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A novel robust Student’s t based Kalman filter
Yulong Huang, Yonggang Zhang, Senior Member, IEEE, Zhemin Wu, Ning Li, Jonathon Chambers, Fellow, IEEE

Abstract—A novel robust Student’s t based Kalman filter is
proposed by using the variational Bayesian approach, which
provides a Gaussian approximation to the posterior distribution.
Simulation results for a manoeuvring target tracking example
illustrate that the proposed filter has smaller root mean square
error and bias than existing filters.

Index Terms—Kalman filtering, heay-tailed noises, Student’s t
distribution, Gaussian approximation, variational Bayesian

I. INTRODUCTION

THE Kalman filter has been successfully applied in nu-
merous practical applications, such as target tracking,

navigation, positioning, control and signal processing due to
its optimality, ease of implementation, and low computational
complexity. The Kalman filter is optimal in terms of minimum
mean square error for a linear state-space model with Gaussian
process and measurement noises [1], [2]. However, in some
engineering applications, such as tracking agile targets with
measurement outliers from unreliable sensors, heavy-tailed
non-Guassian process and measurement noises are present
[3], [4], [5]. The performance of the conventional Kalman
filter may break down in such engineering applications with
heavy-tailed non-Gaussian process and measurement noises.
A large number of robust filters have been proposed to
solve the filtering problem of linear systems with heavy-tailed
measurement noises, such as the Student’s t mixture filter [6],
outlier-robust Kalman filter [7], and Student’s t and variational
Bayesian (VB) based robust Kalman filters [8]–[11]. However,
these robust filters may fail in the case of non-Gaussian heavy-
tailed process noise since they all assume Gaussian process
noise [3], [12].

To solve effectively and robustly the filtering problem of lin-
ear systems with both heavy-tailed process and measurement
noises, a Huber-based Kalman filter (HKF) has been proposed
by minimising a combined l1 and l2 norm [13]–[17]. The
residual is bounded by using a Huber function, and the HKF
can be deemed as a generalized maximum likelihood estimator
[13]–[17]. However, the influence function of the HKF doesn’t
redescend, which results in limited estimation accuracy. To
cope with heavy-tailed non-Gaussian noise induced by large
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outliers, many maximum correntropy criterion based Kalman
filters (MCCKFs) have been proposed by maximising the cor-
rentropy of the predicted error and residual, and can be deemed
as maximum a posterior estimators [18]–[22]. However, there
is lack of theoretical basis to develop the estimation error
covariance matrix, which degrades the estimation accuracy.

A reasonable approach to improve the estimation accuracy
is better modelling the heavy-tailed non-Gaussian process and
measurement noises. A linear Student’s t based filter has been
derived by assuming that both the process and measurement
noises are Student’s t distributions and the posterior probability
density function (PDF) is approximated as a Student’s t
distribution to obtain a closed form solution for the filtering
problem [3], [4]. However, this Student’s t filter suffers from
the following problems: (a) The derivation of the Student’s
t filter is based on an assumption that the Student’s t PDFs
of process and measurement noises have the same degrees
of freedom (dof) parameter, which is seldom met in practical
application because the process and measurement noises have
different heavy-tailed characteristics, as shown in [3]; (b) The
growth of the dof parameter must be prevented to preserve
the heavy-tailed properties and closed Student’s t-distributed
form of the posterior PDF, which increases the bias of the
state estimation, as discussed in [4]; (c) The Student’s t
approximation to the posterior PDF may be unreasonable, as
will be illustrated in Section II. C.

In this paper, a new robust Student’s t based Kalman
filter is proposed to improve the estimation accuracy of the
Student’s t based filter with both heavy-tailed process and
measurement noises. Firstly, to better model the linear systems
with heavy-tailed process and measurement noises, the one-
step predicted PDF and likelihood PDF are approximated as
Student’s t distributions with different dof parameters, and the
PDF of the unknown scale matrix of the one-step predicted
PDF is modelled as an inverse Wishart distribution. Secondly,
motivated by the fact that the posterior PDF approaches to
Gaussian in the case of moderate contaminated process and
measurement noises, the posterior PDF is approximated as
Gaussian, and an unknown scale matrix and auxiliary random
variables are inferred based on the hierarchical Gaussian state-
space model and a VB approach. Finally, the proposed robust
Kalman filter and existing robust filters are applied to the
problem of tracking an agile target that is observed in clutter.
Simulation results show the proposed filter has smaller root
mean square error (RMSE) and bias than existing robust filters.
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II. PROBLEM FORMULATION

