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ABSTRACT The fuzziness and randomness are significant epistemic uncertainty within the qualitative

categorization of the two critical factors, the frequency and severity, which are not fully considered in the

traditional risk matrix. This paper mainly proposes a cloud risk matrix method for the risk assessment of

process safety considering the epistemic uncertainty in expert elicitation. The cloud model is employed to

provide a mathematical expression for the fuzziness and randomness in the linguistic variables by its two

numerical characteristics entropy En and hyperentropy He. An adjusted Mamdani inference algorithm is

constructed for the determination of an integrated risk cloud given the value of input variables. And the

centroid method is improved to be adapted to the calculation of risk index from the enormous cloud droplets

in the integrated risk cloud. A case study of risk assessment for distillation column unit is performed to

illustrate the process of cloud risk matrix in detail, and the validity and rationality are verified by contrast to

the results from the fuzzy risk matrix. Results indicate the proposed method can handle the randomness

of qualitative concepts, which is more suitable to the practical condition. Moreover, the effect of the

hyperentropy He on the randomness of risk index is also investigated and discussed for the reference to

parameter selection. The proposed cloud risk matrix can provide an effective risk inference tool in a wide

range of engineering fields.

INDEX TERMS Risk matrix, cloud model, risk assessment, Mamdani inference algorithm, process safety.

I. INTRODUCTION

Predictive risk analysis and evaluation for industrial process

safety have obtained more attention because of the increas-

ing complexity of production systems and the reduction of

people’s tolerance to undesired incidents. The failure of a

component in a complex system can easily cause a domino

effect, bringing a series of bad performances of other parts or

even catastrophic events. Hazardmaterials with flammability,

toxicity, or pollution escaping from the processing system

may result in a serious threat to the safety of human life, prop-

erty, and environment. The main purpose of risk assessment

for a process system is to identify the potential failure causes,

determine the risk degree, find the critical failure paths and

allocate the limited resources rationally to reduce the risk of

accident as much as possible. The prediction of hazardous

events is mainly concerning the frequency of occurrence and
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the severity of consequence [1]. Even though other factors

may also be regarded as important judgment indicators, such

as detectivity and maintainability [2], [3].

Risk assessment involves a wide range of quantitative

and qualitative techniques [4], such as the fault tree analy-

sis (FTA) [5], the Bayesian network (BN) [6], [7], the Petri

net (PN) [8], the failure mode and effect analysis (FMEA) [9],

the layer of protection analysis (LOPA) [10] and the risk

assessment matrix (RAM) [11]. The risk matrix approach

was developed to conduct the risk assessment of life cycle

of purchase project by US Airforce in 1995 [12]. Over the

past decades, the risk matrix approach has become one of the

most popular risk assessment methods utilized in a variety

of engineering fields [13]–[16]. This method has provided a

simple tool to rank and prioritize the risk of events [17] and

helped the decision-makers to determine the acceptability of

the risks.

The risk matrix can be carried out qualitatively, quanti-

tatively or semi-quantitatively [18], which depends on how
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the risk factors would be expressed, what kind of mapping

relationshipwould be adopted, and the form of the assessment

results. It is constructed on the basis of the combination of

the frequency of occurrence and the severity of consequence.

As for a certain incident to be evaluated, the domain of

frequency and severity must be defined according to common

sense or engineering practice and divided into several levels.

The categorization of frequency and severity can be defined

both in numerical terms and in linguistic terms. Accordingly,

the mapping relationship from frequency and severity to the

risk index can be constructed by mathematical functions or

knowledge-based inference rules. Ni et al. [19] summarized

the binary functions and some arithmetic extensions on the

risk matrix and established a risk-matrix-style assessment

framework. When it comes to linguistic variables, the knowl-

edge of domain experts can be used to establish the mapping

relationship in terms of inference rules, bywhich the risk level

can be judged as for any combination of the existing variable

level of frequency and severity. This manner can provide

greater flexibility than the mathematical functions and has

been adopted by many researchers and standards [20], [21].

However, some limitations must be taken seriously in the

application of linguistic variables and expert subjective judg-

ments. The sharp boundary of different levels is not according

with the real condition which would lead to wrong conclu-

sions. Input values dropping in both sides of the boundary

of levels, although similar to each other, would produce

diverse risk values, which is not consistent with common

sense. That means the range of the qualitative concept is

not certain. As for the same linguistic term, different experts

could have various understanding, or the same person may

have distinct sense perception in different circumstances.

Therefore, randomness and fuzziness [22] are two kinds of

critical uncertainties in human cognition that should be given

full consideration in quantitative mathematical description

and operation. The fuzziness of linguistic variables in the risk

matrix has received some attention. Many researchers have

provided some theories to deal with this kind of uncertainty.

Fuzzy set theory has been extensively used to describe the

fuzziness based on the concept of membership. Markowski

and Mannan [23] employed fuzzy logic into the risk matrix

to overcome the uncertainties and imprecision connectedwith

the traditional risk matrix. On the other hand, the randomness

of concepts means that any concept is not an isolated fact but

is related to the external world in various ways [24]. However,

few studies have focused on the randomness in the risk matrix

method base on linguistic inference rules, even though the

randomness of linguistic terms has been more and more

considered in expert assessment or group decision-making

based on human cognition [25], [26].

