids, between kinetochores, and the proportion of lagging 

chromatids in 2 RB1-deficient human retinoblastoma orthotopic xenografts (SJRB001X and 

SJRB002X)16. Consistent with results from RB1-deficient RPE cells4, the distances between 

sister chromatids and kinetochores were increased, and there was evidence of lagging 

chromosomes (Figs. S16, S17). However, less variation in ploidy was observed during 

spectral karyotype (SKY) analysis of SJRB001X and SJRB002X that was more consistent 

with the ploidy of wild-type cells (Fig. 3a,b, Table S13). Moreover, CNVs were much lower 

in our cohort of 46 retinoblastomas than in tumors with known genome instability such as 

ovarian cancer (Fig. 3c). Together, the cytogenetic data and WGS data suggest that the 

genome is stable and newly acquired lesions do not provide a selective growth advantage 

and are thus likely passenger mutations.

Identifying deregulated cancer pathways

There are many examples over the past several decades of epigenomic changes such as 

DNA methylation contributing to tumorigenesis17–19. Indeed, a recent study demonstrated 

changes in DNA methylation in Wilm’s tumors20 which, tend to have stable genomes like 

retinoblastomas. To explore whether epigenetic deregulation of genes or pathways promotes 

tumorigenesis in retinoblastoma, we carried out an integrative analysis of chromatin 

immunoprecipitation (ChIP) data, DNA-methylation data and gene expression data using 

order statistics. The SJRB001X sample was used for ChIP assay (Figs. S18–20), and 

primary tumor and xenograft samples were used for both DNA-methylation and gene 

expression assays. In all three analyses, experimental results in RB tumors were compared to 

those from human fetal retinae. A total of 104 genes, including 15 known cancer genes (Fig. 

4a and Tables S14, S15), were found to have significant difference between RB tumors and 

human fetal retina, indicating that several key cancer genes were epigenetically deregulated.
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SYK is a novel therapeutic target

SYK is the 5th most significant gene identified by the integrative analysis and the only up-

regulated kinase gene (Table S15 and Fig. 4a). SYK is expressed throughout the 

hematopoietic system, regulates immunomodulatory signaling, and has been implicated in 

several hematologic malignancies21–24. Small-molecule inhibitors of SYK have been 

developed to treat autoimmune disorders25, and 2 of those agents, BAY61-3606 and R406, 

have shown efficacy in preclinical leukemia studies26–28.

ChIP-on-chip analysis showed increased activating histone modifications (H3K4me3 and 

K3K9/14Ac) at SYK’s promoter, and the repressive histone marker (H3k9me3) was 

unchanged. RNA polymerase II binding to the SYK promoter was also increased (Fig. 4b, 

Tables S14, S15). These ChIP-on-chip results were validated in independent samples by 

real-time RT-PCR analysis (Fig. 4c), and we confirmed the increase in SYK gene expression 

(Fig. 4d). SYK protein levels were higher in human retinoblastoma orthotopic xenografts 

and cell lines than in human fetal retinae (Fig. 4e). To determine whether SYK is expressed 

in primary human retinoblastomas, we performed immunohistochemistry on a 

retinoblastoma tissue microarray (TMA) or whole eye sections. In total, 100% (82/82) 

showed very strong expression (3+) of SYK in all tumor cells; SYK was not expressed in 

normal retina (Fig. 4f). SYK’s kinase activity is regulated through autophosphorylation at 

the Tyr525/526 residues within its catalytic domain. These sites were phosphorylated in 

retinoblastoma cells, and this phosphorylation was reversed by BAY 61-3606 or R406 

exposure (Fig. 4g and data not shown).

To determine whether SYK expression is required for retinoblastoma growth, survival, or 

both, we generated an shRNA to SYK and cloned it into the lentiviral vector Lenti-SYK-9. 

Lenti-SYK-9 efficiently knocked-down SYK in retinoblastoma cell lines (Fig. S21) and 

dramatically increased apoptosis in retinoblastoma cells (Fig. 4h, Fig. S21). Similar results 

were obtained in vivo using SJRB001X (data not shown). We used an empty lentiviral 

vector and a lentiviral vector encoding an SYK shRNA that less effectively reduced SYK 

expression (Lenti-SYK-6) as controls. Cell lines that do not express SYK (BJ, 293T, and 

uninduced Jurkat cells) were used as controls and the Lenti-SYK-9 lentivirus had no effect 

on the growth or apoptosis of the control cells.

We exposed retinoblastoma cell lines that express high levels of SYK (Weri1 and RB355) to 

various concentrations of the SYK inhibitors BAY 61-3606 or R406 for 72 hours and then 

measured cell viability. Jurkat (uninduced) and 293T cells were used as negative controls. 