A. Review of the classical Kalman filter

Consider the following discrete-time linear stochastic sys-
tem as shown by the state-space model

xk = Fk−1xk−1 +wk−1 (process equation) (1)

zk = Hkxk + vk (measurement equation), (2)

where k is the discrete time index, xk ∈ Rn is the state vector,
zk ∈ Rm is the measurement vector, Fk ∈ Rn×n is the state
transition matrix, Hk ∈ Rm×n is the measurement matrix,
wk ∈ Rn is the heavy-tailed process noise vector with zero
mean and nominal covariance matrix Qk, and vk ∈ Rm is the
heavy-tailed measurement noise vector with zero mean and
nominal covariance matrix Rk. Both Qk and Rk are generally
not accurate due to the existence of outliers. The initial state
vector x0 is assumed to have a Gaussian distribution with
mean vector x̂0|0 and covariance matrix P0|0, i.e.

p(x0) = N(x0; x̂0|0,P0|0), (3)

where N(x;µ,Σ) denotes the Gaussian PDF with mean vector
µ and covariance matrix Σ. Moreover, x0, wk and vk are
assumed to be mutually uncorrelated in this work.

The Kalman filter is the most common method to infer the
state vector xk given the state-space model and measurements
until time k. The recursive Kalman filter consists of a time
update and a measurement update, which are given as follows:
Time update

x̂k|k−1 = Fk−1x̂k−1|k−1 (4)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (5)

Measurement update

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (6)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (7)

Pk|k = Pk|k−1 −KkHkPk|k−1, (8)

where (·)T denotes the transpose operation, x̂k|k−1 and
Pk|k−1 are the predicted state vector and corresponding pre-
dicted error covariance matrix respectively, x̂k|k and Pk|k are
the state estimation vector and corresponding estimation error
covariance matrix respectively, and Kk is the Kalman gain.

The Kalman filter is a minimum mean square error (MMSE)
estimator for a linear state-space model with Gaussian process
and measurement noises. However, it is suboptimal for heavy-
tailed non-Gaussian process and measurement noises since
the required Gaussian assumptions are violated. Moreover,
the Kalman filter may break down because a single outlier
from any of the process and measurement noises can result in
the filter’s bias exceeding target bounds [17]. The Student’s t
filter discussed in the next subsection is intended to solve this
problem.

B. Review of Student’s t filter

The key idea of the Student’s t filter is to approximate the
posterior PDF by a Student’s t PDF. To that end, the jointly
predicted PDF p(xk, zk|z1:k−1) of state and measurement is
assumed to be a Student’s t PDF as follows [4]

p(xk, zk|z1:k−1) =

St(

[
xk

zk

]
;

[
x̂k|k−1

Hkx̂k|k−1

]
,

[
Pk|k−1 Pk|k−1H

T
k

HkPk|k−1 Sk

]
, η), (9)

where x̂k|k−1 and Pk|k−1 are defined in (4)-(5), and the scale
matrix Sk = HkPk|k−1H

T
k +Rk, and η is the dof parameter

of the jointly predicted PDF p(xk, zk|z1:k−1). According to
the Bayesian rule and using (9), the posterior PDF p(xk|z1:k)
can be updated as a Student’s t distribution, i.e., [3]

p(xk|z1:k) = St(xk; x̂
′

k|k,P
′

k|k, η
′
), (10)

where η
′

is the dof parameter of the posterior PDF p(xk|z1:k),
and the updated parameters are given by [3]

η
′
= η +m (11)

x̂
′

k|k = x̂k|k−1 +Pk|k−1H
T
k S

−1
k (zk −Hkx̂k|k−1) (12)

P
′

k|k =
η +∆2

k

η +m
(Pk|k−1 −Pk|k−1H

T
k S

−1
k HkPk|k−1) (13)