The cloud model, a new cognitive model proposed by

Li et al. [27], has provided an effective tool for representing

the randomness and fuzziness in human cognition. It has

the great ability to convert between qualitative concepts and

quantitative values [28]. Probability theory and fuzzy set

theory are the theoretical basis of the cloud model to reflect

the uncertainty in concepts. The normal distribution is one

of the most popular probability distributions to depicting

random phenomena, and the normal membership function

has been extensively utilized to measure the fuzziness of an

element belonging to a qualitative concept [29]. Advantages

of the two mathematical tools are integrated by the cloud

model which can reflect themembership degree of an element

to a fuzzy concept in the manner of random membership.

Wu et al. [30] proposed an extended Vlsekri-terijumska Opti-

mizacija I Kompromisno Resenje (VIKOR) method under

linguistic information to evaluate the uncertainty of poten-

tial supplier quantitatively and scientifically. Yan et al.

proposed a cloud model layer of protection analysis

(CM-LOPA) [31] and a cloud model-preliminary hazard

analysis (CM-PHA) [32] to process the expert judgments

and present the quantified risk of gas leakage in a biomass

gasification station. Liu et al. [33] provided a combined

FMEA method with the Technique for Order Preference

by Similarity to ideal solution method (TOPSIS) and cloud

models to solve complex decision-making problems. There-

fore, the cloud model is adopted to modified the risk matrix

approach by dealing with the fuzziness and randomness in the

linguistic variables.

And the fuzzy inference system (IFS) would be employed

to comprehensively aggregate various inference rules, rep-

resented by linguistic variables, in a specific scenario

to produce the assessment result. The Mamdani fuzzy

inference system [34] is one of the most popular inference

algorithms, which has been extensively utilized in various

inference processes [35], [36]. Monjezi et al. [37] have

described and illustrated the detailed process of Mamdani

inference including two inference rules. Given the input val-

ues of all antecedent variables, the output data can be com-

puted by the min operator for every inference rule, and the

membership function will be discounted by this output value.

Then, the max operator is adopted to perform the aggregation

process of all discounted membership functions from each

rule. The antecedent variables and conclusion variables are

all represented by fuzzy sets and the exact value of mem-

bership degree can be obtained as for any input data in the

domain. However, the cloud model will produce a random

output value of membership degree as for any input data.

And the membership function in the universe of discourse

is no longer a smooth curve so that the aggregation pro-

cess cannot be performed according to the original manner,

as well as the defuzzification process subsequently. There-

fore, theMamdani fuzzy inference algorithm and the defuzzi-

fication process must be adjusted to be suitable for the cloud

model.

The purpose of this paper is to develop a novel cloud

risk matrix approach based on the cloud model to deal with

the randomness and fuzziness in the qualitative concepts.

To the best of the authors’ knowledge, this is the first study

in the risk matrix approach that uses the cloud model to

represent the linguistic variables in the categorization of

risk matrix variables, and achieve the Mamdani inference
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and defuzzification process in terms of random membership

degree.

The remaining part of this article is organized as follows:

A brief review of basic theories and concepts of the risk

matrix, fuzzy risk matrix, and cloud model is presented in

Section 2. Section 3 presents the proposed cloud risk matrix

method for risk assessment in detail. A case study of the

risk assessment for a distillation column unit through the

proposed method is implemented in Section 4. The results

obtained from the proposed approach are compared with

that from the traditional fuzzy risk matrix in Section 5,

meanwhile, discussions about the randomness of the risk

index and the key influence factor are presented. Lastly,

Section 6 includes some concluding remarks.

II. PRELIMINARIES

This section will review some basic concepts in correlation

to the proposed cloud risk matrix, including the risk matrix,

fuzzy risk matrix, and cloud model.

A. RISK MATRIX APPROACH

The risk of an accident scenario is defined as the combi-

nation of the likelihood of occurrence and the severity of

consequences in the risk matrix [38]. The frequency index

and severity index are usually the only two input variables to

determine the output risk index.

Frequency, severity, and risk index are classified as differ-

ent levels according to industry practice or actual engineering

requires, and assigned the corresponding score. Different

algorithms[19] appeared to obtain the risk index based on

different arithmetic operators, such as multiplication shown

in Eq.(1).

R = F × S (1)

The risk index R is defined as the product of frequency F

and severity index S, whichmeans a positive relationshipwith

the latter two variables.

On the other hand, the risk level could be deduced by

knowledge-based rules, which are usually presented by the

following classical logic implication.

If the frequency is level ‘‘f ’’, and severity is level ‘‘s’’, then

the risk is level ‘‘r’’.

The manner of inference rules can provide more flexible

definitions of the risk level in different regions in the risk

matrix. Domain experts or decision-makers have relatively

high authority to give a set of rules of which the number

depends on the categorization and scaling of the two input

variables. Different kinds of risk matrices can be constructed

based on the given rules. Markowski and Mannan [23]

described three different risk matrixes including ‘‘standard’’,

‘‘easy’’, and ‘‘hard’’ matrix, and discussed the safety and

economy.

B. FUZZY RISK MATRIX

The fuzzy logic system has been introduced into the risk

matrix to handle the fuzziness in linguistic evaluation. The

main procedures of the risk matrix approach consist of the

fuzzification, the inference process, and the defuzzification

procedure [23].