Weri1 and RB355 cells were sensitive to both SYK inhibitors, but the Jurkat and 293T cells 

were unaffected (Fig. 5a). Transmission electron microscopy of retinoblastoma cells treated 

with the SYK inhibitors showed morphologic features consistent with cell death and 

mitochondrial defects (Fig. S22); this was confirmed by scoring the proportion of activated 

caspase-3+ cells (Fig. 5b, c, Fig. S22). Jurkat cells showed no increase in activated 

caspase-3+ cells after treatment with 10 µM R406 or BAY 61-3606 (data not shown).

The proportions of cells from each line that incorporated EdU were similar, suggesting that 

retinoblastoma’s cell cycle is not affected by SYK inhibition (Fig. 5d, e, Fig. S22). The 
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effects of targeting SYK were partially rescued by the pan-caspase inhibitor Q-VD-OPH 

(Fig. S22). Less MitoTracker Red accumulated in retinoblastoma cells exposed to the SYK 

inhibitors (Fig. S22), yet treatment of Jurkat cells with either inhibitor had no effect on 

MitoTracker Red accumulation (data not shown). Inhibiting SYK in B-CLL cells reduced 

their autophosphorylation of SYK and destabilized MCL126,29, the only antiapoptotic 

member of the BCL-2 family that is upregulated in retinoblastoma (data not shown). Both 

inhibitors reduced autophosphorylation of SYK on Y525/526 (Fig. 4g) and reduced MCL1 

expression coincident with apoptosis (Fig. 5f).

We tested the efficacy of BAY61-3606 in vivo on our SJRB001X model30. The 

chemotherapy regimen consisted of a single subconjunctival dose of BAY 61–3606 on Day 

1 and daily doses of topotecan (TPT) on Days 1–5 until either 6 courses (21 days per course) 

were administered, or the tumor progressed and surgical enucleation was required (Fig. 

5g,h). BAY 61-3606+TPT significantly improved outcome (p=0.003) (Fig. 5i), and its 

efficacy was correlated with an increase in activated caspase-3+ cells in the treated eyes 

(Fig. 5j). Previous studies using this model have shown that TPT combined with 

subconjunctival carboplatin had no effect on tumor response or outcome 30, so the 

improvement seen here can be attributed to targeting SYK. MCL1 expression was also 

reduced in the treated eyes, which is consistent with increased apoptosis and targeting SYK 

in vivo (Fig. 5k). Together, these results suggest that SYK is a promising new target for 

treating retinoblastoma.

DISCUSSION

It has been suggested that biallelic loss of RB1 directly causes genomic instability, which in 

turn contributes to the rapid development of overt retinoblastoma. Our data failed to support 

this hypothesis. The mutational rate and number of SVs per case that we assessed were 

among the lowest reported in human cancer. Moreover, the only non-silent mutation in 

SJRB002 was in RB1, and no SVs were detected. The minimal increase in passenger 

mutations in SJRB001X cells, despite prolonged passage, was also consistent with a 

relatively stable genome. These results support those from previous studies showing that 

retinoblastoma karyotypes are stable in vitro and in vivo31,32. Our data suggest that genomic 

instability is neither a hallmark of retinoblastoma nor sufficient to explain how 

retinoblastomas progress so rapidly.

We propose that epigenetic mechanisms contribute to retinoblastoma tumorigenesis. We 

identified several known oncogenes and tumor-suppressor genes with histone modifications 

and altered DNA methylation that correlated with changes in gene expression. Our key 

discovery was that SYK is important in retinoblastoma. Retinal progenitor cells and retinal 

neurons express little to no SYK, and SYK has no known function in the developing visual 

system. Moreover, no recurrent genetic lesions in SYK are associated with retinoblastoma to 

suggest that this gene drives tumorigenesis. Only by integrating epigenetic and gene 

expression analyses, did we identify SYK as an important oncogene in retinoblastoma. This 

is important not only for expanding our understanding of the biology of retinoblastoma but 

also for advancing immediate therapeutic options that were not previously considered such 

as BAY 61-3606 or R406. This study highlights the value of integrating WGS analyses of 
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the genetic and epigenetic features of tumor genomes toward finding a cure for cancers such 

as retinoblastoma.