∆k =
√
(zk −Hkx̂k|k−1)TS

−1
k (zk −Hkx̂k|k−1), (14)

where x̂k|k−1 and Pk|k−1 are formulated in (4)-(5).
It is seen from (11) that the dof parameter of the posterior

PDF increases by m from time k − 1 to time k. Thus, the
Student’s t approximation to the posterior PDF lacks strict
closeness to the target distribution. Furthermore, the Student’s
t filter will degrade to a Kalman filter after a few steps with
the increase of dof parameter, and the heavy-tailed properties
will be lost. To retain the heavy-tailed properties and closed
Student’s t-distributed form of the posterior PDF, the moment
matching approach has been used to obtain an approximate
posterior PDF St(xk; x̂k|k,Pk|k, η) with dof parameter η,
where the mean vector x̂k|k and scale matrix Pk|k are obtained
by matching the first two moments, i.e., [3], [4]

x̂k|k = x̂
′

k|k
η

η − 2
Pk|k =

η
′

η′ − 2
P

′

k|k. (15)

The Student’s t filter exhibits good robustness to heavy-
tailed process and measurement noises, and has almost iden-
tical computational complexity to the Kalman filter.

C. Motivation of this work

Although the Student’s t filter can effectively resist the
influence of heavy-tailed process and measurement noises, it
suffers from the following drawbacks.

(a) In the derivation of the Student’s t filter, it is necessary to
assume that the Student’s t PDFs of process and measurement
noises have the same dof parameter. However, this assumption
is seldom met in practical application because the process
and measurement noises normally have different heavy-tailed
characteristics, which will degrade the approximation accuracy
to the posterior PDF [3].
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Fig. 1: True posterior distribution, Gaussian approximation and
Student’s t approximation of the one-dimensional numerical
example
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Fig. 2: KLD between the true posterior PDF and Gaussian and
Student’s t approximations of the one-dimensional numerical
example

(b) In the Student’s t filter, a moment matching approach is
employed to preserve the heavy-tailed properties and closed
Student’s t-distributed form of the posterior PDF, as shown in
(15). However, only the first two moments of the true posterior
PDF are captured, and the higher order moments are lost.
Thus, the Student’s t filter may suffer from a significant bias
since the moment matching approach imposes a further bias
on the state estimation [4].

(c) The Gaussian approximation to the posterior PDF is
more reasonable than the Student’s t approximation with a
fixed dof parameter in [3] for the case of moderate contam-
inated process and measurement noises. In order to illustrate
this problem, a one-dimensional numerical example is shown.
In this example, the state transition parameter Fk = 0.5,
measurement parameter Hk = 1, and outlier corrupted process

and measurement noises are generated according to [12]

wk ∼
{
N(0, 1) w.p. 0.95
N(0, 100) w.p. 0.05

(16)

vk ∼
{
N(0, 1) w.p. 0.90
N(0, 100) w.p. 0.10

, (17)

where w.p. denotes “with probability”. Definitions (16)-(17)
imply that wk and vk are most frequently drawn from a
Gaussian distribution with variances 1 and five percent of
process noise values and ten percent of measurement noise val-
ues are generated from Gaussian distributions with variances
100. Process and measurement noises, which are generated
according to (16)-(17), have heavier tails. In this example, the
true posterior distribution is approximated by using the particle
filter with 10000 particles [23]. The Gaussian approximation
and Student’s t approximation to the posterior PDF is obtained
from the true posterior distribution with identical first two mo-
ments. As suggested in [3], the dof parameter of the Student’s
t approximation is set as η = 3. Fig. 1 shows the true posterior
distribution, the Gaussian approximation and the Student’s
t approximation at time step k = 100. Fig. 2 shows the
Kullback-Leibler divergence (KLD) between the true posterior
PDF and Gaussian and Student’s t approximations from time
step k = 1 to k = 100. We can see from Fig. 1–Fig. 2 that
the Gaussian approximation can match the true posterior PDF
better than the Student’s t approximation. Thus, the Student’s
t filter may exhibit unacceptable performance in the case of
moderate contaminated process and measurement noises if the
dof parameter is poorly chosen.