In the fuzzification process, the crisp input values are trans-

ferred into fuzzy sets based on the definitions of the set of

qualitative variable levels. Each input value will correspond

to multiple linguistic terms with exact membership values.

During the inference procedure, different fuzzy sets of

frequency and severity will be combined based on each

knowledge-based rule and a comprehensive fuzzy set is

obtained to measure the overall risk level. The Mam-

dani fuzzy inference algorithm [39] contributes an effective

method, as shown in Eq.(2).

µR (r) = max
k

(

min
(

µk
F (f ) , µk

S (s)
))

(2)

where the f , s represent the frequency index and severity

index respectively, k is the number of rules,µk
F (f ) andµk

S (s)

are the membership of value f and s to the level F and S under

the kth rule. And the µR (r) is the aggregated membership of

any r in the universe of discourse.

Defuzzification is the process of converting the compre-

hensive risk fuzzy set into a crisp risk index. In the fuzzy risk

matrix, the comprehensive risk fuzzy set is usually shown

as an irregular geometric figure when plotted. The centroid

method is a commonly utilized algorithm to perform the

defuzzification process, in which the abscissa of the gravity

center of the geometric figure is taken as the corresponding

exact number of the comprehensive fuzzy number. The for-

mula of the centroid method is shown as Eq.(3).

r =

∫

µR(r)rdr
∫

µR(r)dr
(3)

The fuzzy risk matrix has settled the problem of fuzziness

among different qualitative linguistic variables. However,

the membership function for each linguistic term is defined as

a deterministic function, which may be not perfectly suitable

to the real state. It’s difficult to judge exactly howmuchmem-

bership degree a certain value belongs to a specific qualitative

concept.

C. CLOUD MODEL

The cloud model can synthetically describe the randomness

and fuzziness of qualitative concepts, and be able to imple-

ment uncertain transformations between a qualitative concept

and its quantitative instantiations[40]. The definition of the

cloud model is as follow:

Definition [27]: As for any qualitative concept T in a

universe of discourse U , assume that x ∈ U is a random

instantiation of T , and the certain degree of x belonging to

T is determined as y ∈ [0, 1], which satisfies the following

formula:

y = e
−

(x−Ex)2

2En′2 ,

where

x ∼ N
(

Ex,En′2
)

, En′ ∼ N
(

En,He2
)

.
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The distribution of x inU is defined as a normal cloud, and

any binary ordered pair (x, y) can be called a cloud drop. A

normal cloud can be expressed as ỹ = (Ex,En,He) where

the three critical characters are expectation Ex, entropy En,

and hyperentropy He. The expectation Ex is the center of the

cloud droplets, which reflects the average value of the concept

described. The entropy En defines the effective range of the

universe of discourse U , which embodies the ambiguity. The

hyperentropy He could illustrate the thickness of the dot

cloud, which means the dispersion degree of the qualitative

concept.

Forward cloud generator can produce a lot of cloud drops in

a figure to illustrate the qualitative concept based on givenEx,

En, He and the number of drops n. The detailed procedures

can be summarized as follow:

(1) Generate n random numbers En′
i that comply with nor-

mal distribution N (En,He2);

(2) Generate n normally distributed random numbers xi
based on the expectation Ex and each variance En′

i;

(3) Obtain n random membership values µi that satisfy

Eq.(4).

µi = exp

(

−
(xi − Ex)2

2En
′2
i

)

(4)

(4) The n ordered pairs (xi, µi) make up the cloud.

If the specific value a is given, it is required to generate

the random membership values based on a certain cloud ỹ =

(Ex,En,He)where the precondition cloud generator [41] can

be used.

III. MODEL DEVELOPMENT

In this section, the proposed cloud risk matrix for risk assess-

ment is described in detail. Domain experts’ knowledge and

experience can be solid down in terms of variables classifi-

cation definitions and inference rules. The main contribution

of the proposed methodology includes: The cloud model is

introduced into the risk matrix to deal with the fuzziness and

randomness in qualitative concepts that portray the variable

classifications. An adjusted Mamdani inference algorithm is

constructed to perform the inference process. Meanwhile,

an improved centroid method is constructed to convert the

discrete cloud drops into a crisp risk index.

The proposed cloud risk matrix will be implemented

mainly in three critical procedures, as shown in Fig. 1. Firstly,

the classifications of risk matrix variables are determined

based on the industrial customs, decision-makers’ prefer-

ences, and experts’ knowledge and experience. Fuzzification

and randomization of these classifications are implemented

in the use of cloud models. The characteristic numbers of the

cloud models to measure the variables for frequency levels,

severity levels, and risk levels will be defined. Therefore,

the given crisp frequency index f0 and severity index s0
can be converted into random cloud droplets that reflect the

membership degree to different levels. Secondly, the changed

Mamdani inference algorithmwill handle these random cloud

FIGURE 1. Frame for cloud risk matrix.

droplets, utilizing the experts’ knowledge in terms of infer-

ence rules, to produce an integrated risk cloud that represents

the overall risk level. Thirdly, the defuzzification process is

conducted to transform the integrated risk cloud into a crisp

risk index that provides a quantitative assessment result by

the improved centroid method suitable for cloud models.