METHODS SUMMARY

Full details of sample acquisition, molecular and biochemical procedures, informatics and 

whole genome sequencing and animal and drug studies are provided in the Supplementary 

Information. The SJCRH IRB approved experiments involving human subjects and 

informed consent was obtained from all subjects. For animal studies, all experiments were 

performed in accordance with federal guidelines and regulations. The SJCRH IACUC 

approved all animal experiments. The dbGaP accession assigned to this study is 

phs000352.v1.p1. Lentiviral vectors (GIPZ with Lenti-SYK-9 #V3LHS-366147 and Lenti-

SYK-6 #V3LHS-366143) encoding shRNAs to SYK were purchased from OpenBiosystems, 

Inc.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of retinoblastomas samples

a–c, Representative retinoblastoma tumor section(SJRB001) stained with hematoxylin and 

eosin (H&E) showing choroidal and optic nerve invasion (arrow). d–f, H&E-stained section 

of the SJRB001X orthotopic xenograft with choroidal (e) and optic nerve (f) invasion 

(arrows). Abbreviations: AC, anterior chamber; ON, optic nerve; Sc, sclera. Scale bars: 25 

µm.
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Figure 2. Genomic profiles of SJRB001-2 and SJRB001X

a,b, CIRCOS plots of genetic alterations in 2 retinoblastomas and the matched orthotopic 

xenograft. Loss of heterozygosity (orange), amplifications (red), and deletions (blue) are 

shown. Interchromosomal translocations (green lines) and intrachromosomal translocations 

(purple lines) are indicated. Sequence mutations in Refseq genes included silent single 

nucleotide variants (SNVs, green), missense SNVs (brown), nonsense SNVs (dark blue), 

splice-site mutations (pink), and insertion/deletion mutations (indels, red). c) BCOR 

mutations identified in the recurrency cohort.
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Figure 3. Analysis of aneuploidy and CIN in retinoblastoma

a, Chromosomal missegregation of SJRB001X cells after at least 21 rounds of cell division 

is plotted in red. b, Representative SKY image of SJRB001X after the third passage in mice. 

c, Alterations in the 46 Rb cases (Rb) compared to 153 high-grade serous ovarian cancer 

(Ov) from TGCA. The median chromosomal lesions for retinoblastoma (Rb) was 1.5% and 

27.7% for ovarian cancer (Ov).
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Figure 4. SYK Is Expressed in Retinoblastoma and Is Required for Survival

a, Whole-genome view of the gene ranks based on integrating ChIP-on-chip, methylation, 

and gene expression results. Y-axis is –log(p), where p is a p-value of Q-statistic corrected 

for multiple testing. Significantly (FDR ≤10%) downregulated (green) or upregulated (red) 

genes are shown. b, c, ChIP validation of histone markers of the SYK promoter including 

quantification by quantitative PCR (qPCR) with TaqMan probes. Each bar is the mean and 

standard deviation of triplicate samples. d, SYK gene expression measured by qPCR in fetal 

week 20 retina (fetal), primary retinoblastoma (tumor), orthotopic xenografts (SJRB001X 

and SJRB002X) and cell lines. Each bar is the mean and standard deviation of duplicate 

samples normalized to GPI1 expression. e, Immunoblot of SYK (green) and actin (red) in 

orthotopic xenografts, human fetal retina, and representative cell lines; black and white 

representation of the SYK immunoblot is in the lower panel. f, H&E (purple) and anti-SYK 

(brown) immunohistochemistry of retinoblastoma tissue. g, Immunoprecipitation analysis of 
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SYK and pSYK Y525/526 from Weri1 retinoblastoma cells. h, Viability was measured in 

triplicate cultures 72 hours after infection of retinoblastoma cells with a lentivirus vector 

expressing either a control lentivirus or an shRNA against SYK. Scale bars: 10 µm.
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Figure 5. Retinoblastoma Cells are Sensitive to SYK Inhibitors

a, Dose response for SYK inhibitors R406 (red) and BAY 61-3606 (black) in RB355 

retinoblastoma cells and a negative control (Jurkat). Each data point is the mean and 

standard deviation of triplicate samples. b–e Immunofluorescence of activated caspase 3 or 

EdU(red) before and after treatment of RB355 cells with R406 or BAY 61–3606. A total of 

250 cells were scored in duplicate for each sample and each treatment condition to derive 

the mean and standard deviation. Nuclei were stained with DAPI (blue). f, Treatment of 

stimulated Jurkat or RB355 cells with 5 µM BAY 61–3606 for 24 hours reduced MCL1 
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expression. g, Schematic of the treatment schedule for mice with SJRB001X tumors. h, 

Representative MR images of a mouse whose tumor responded after 4 courses of treatment 

with BAY 61–3606 (left) and another whose disease progressed during treatment (right). i, 

Survival curves show that BAY 61–3606+TPT treatment improved outcome. j, 

Immunostaining for activated caspase 3 (arrows) in untreated or BAY 61–3606–treated 

eyes. k, untreated or BAY 61-3606–treated eyes. k, Immunoblot showing reduced MCL1 

protein after BAY 61–3606 or BAY 61–3606+TPT treatment. Scale bars b, d: 5 µm; j: 10 

µm.
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