The problem discussed above represents the main motiva-
tion of this work. In this paper, to solve these problems, a
new robust Student’s t based Kalman filter will be derived,
where the one-step predicted PDF and the likelihood PDF are
modelled as Student’s t PDFs with different dof parameters,
and the posterior PDF is updated as a Gaussian distribution.

III. A ROBUST STUDENT’S T BASED KALMAN FILTER

A. Student’s t based novel hierarchical Gaussian state-space
model

In order to derive an approximate closed form solution of
the posterior PDF for a linear state-space model with heavy-
tailed process and measurement noises, the one-step predicted
PDF p(xk|z1:k−1) and the likelihood PDF p(zk|xk) need to
be modelled. Firstly, the heavy-tailed measurement noise is
modelled as a Student’s t distribution as follows

p(vk) = St(vk;0,Rk, ν), (18)

where St(vk;0,Rk, ν) denotes the Student’s t PDF of the
measurement noise with mean vector 0, scale matrix Rk (the
nominal covariance matrix of measurement noise), and dof
parameter ν. Using (2) and (18), the likelihood PDF p(zk|xk)
can be formulated as

p(zk|xk) = St(zk;Hkxk,Rk, ν). (19)

Secondly, to model the heavy-tailed process noise, the
one-step predicted PDF p(xk|z1:k−1) is approximated as a
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Student’s t distribution as follows

p(xk|z1:k−1) = St(xk;µk,Σk, ω), (20)

where St(xk; x̂k|k−1,Σk, ω) denotes the Student’s t PDF of
the state vector xk given measurements z1:k−1 with mean
vector µk, scale matrix Σk, and dof parameter ω. According
to the Bayesian theorem and using (1), p(xk|z1:k−1) can be
computed as

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1

=

∫
pw(xk − Fk−1xk−1)p(xk−1|z1:k−1)dxk−1, (21)

where pw(·) is the PDF of the process noise.
Considering that the process noise vector wk has zero mean

and nominal covariance matrix Qk and using (21), the mean
vector µk and nominal covariance matrix ∆k|k−1 can be
computed as

µk = Fk−1x̂k−1|k−1 = x̂k|k−1 (22)

∆k|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 = Pk|k−1. (23)

One may choose the nominal covariance matrix Pk|k−1

as the scale matrix Σk of the one-step predicted PDF
p(xk|z1:k−1). However, Qk−1 is not accurate and the large
process uncertainty induced by heavy-tailed process noise will
be introduced into the scale matrix Σk, and accurate Σk will
be unknown, which will degrade the estimation performance.

To solve this problem, the unknown scale matrix Σk will be
adaptively estimated based on the VB approach. To this end, a
conjugate prior distribution needs to be firstly selected for the
unknown scale matrix Σk since the conjugacy can guarantee
that the posterior distribution is of the same functional form
as the prior distribution. In Bayesian statistics, the inverse
Wishart distribution is usually used as the conjugate prior for
the covariance matrix of a Gaussian distribution with known
mean [24]. The inverse Wishart PDF of a symmetric positive
definite random matrix B of dimension d×d is formulated as
IW(B; ρ,Ψ) =

|Ψ|ρ/2|B|−(ρ+d+1)/2 exp{−0.5tr(ΨB−1)}
2dρ/2Γd(ρ/2)

, where
ρ is the dof parameter, and Ψ is the inverse scale matrix that
is a symmetric positive definite matrix of dimension d × d,
and | · | and tr(·) denote the determinant and trace operations
respectively, and Γd(·) is the d-variate gamma function [24].
If B ∼ IW(B; ρ,Ψ), then E[B−1] = (ρ − d − 1)Ψ−1

when ρ > d + 1 [24]. Since the scale matrix of a Student’s
t distribution is proportional to the covariance matrix of a
Gaussian distribution in the hierarchical Gaussian form, as
shown in equation (30), an inverse Wishart distribution is
chosen as a prior distribution for the unknown scale matrix
Σk as follows

p(Σk) = IW(Σk;uk,Uk), (24)

where IW(Σk;uk,Uk) denotes the inverse Wishart PDF of
Σk with dof parameter uk and inverse scale matrix Uk. To
capture the prior information of Σk, the mean value of p(Σk)
is set as the nominal covariance matrix Pk|k−1, i.e.