A. FUZZIFICATION AND RANDOMIZATION

Frequency, severity, and risk index are the only three vari-

ables in the risk matrix, of which the universe of discourse

should be divided into several levels and numerical inter-

vals according to the industrial customs or decision-makers’

suggestions. To deal with the epistemic uncertainty in the

qualitative concepts for each level, a set of normal cloud

models are defined to provide mathematical expressions for

these linguistic terms. In this study, the categorization and

scaling of each variable from Markowski and Mannan [23]

are employed as an example for further calculation and vali-

dation of the proposed cloud risk matrix.

Characteristic numbers of the cloud models for these vari-

ables are defined as in TABLE 1, in which the fuzziness

and randomness in different level concepts can be described.

Each cloud is expressed in form of Cloud(a, b, c) with a as

the expectation, b as the entropy, and c as the hyperentropy.

Meanwhile, the Gaussian fuzzy numbers for these variables

used in the fuzzy risk matrix are also listed in TABLE 1,

where the N (a, b) means a normal fuzzy number with the

a as the expectation and b as the standard deviation. As can

be seen, the expectation and entropy of the cloud model are

the same as the expectation and the standard deviation of the

corresponding fuzzy number respectively, which can ensure

the similar shape of the figure produced. The hyperentropy is

defined as He = 0.05 for all clouds here, of which the ratio-

nality will be given further discussion later. Fig. 2 presents

VOLUME 9, 2021 27887
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TABLE 1. Categorization and cloud models for variables in a risk matrix.

FIGURE 2. Cloud models for different categorizations of variables.

the different categorizations and clouds for each value used

in the cloud risk matrix with different colors.

B. INFERENCE PROCESS

The inference process is implemented by a set of inference

rules based on experts’ knowledge and experience. Inference

rules usually appear in the form of ‘‘IF-Then’’ rules. Fre-

quency and severity are the two input variables of the risk

matrix to be converted into the output variable risk index so

that the former valuables are the antecedents and the latter

one is the conclusion. These rules constitute the basis of the

inference process and can be used for the judgment of risk

level in a traditional risk matrix. While in the cloud risk

matrix, the concepts in the antecedents and conclusion of

each rule will be expressed by cloud models and an inference

algorithm helps to handle the discrete cloud drop data.

TheMamdani inference algorithm is a popular fuzzy infer-

ence method that has been utilized in multiple inference

scenarios based on knowledge-based rules [40]. The classical

Mamdani algorithm is suitable for the processing of fuzzy

numbers with definite membership value. Given any values

f , s in the domain of discourse, the unique membership

values µk
F (f ) and µk

S (s) will be determined under the certain

rule k . The membership value of output valuable can be

obtained by comparing the ones of the input valuables, shown

as µk
R (r) = min

(

µk
F (f ) , µk

S (s)
)

. Integrating the results

from all the rules, a comprehensive fuzzy membership func-

tion representing the synthetic reasoning results is obtained

µR (r). As for any value in the domain of risk, there is

only onemembership valueµR (r). The mapping relationship

between any risk index and its membership degree consti-

tutes a continuous function. Therefore, the defuzzification

risk index can be further obtained by the function integral

operation.

However, in the proposed cloud risk matrix, the member-

ship degree for any exact input value in the domain is not a

definite number but a random result, therefore, the classical

Mamdani inference algorithm is not perfectly suitable for the

inference process of cloud variables. An adjusted Mamdani

inference algorithm is constructed to perform the inference

process. The main procedures of Mamdani inference based

on the cloud model including the following steps.

(1) Calculate the random membership values for each

frequency level and severity level according to the given
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frequency index and severity index. And the vector

of random membership degree is obtained as µF =

[µF1 (f0) , µF2 (f0) , . . . , µF7 (f0)] and µS = µS2 (s0) ,

. . . , µS5 (s0)]. Each random membership value is computed

by the precondition cloud generator. For example, as for

the fourth frequency level ‘‘Low’’, the corresponding cloud

model is presented as Cloud(−4, 0.42, 0.05), the random

membership value can be calculated as µF4 (f0), as shown

in Eq.(5).

µF4 (f0) = exp

[

−
(f0 − Ex)2

2E2
nn

]

(5)

whereEx = −4,En = 0.42,He = 0.05,Enn represents a ran-

dom number that obeys the normal distribution N
(

En,He2
)

.

(2) Determine the effectiveness of valuables. If the mem-

bership degree of the input index is too low under a certain

variable level, it indicates that there is a big gap between

the current input variable index and the qualitative concept

described by the variable level, and the contribution to the

integrated cloud model can be ignored. Therefore, the vari-

able level is defined as an invalid variable level under the

current input variable index, which can be ignored in the sub-

sequent comprehensive calculation, to reduce the calculation

time and improve the computational efficiency.

Set the threshold value of invalid variable grade err = 0.1.

If the randommembershipµFi(f0),µSj(s0) of frequency grade

Fi, or consequence grade Sj is greater than err, the frequency

grade and its random membership value will be saved. If it

is less than err, the grade and its random membership will

be discarded. Finally, there are m effective frequency levels

EFm = (Fm, µFm(f0)) and n consequence levels ESn =

(Sn, µSn(s0)) that would be obtained.

(3) Inference of the membership degree of each risk level.

According to the reasoning rules based on expert knowl-

edge, the risk level Rk corresponding to each effective fre-

quency level Fm and effective consequence level Sn is deter-

mined one by one, and the random membership degree of

risk level k under the rule is calculated by µmn
Rk (r) =

min(µk
Fm(f0), µ

k
Sn(s0)). Then the random membership values

of each risk level k are compared comprehensively, and the

maximum value is selected as the maximum membership

value of risk level k , namely µRk (r) = max
mn

(µmn
Rk (r)).

(4) Obtain a comprehensive risk cloud. The comprehensive

risk cloud reflects the comprehensive distribution result of

risk membership degree under all reasoning rules for the

given frequency index and consequence index. In the domain

of risk index, N values ri are evenly or randomly selected.

The randommembership degree under risk level k is obtained

using the method shown in Eq.(5) and compared with the

maximum membership degree of risk level k obtained in step

(3). The smaller value is selected as the random membership

degree under risk level k . After the calculation of all risk

levels k , the maximum value is selected as the comprehensive

membership degree of ri, as shown in Eq.(6).

µR(ri) = max
k

µk
R(ri) (6)

FIGURE 3. Comprehensive risk cloud model and the local cloud drops.

Drawing the above N cloud drops (ri, µR(ri)) (i =

1, 2, . . .N ) in the coordinate system, we can get the compre-

hensive risk cloud model under the given frequency index f0
and severity index s0, as shown in Fig. 3.

C. DEFUZZIFICATION

Defuzzification is the process of transforming the compre-

hensive risk cloud into a deterministic risk index to measure

the risk level of the evaluation object quantitatively. The

comprehensive risk cloud takes the risk index as the abscissa

and the random membership degree of each point as the

ordinate to form a group of discrete cloud droplets with stable

tendency, which reflects the fuzziness and randomness of the

comprehensive evaluation results.

The centroid method is widely used in the defuzzification

process of synthetic fuzzy numbers. The core idea of the

centroid method is to take the position of the geometric

centroid of synthetic fuzzy numbers in the coordinate system

as the determined value after defuzzification, which is used to

express the certainty index of the synthetic concept. However,

the classical centroid method is suitable for the case with a

certain fuzzy membership function. The membership image

within the scale of risk index is a continuous curve, and the

position of the geometric centroid can be directly calculated

by an integral operation.

To handle the discrete cloud drops in the integrated risk

cloud, an improved defuzzification method is constructed

as an extension of the classical centroid method. A variety

of right angle trapezoids are constructed according to the

discrete random cloud drops in the comprehensive risk cloud

in turn. The geometric centroid of the random point cloud

graph is obtained by superposition calculation, and the com-

prehensive risk cloud is transformed into the comprehensive

risk index.

The defuzzification process of the integrated risk cloud can

be seen in Fig. 3. More specifically, the N random cloud

droplets (si, fi) contained in the integrated risk cloud are

arranged in ascending order according to the abscissa si to

form N -1 trapezoids. The abscissa of the geometric centroid

of each trapezoid is shown in Eq.(7). According to the rel-

ative positions of the top and bottom in the trapezoid, the

calculation process of the abscissa of the geometric centroid
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TABLE 2. Input variable values and the results from the cloud risk matrix and fuzzy risk matrix.

is slightly different. For the trapezoid ABCF and the trapezoid

EDCF in Fig. 3, the abscissa of the geometric centroid can be

computed by Eq.(8) and Eq.(9) respectively.

mi =











si+1 −
(2fi + fi+1) (si+1 − si)

3 (fi + fi+1)
, fi ≤ fi+1

si +
(2fi+1 + fi) (si+1 − si)

3 (fi + fi+1)
, fi > fi+1

(7)

m1 = s2 −
(2f1 + f2) × (s2 − s1)

3 (f1 + f2)
(8)

m2 = s2 +
(2f3 + f2) × (s3 − s2)

3 (f2 + f3)
(9)

Repeat the above calculation process, calculate the geo-

metric centroid of each trapezoid, and summarize them,

as shown in Eq.(10). And the comprehensive risk indexm cor-

responding to the comprehensive risk cloud can be obtained.

The geometric centroid of the overall risk cloud is illustrated

by the red line in Fig. 3.

m =

∑n−1
i=1 (si+1 − si) × (fi+1 + fi) × mi
∑n−1

i=1 (si+1 − si) × (fi+1 + fi)
(10)

IV. CASE STUDY

To verify the feasibility and effectiveness of the proposed

method, the risk assessment case of the distillation tower

unit carried out by Markowski and Mannan [23] and other

researchers are selected as an example. The cloud risk matrix

method is performed and the results are compared with that

from the traditional fuzzy risk matrix. Four accident scenar-

ios (RAS) due to loss of cooling are selected for distillation

column unit failure, which will lead to rupture of column

(R) and leak from relieving valve (L). The input frequency

index and severity index of the four accident scenarios are

shown in TABLE 2.

The process of cloud risk matrix is illustrated in detail

using the accident scenario RAS(R)1 as an example, where

the input frequency index is f0 = log10(1.44E-7) = −6.84

and the severity index is s0 = 4.35.

Firstly, based on the categorization and cloud mod-

els defined in Fig. 2, the vector of random member-

ship values for frequency and severity level is obtained

as µF = [0.9452, 0.1520, 0, 0, 0, 0, 0] and µS =

[0, 0, 0.0298, 0.7248, 0.2802].

Secondly, the err = 0.1 is defined as the threshold

value of the invalid variable grade. The effective frequency

levels and the random membership values include EF1 =

(‘‘Remote’’,0.9452) and EF2 = (‘‘Unlikely’’, 0.1520).