Uk

uk − n− 1
= Pk|k−1. (25)

Let
uk = n+ τ + 1, (26)

where τ ≥ 0 is a tuning parameter. Using (26) in (25) results
in

Uk = τPk|k−1. (27)

A new Student’s t based state-space model thereby consists
of (19)-(20), (24) and (26)-(27). However, the closed solution
of the posterior PDF is unavailable because the Student’s t
PDF is not strictly closed. To solve this problem, the Student’s
t based state-space model needs to be transformed into a
hierarchical Gaussian state-space model by introducing two
auxiliary random variables.

Since the Student’s t PDF can be viewed as an infi-
nite mixture of Gaussian PDFs, the one-step predicted PDF
p(xk|z1:k−1) and the likelihood PDF p(zk|xk) can be rewrit-
ten as follows [12]

p(xk|z1:k−1) =

∫
N(xk; x̂k|k−1,Σk/ξk)G(ξk;

ω

2
,
ω

2
)dξk

(28)

p(zk|xk) =

∫
N(zk;Hkxk,Rk/λk)G(λk;

ν

2
,
ν

2
)dλk, (29)

where G(·;α, β) denotes the Gamma PDF with shape param-
eter α and rate parameter β, and ξk and λk are auxiliary ran-
dom variables. According to (28)-(29), the one-step predicted
PDF p(xk|z1:k−1) and the likelihood PDF p(zk|xk) can be
rewritten in the following hierarchical Gaussian forms

p(xk|ξk, z1:k−1) = N(xk; x̂k|k−1,Σk/ξk)

p(ξk) = G(ξk;
ω

2
,
ω

2
) (30)

p(zk|xk, λk) = N(zk;Hkxk,Rk/λk)

p(λk) = G(λk;
ν

2
,
ν

2
), (31)

where p(Σk) is given by (24) and (26)-(27).
Equations (22)-(24), (26)-(27) and (30)-(31) constitute a

Student’s t based hierarchical Gaussian state-space model. The
problem of state estimation for a linear state space model with
heavy-tailed process and measurement noises is transformed
into the problem of state estimation for a Student’s t based
hierarchical Gaussian state-space model.

B. A new robust Student’s t based Kalman filter

To estimate the state xk of a hierarchical Gaussian
state-space model formulated in (22)-(24), (26)-(27) and
(30)-(31), we need to compute the joint posterior PDF
p(xk, ξk,Σk, λk|z1:k). For the hierarchical Gaussian state-
space model, there is not an analytical solution for this
posterior PDF. Thus, to obtain an approximate solution, the VB
approach is used to look for a free form factored approximate
PDF for p(xk, ξk,Σk, λk|z1:k), i.e. [25], [26]

p(xk, ξk,Σk, λk|z1:k) ≈ q(xk)q(ξk)q(Σk)q(λk), (32)

where q(·) is the approximate posterior PDF. According to the
standard VB approach, these approximate posterior PDFs can
be obtained by minimizing the KLD between the approximate
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posterior PDF q(xk)q(ξk)q(Σk)q(λk) and true posterior PDF
p(xk, ξk,Σk, λk|z1:k), i.e. [25], [26]

{q(xk), q(ξk), q(Σk), q(λk)} = argminKLD

(q(xk)q(ξk)q(Σk)q(λk)||p(xk, ξk,Σk, λk|z1:k)), (33)

where KLD(q(x)||p(x)) ,
∫
q(x) log q(x)

p(x)dx is the KLD. The
optimal solution for (33) satisfies the following equation [12].

log q(ϕ) = EΘ(−ϕ) [log p(Θ, z1:k)] + cϕ (34)

Θ , {xk, ξk,Σk, λk}, (35)

where ϕ is an arbitrary element of Θ, and Θ(−ϕ) is the set of
all elements in Θ except for ϕ, and E[·] denotes the statistical
expectation operation, and cϕ denotes the constant with respect
to variable ϕ. Since the variational parameters of q(xk), q(ξk),
q(Σk) and q(λk) are coupled, we need to utilize fixed-point
iterations to solve equation (34), where only one factor in (32)
is updated while keeping other factors fixed [12], [25], [26].