Meanwhile, the effective severity levels and the random

membership values are ES1 = (‘‘High’’, 0.7248) and

ES2 = (‘‘Catastrophic’’, 0.2802). The other variable grades

are defined as invalid variable grades because their random

membership value is lower than the judgment threshold err,

and do not participate in the subsequent calculation process.

Thirdly, the risk level and membership degree are inferred

based on the inference rules. The ‘‘standard’’ riskmatrix rules

are adopted. Based on the effective levels of frequency and

severity, the required inference rules are listed as follow:

if F = "Remote", and S="High", then R="A";

if F = "Remote", and S="Catastrophic", then R="TA";

if F = "Unlikely", and S="High", then R="TA";

if F = "Unlikely", and S="Catastrophic", then R="TA";

The membership value can be obtained based on each

inference rule by the following min operation.

µ11
R1 (r) = min(µ1

EF1(f0), µ
1
ES1(s0)) = 0.7248;

µ12
R2 (r) = min(µ2

EF1(f0), µ
2
ES2(s0)) = 0.2802;

µ21
R2 (r) = min(µ2

EF2(f0), µ
2
ES1(s0)) = 0.1520;

µ22
R2 (r) = min(µ2

EF2(f0), µ
2
ES2(s0)) = 0.1520;

As can be seen, the risk levels involved in the above infer-

ence rules include R1‘‘A’’ and R2 ‘‘TA’’, and the maximum

membership value for each level are µR1(r) = 0.7248 and

µR2(r) = 0.2802 respectively.

The cloud-based Mamdani inference process is illustrated

in Fig. 4. The rows of the figures show a graphical represen-

tation of the required inference rules. The first column is the

effective frequency levels, the second column is the effective

consequence levels, and the third column is the risk levels

obtained. Each subgraph is labeled with the variable level

cloud model and random membership. The blue part below

the red dotted line is the effective cloud droplets, and the

red part is the invalid ones, which are higher than the current

random membership value.
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FIGURE 4. Inference process based on cloud models.

FIGURE 5. Comparison of the results.

Fourthly, integrate the risk level Rk and its maximummem-

bership degreeµRk (r) to obtain the comprehensive risk cloud.

A number of N = 1000 values of ri are selected evenly in the

domain of risk index [0,6]. The random membership values

µR1(ri) and µR2(ri) are calculated under the risk level R1 and

R2. Compare the µR1(ri) with µR1(r) = 0.7248 and take the

smaller one as the random membership value µ1
R(ri) of risk

R1, so as to µ2
R(ri) of risk R2. Then, compare µ1

R(ri) with

µ2
R(ri), and take the bigger one as the final comprehensive

membership degree µR(ri). A number of N = 1000 ordered

pairs (ri, µR(ri)) are produced and the comprehensive risk

cloud can be obtained by plotting these droplets in a figure,

as shown in Fig. 3.

Eventually, perform the improved centroid method and

obtain the final risk index. Through the process of sorting,

constructing right-angle trapezoid, calculating centroid and

integral operation, these cloud droplets are mapped into a

crisp risk index r = 1.3771, as shown in the red line in Fig. 3.

V. RESULTS AND DISCUSSIONS

A. RESULTS AND COMPARISON

According to the above calculation process, the comprehen-

sive risk indexes of four accident scenarios in the case can

be calculated respectively based on the reasoning rules of

different types, which can be used as a quantitative index to

evaluate the risk degree of accident scenarios. The results are

shown in TABLE 2 and compared in Fig. 5.

The red area, the blue area and the green area in Fig. 5 are

the results obtained according to the type of "simple",

"standard", and "difficult" inference rules respectively. The

unfilled area is the result of the fuzzy risk matrix, and the

filled area represents that of the cloud risk matrix.

As can be seen, the comprehensive risk index given by the

cloud risk matrix is slightly different from that obtained from

the fuzzy risk matrix under the same type of inference rules.

Through numerical comparison, it can be concluded that the

law of size is not consistent, and there is no phenomenon that

the results of certain methods are uniformly larger or smaller.

These differences are caused by the randomness of the cloud

model. Given the same input values, the results of multiple

calculations have randomness to a certain extent. Fig. 5 only

shows the comprehensive risk index of a particular calcula-

tion, therefore, it appears that the results are larger or smaller

than those of the fuzzy risk matrix. But the relative gaps

between results are small and the risk indexes are close in

different initial conditions, which indicates the effectiveness

of the proposed model.

By analyzing the results of different types of inference

rules, it can be seen that the ranking of risk index results is

consistent, namely "Hard" > "Standard" > "Simple". This

phenomenon is caused by the definition of inference rules.

In the "if A, then B" type of rules, for the same antecedent

A, the "Hard type" rule defines the derived result B as a

higher risk level, and the risk index value is relatively larger.

Therefore, the consistency of the sorting results can show the

rationality of the proposed cloud risk matrix.

B. THREE-DIMENSIONAL RISK SURFACE

Three-dimensional risk surface can vividly display the map-

ping relationship between frequency index, consequence

index, and risk index. It is a graphical description of expert

knowledge inference rules. Therefore, the inference rules are

the core content of the three-dimensional risk surface, which

directly affects the shape and distribution.

A three-dimensional risk surface can be constructed using

a cloud risk matrix by considering all the combinations of

frequency index and severity index in the domain. In this

paper, 20 values are evenly obtained respectively from the

frequency index domain [−8,0] and the consequence index

domain [1,5]. These risk indexes under any combination can

be calculated based on the "Easy", "Standard", and "Hard"

inference rules, and are drawn in a 3-dimensional coordinate

system, as shown in Fig. 6.

These risk surfaces illustrate the overall distribution char-

acteristics of the risk level. As for the ‘‘Easy’’ type matrix,

the lower risk level occupies a larger area while the higher risk

level dose in the ‘‘Hard’’ typematrix. As can be seen, the tran-

sition of risk regions is not smooth because the randomness of

the risk index brings the possibility of great difference among

the evaluation results of close coordinate points.

C. SOURCE OF THE RESULTS RANDOMNESS

To further illustrate the randomness introduced in the calcu-

lation process, the accident scenario RAS(R) 1 is taken as

an example to carry out multiple calculations. The results of

comprehensive risk clouds and risk indexes are compared and
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FIGURE 6. 3-Dim risk surface from different types of inference rules.

FIGURE 7. Comparison of results from multiple calculations.

FIGURE 8. Probability density function and frequency histogram of
samples.

analyzed. Considering the "Standard" type inference rules,

the cloud risk matrix is implemented four times, and the

comprehensive risk cloud and risk index are shown in Fig. 7.

Under the same condition of input variables and inference

rules, there are some differences in these comprehensive risk

clouds and risk indexes. The blue part in each figure shows

the distribution of random cloud droplets where there are two

steps with different heights. The comprehensive risk index

obtained by defuzzification is also different, of which the

data range is [1.2914,1.3963] with a difference of less than

10%. Therefore, the calculation process and risk index results

reflect certain randomness.

The main reason for the above phenomenon is that the

cloud model can consider the fuzziness and randomness of

linguistic terms at the same time. Given the frequency index

and consequence index of the evaluation object, the mem-

bership calculation of each variable grade is no longer a

FIGURE 9. Q-Q plot for samples of risk indexes.

certain value, but a random value in a certain range according

to the characteristic parameters of the cloud model. After

the rule-based inference process, the random membership

value is transferred to the comprehensive risk cloud model,

resulting in some differences in the height of "steps" in Fig. 7.

During the production process of the integrated cloud model,

a large number of numerical values are obtained uniformly

or randomly in the risk index domain to calculate the ran-

dom membership degree, and the uncertainty in the linguistic

terms of risk level is considered resulting in the randomness

of the location of cloud droplets. Therefore, the comprehen-

sive risk cloud and risk index have certain randomness.

D. DISTRIBUTION OF THE RANDOM RESULTS

Through sample statistics, the results of the risk index from

a number of N = 2000 calculations for RAS(R)1 based on

cloud risk matrix are statistically analyzed. The expectation

and standard deviation of the sample of risk index ri are Ex =

1.3492 and σ = 0.0548 respectively. The probability density

function of normal based on Ex and σ is plotted by the red

line in Fig. 8. Meanwhile, the frequency histogram of the risk

index is also illustrated, as shown in the black bar. As can

be seen that the results of the risk index well meet the normal

distribution, and the risk index values fluctuate randomlywith

expectation as the center.

A quantile graph, also called a Q-Q plot, is an effective

statistical tool used to test the distribution of sample data [42].

It can visually analyze the correlation between sample data

and target distribution to verify whether the sample data meet

the target distribution. As for the quantile plot for normal
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FIGURE 10. Frequency histogram and normal probability density function for different He.

distribution, if the distribution of scattered points in the image

is close to a straight line, it means that the sample data follows

the normal distribution, and the intercept of the straight line

in the coordinate system is the expectation of the sample data,

and the slope of the straight line is the standard deviation of

the sample data. On the contrary, if the scatter distribution

deviates greatly from the linear form, the sample data does

not obey the normal distribution.

In this paper, risk indexes ri obtained are taken as sample

data, and normal distribution Q-Q diagram is drawn to ver-

ify the distribution characteristics of sample data, as shown

in Fig. 9. The blue mark is the quantile formed by the sample

data, and the red dotted line represents the trend line close

to the sample data. It can be seen that the distribution of the

sample data is similar to the straight line, and there is only

a small deviation at both ends. This phenomenon shows that

the calculated risk index values obey the normal distribution

well under the current conditions.

The intercept of the red trend lines is approximately 1.35,

and the expected value obtained from the sample data statis-

tics is 1.3492, as shown in Fig. 8. The risk index calculated

by the fuzzy risk matrix method is 1.35, given in TABLE 2.

The similarity of these values suggests the effectiveness and

rationality of the results from the cloud risk matrix. The ran-

domness is introduced to allow a certain degree of fluctuation

around the expected values which are consistent with the

results from the fuzzy risk matrix.

E. EFFECT OF THE HYPERENTROPY HE

The critical characteristic number hyperentropy He deter-

mines the thickness of the cloud and the randomness degree

of membership for each linguistic variable which brings the

randomness of the risk index. It is necessary to investigate the

effect of the initial defined hyperentropy He on the volatility

of risk assessment results. Several specific values of the

hyperentropy He are selected, including He1 = 0.01, He2 =

0.025, He3 = 0.05, He4 = 0.075, He5 = 0.1, He6 = 0.125,

to carry out 2000 independent repeated trials respectively

using the cloud risk matrix. The frequency histogram and

normal probability density function are plotted according to

the data results, as shown in Fig. 10.