1) Computations of approximate posterior PDFs: Using
the conditional independence properties of the hierarchical
Gaussian state-space model in (22)-(24), (26)-(27) and (30)-
(31), the joint PDF p(Θ, z1:k) can be factored as

p(Θ, z1:k) = p(zk|xk, λk)p(xk|ξk, z1:k−1)p(ξk)p(Σk)p(λk).
(36)

Substituting (24) and (30)-(31) in (36) results in

p(Θ, z1:k) = N(zk;Hkxk,Rk/λk)N(xk; x̂k|k−1,Σk/ξk)×

G(ξk;
ω

2
,
ω

2
)IW(Σk;uk,Uk)G(λk;

ν

2
,
ν

2
). (37)

Using (37), log p(Θ, z1:k) can be formulated as

log p(Θ, z1:k) = (
m+ ν

2
− 1) log λk − ν

2
λk −

λk

2
(zk −Hkxk)

TR−1
k (zk −Hkxk) + (

n+ ω

2
− 1) log ξk

−ω

2
ξk − ξk

2
(xk − x̂k|k−1)

TΣ−1
k (xk − x̂k|k−1)−

1

2
tr(UkΣ

−1
k )− 1

2
(n+ uk + 2) log |Σk|. (38)

Let ϕ = ξk and using (38) in (34), we obtain

log q(i+1)(ξk) = (
n+ ω

2
− 1) log ξk −

0.5
{
ω + tr(D

(i)
k E(i)[Σ−1

k ])
}
ξk + cξ, (39)

where q(i+1)(·) is the approximation of PDF q(·) at the i+1th
iteration, and E(i)[ρ] is the expectation of variable ρ at the ith
iteration, and tr(·) denotes the trace operation and D

(i)
k is

given by

D
(i)
k = E(i)[(xk − x̂k|k−1)(xk − x̂k|k−1)

T ]. (40)

Employing (39), q(i+1)(ξk) can be updated as a Gamma
PDF with shape parameter αi+1

k and rate parameter βi+1
k , i.e.

q(i+1)(ξk) = G(ξk;α
i+1
k , βi+1

k ), (41)

where shape parameter αi+1
k and rate parameter βi+1

k are given
by

αi+1
k = 0.5(n+ ω) (42)

βi+1
k = 0.5

{
ω + tr(D

(i)
k E(i)[Σ−1

k ])
}
. (43)

Let ϕ = λk and using (38) in (34), we obtain

log q(i+1)(λk) = (
m+ ν

2
− 1) log λk −

0.5
{
ν + tr(E

(i)
k R−1

k )
}
λk + cλ, (44)

where E
(i)
k is given by

E
(i)
k = E(i)[(zk −Hkxk)(zk −Hkxk)

T ]. (45)

Using (44), q(i+1)(λk) can be updated as a Gamma PDF
with shape parameter γi+1

k and rate parameter δi+1
k , i.e.

q(i+1)(λk) = G(λk; γ
i+1
k , δi+1

k ), (46)

where shape parameter γi+1
k and rate parameter δi+1

k are given
by

γi+1
k = 0.5(m+ ν) (47)

δi+1
k = 0.5

{
ν + tr(E

(i)
k R−1

k )
}
. (48)

Let ϕ = Σk and using (38) in (34), we obtain

log q(i+1)(Σk) = −1

2
(n+ uk + 2) log |Σk| −

1

2
tr
[
(Uk + E(i+1)[ξk]D

(i)
k )Σ−1

k

]
+ cΣ. (49)

Exploiting (49), q(i+1)(Σk) can be updated as an inverse
Wishart PDF with dof parameter û

(i+1)
k and inverse scale

matrix Û
(i+1)
k , i.e.

q(i+1)(Σk) = IW(Σk; û
(i+1)
k , Û

(i+1)
k ), (50)

where the dof parameter û
(i+1)
k and inverse scale matrix

Û
(i+1)
k are given by

û
(i+1)
k = uk + 1 (51)

Û
(i+1)
k = Uk + E(i+1)[ξk]D

(i)
k . (52)

Let ϕ = xk and using (38) in (34), we obtain

log q(i+1)(xk) = −0.5E(i+1)[λk](zk −Hkxk)
TR−1

k ×
(zk −Hkxk)− 0.5E(i+1)[ξk](xk − x̂k|k−1)

TE(i+1)[Σ−1
k ]×

(xk − x̂k|k−1) + cx. (53)

Define the modified one-step predicted PDF
p(i+1)(xk|z1:k−1) and the modified likelihood PDF
p(i+1)(zk|xk) as follows

p(i+1)(xk|z1:k−1) = N(xk; x̂k|k−1, P̃
(i+1)
k|k−1) (54)

p(i+1)(zk|xk) = N(zk;Hkxk, R̃
(i+1)
k ), (55)

where the modified measurement noise covariance matrix
R̃

(i+1)
k and modified predicted error covariance matrix P̃k|k−1

are given by

R̃
(i+1)
k =

Rk

E(i+1)[λk]
P̃

(i+1)
k|k−1 =

{
E(i+1)[Σ−1

k ]
}−1

E(i+1)[ξk]
. (56)
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Using (54)-(56) in (53), we obtain

q(i+1)(xk) =
1

c
(i+1)
k

p(i+1)(zk|xk)p
(i+1)(xk|z1:k−1), (57)

where the normalizing constant c(i+1)
k is given by

c
(i+1)
k =

∫
p(i+1)(zk|xk)p

(i+1)(xk|z1:k−1)dxk. (58)

Employing (54)-(58), q(i+1)(xk) can be updated as a Gaus-
sian PDF with mean vector x̂

(i+1)
k|k and covariance matrix

P
(i+1)
k|k , i.e.,

q(i+1)(xk) = N(xk; x̂
(i+1)
k|k ,P

(i+1)
k|k ), (59)

where the mean vector x̂
(i+1)
k|k and covariance matrix P

(i+1)
k|k

are given by

x̂
(i+1)
k|k = x̂k|k−1 +K

(i+1)
k (zk −Hkx̂k|k−1) (60)

P
(i+1)
k|k = P̃

(i+1)
k|k−1 −K

(i+1)
k HkP̃

(i+1)
k|k−1, (61)

where K
(i+1)
k denotes the modified Kalman gain given by

K
(i+1)
k = P̃

(i+1)
k|k−1H

T
k (HkP̃

(i+1)
k|k−1H

T
k + R̃

(i+1)
k )−1. (62)

After fixed point iteration N , the approximate posterior
PDFs q(xk), q(ξk), q(Σk) and q(λk) can be updated as

q(xk)≈q(N)(xk) = N(xk; x̂
(N)
k|k ,P

(N)
k|k ) = N(xk; x̂k|k,Pk|k)

(63)
q(ξk)≈q(N)(ξk) = G(ξk;α

N
k , βN

k ) (64)

q(Σk)≈q(N)(Σk) = IW(Σk; û
(N)
k , Û

(N)
k|k ) (65)

q(λk)≈q(N)(λk) = G(λk; γ
N
k , δNk ). (66)

2) Computation of expectations: Using (41), (46) and
(50), we can compute the required expectations E(i+1)[ξk],
E(i+1)[λk] and E(i+1)[Σ−1

k ] as follows

E(i+1)[ξk] =
αi+1
k

βi+1
k

E(i+1)[λk] =
γi+1
k

δi+1
k

E(i+1)[Σ−1
k ] = (û

(i+1)
k − n− 1)(Û

(i+1)
k )−1. (67)

Exploiting (59), the required expectations D
(i+1)
k and

E
(i+1)
k are computed as

D
(i+1)
k =E(i+1)[(xk − x̂k|k−1)(xk − x̂k|k−1)

T ]

=E(i+1)[(xk − x̂
(i+1)
k|k + x̂

(i+1)
k|k − x̂k|k−1)×

(xk − x̂
(i+1)
k|k + x̂

(i+1)
k|k − x̂k|k−1)

T ]

=E(i+1)[(xk − x̂
(i+1)
k|k )(xk − x̂

(i+1)
k|k )T ] +

(x̂
(i+1)
k|k − x̂k|k−1)(x̂

(i+1)
k|k − x̂k|k−1)

T

=P
(i+1)
k|k + (x̂

(i+1)
k|k − x̂k|k−1)(x̂

(i+1)
k|k − x̂k|k−1)

T

(68)