As can be seen from Fig. 10, the increase of the hyper-

entropy value He leads to a larger value of the standard

deviation, the sample data is distributed in a wider range, and

the randomness of the risk index results is stronger. At the

same time, the sample expected value has a large deviation

when He is large, such as He5 = 0.1 and He6 = 0.125.

The statistical result of risk indexes under different hyper-

entropy He is drawn into a Q-Q plot, as shown in Fig. 11.

As can be seen that when the hyperentropy He is small

(He = 0.01, 0.025, 0.05, 0.075), the scattered points in the

graph are close to a straight line, indicating that the risk index

results follow the normal distribution.When the hyperentropy

He becomes larger (He = 0.1, 0.125), the middle part of

the scatters is close to the straight line, but there is obvious

deviation at both ends, indicating that the statistical data of

the risk index no longer meet the normal distribution.

It can be concluded from the above appearance that the

hyperentropy He is the key index that affects the fluctuation

range of risk index results. He is positively correlated with

the fluctuation range, and the standard deviation of risk index

samples increases with the increase of He. However, when
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FIGURE 11. Quantiles plot for different He.

FIGURE 12. Relationship between the standard deviation of risk index
and hyperentropy.

the hyperentropyHe exceeds a certain limit, there is a big gap

between the distribution of statistical samples and the normal

distribution. And also, it will affect the stability of sample

expectations.

For the further investigation of the effect of hyperentropy

He on the risk index, the relationship between the expec-

tation, the standard deviation of risk indexes, and the sev-

eral values of He in the domain of (0, 0.2] are discussed.

for several cases with different input values as shown in

TABLE 3, as shown in Fig. 12 and Fig. 13. It is worth

noting that these cases involve different combinations of

probability levels and severity levels for more extensive

effectiveness.

It can be seen from Fig. 12 that under different

frequency-severity combinations, the standard deviation σ

of risk index and hyperentropy He presents a positive linear

relationship that the σ increases linearly with that of hyperen-

tropy. Therefore, in the initial stage of the cloud risk matrix,

FIGURE 13. Relationship between the expectation of risk index and
hyperentropy.

TABLE 3. Cases with different input values.

the two factors can be approximately regarded as a positive

proportional relationship according to the decision maker’s

acceptance of the fluctuation range of the risk index results,

to determine the selection of hyperentropy He in the cloud

model for each variable levels.

Fig. 13 suggests the hyperentropyHe has a slight influence

on the expectation Ex of risk index, and the latter maintains

the overall stability within a large range of He. However,

when He exceeds 0.1, the expectation Ex of case 1, case

3, case 4, and case 5 deviate obviously, and the deviation
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direction is not consistent. Therefore, considering the stabil-

ity of the risk index results and the rationality of random

fluctuations, it is suggested that the value of hyperentropy

He should not exceed 0.1 during the determination of cloud

models. Meanwhile, the selection of He = 0.05 in the above

case study can be proved to be effective and reasonable.

VI. CONCLUSION

In this paper, a novel cloud risk matrix approach based on

the expert knowledge and inference rules is presented for the

risk assessment of process safety considering the epistemic

uncertainty in experts cognition. It provides a new strategy

to express the linguistic variables both in the frequency of

accident and the severity of consequence in a mathematical

manner by employing the cloud model theory. A case study

for the risk assessment of a distillation column unit has been

performed based on the proposed cloud risk matrix, and the

results are compared with that from the fuzzy risk matrix,

which indicates the effectiveness and rationality of the pro-

posed method in dealing with the epistemic uncertainty in the

linguistic assessment.

The source and key impact factors of the randomness in

the risk index are discussed in this paper and the statistical

property analysis of the assessment results is carried out. The

effect of hyperentropy He on the distribution of assessment

result is investigated that the hyperentropy He presents a

positive linear relationship with the standard deviation σ of

risk index, while with a slight influence on the expectation

Ex. The main conclusions include the following aspects:

(1) The proposed cloud model-based Mamdani inference

algorithm and the improved centroid algorithm can effec-

tively handle the random membership in the form of discrete

cloud drops. The inference and defuzzification process based

on knowledge rules can be carried out and provide the quan-

titative risk assessment result.

(2) Based on abundant repeated calculations, the results

of the risk index are statistically analyzed. The randomness

introduced in the description of linguistic variables in grade

concept results in certain randomness and volatility of risk

index, of which the statistical data meet the normal distribu-

tion.

(3) The sensitivity analysis of hyperentropyHe of the cloud

model shows that the fuzzy risk matrix method is a special

form of cloud risk matrix method when He is zero, and the

cloud risk matrix is an extension of the fuzzy risk matrix

method considering the randomness of membership degree.

Statistical analysis indicates that the standard deviation σof

the risk index has an approximately positive relationship with

the hyperentropy He so that the choice of the hyperentropy

He in the cloud risk matrix can be determined according to

the decision maker’s acceptance of the fluctuation range of

the risk index. The expectation Ex of risk index will have

obvious deviation when the hyperentropy He is defined as

a larger value. To ensure the stability and reliability of the

results, it is suggested that the hyperentropyHe should not be

more than 0.1.
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