Algorithm 1: One time step of the proposed robust Kalman filter for

linear state-space model with heavy-tailed process and measurement

noises

Inputs: x̂k−1|k−1, Pk−1|k−1, Fk−1, Hk , zk , Qk−1, Rk ,

m, n, ω, ν, τ , N

Time update:

1. x̂k|k−1 = Fk−1x̂k−1|k−1

2. Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1

Measurement update:

3. Initialization: uk = n+ τ + 1, Uk = τPk|k−1, x̂(0)
k|k = x̂k|k−1,

P
(0)
k|k = Pk|k−1, E(0)[Σ−1

k ] = (uk − n− 1)U−1
k

for i = 0 : N − 1

Update q(i+1)(ξk) = G(ξk;α
i+1
k , βi+1

k ) given q(i)(xk) and q(i)(Σk):

4. D(i)
k = P

(i)
k|k + (x̂

(i)
k|k − x̂k|k−1)(x̂

(i)
k|k − x̂k|k−1)

T

5. αi+1
k = 0.5(n+ ω), βi+1

k = 0.5
{
ω + tr(D

(i)
k E(i)[Σ−1

k ])
}

,

E(i+1)[ξk] = αi+1
k /βi+1

k

Update q(i+1)(λk) = G(λk; γ
i+1
k , δi+1

k ) given q(i)(xk):

6. E(i)
k = (zk −Hkx̂

(i)
k|k)(zk −Hkx̂

(i)
k|k)

T +HkP
(i)
k|kH

T
k

7. γi+1
k = 0.5(m+ ν), δi+1

k = 0.5
{
ν + tr(E

(i)
k R−1

k )
}

,

E(i+1)[λk] = γi+1
k /δi+1

k

Update q(i+1)(Σk) = IW(Σk; û
(i+1)
k , Û

(i+1)
k ) given q(i)(xk)

and q(i+1)(ξk):

8. û(i+1)
k = uk + 1, Û

(i+1)
k = Uk + E(i+1)[ξk]D

(i)
k ,

E(i+1)[Σ−1
k ] = (û

(i+1)
k − n− 1)(Û

(i+1)
k )−1

Update q(i+1)(xk) = N(xk; x̂
(i+1)
k|k ,P

(i+1)
k|k ) given q(i+1)(ξk),

q(i+1)(λk) and q(i+1)(Σk):

9. R̃(i+1)
k = Rk/E

(i+1)[λk],

P̃
(i+1)
k|k−1

=
{
E(i+1)[Σ−1

k ]
}−1

/E(i+1)[ξk]

10. K(i+1)
k = P̃

(i+1)
k|k−1

HT
k (HkP̃

(i+1)
k|k−1

HT
k + R̃

(i+1)
k )−1

11. x̂(i+1)
k|k = x̂k|k−1 +K

(i+1)
k (zk −Hkx̂k|k−1)

12. P(i+1)
k|k = P̃

(i+1)
k|k−1

−K
(i+1)
k HkP̃

(i+1)
k|k−1

end for

13. x̂k|k = x̂
(N)
k|k , Pk|k = P

(N)
k|k

Outputs: x̂k|k and Pk|k

E
(i+1)
k =E(i+1)[(zk −Hkxk)(zk −Hkxk)

T ]

=E(i+1)[(zk −Hkx̂
(i+1)
k|k +Hkx̂

(i+1)
k|k −Hkxk)×

(zk −Hkx̂
(i+1)
k|k +Hkx̂

(i+1)
k|k −Hkxk)

T ]

=(zk −Hkx̂
(i+1)
k|k )(zk −Hkx̂

(i+1)
k|k )T +

HkE
(i+1)[(xk − x̂

(i+1)
k|k )(xk − x̂

(i+1)
k|k )T ]HT

k

=(zk −Hkx̂
(i+1)
k|k )(zk −Hkx̂

(i+1)
k|k )T +HkP

(i+1)
k|k HT

k .

(69)

The proposed robust Kalman filter consists of (4)-(5), (26)-
(27), (40)-(43), (45)-(48), (50)-(52), (56) and (59)-(69), and the
implementation pseudocode for one time step of the proposed
robust Kalman filter is shown in Algorithm 1.

Finally, we discuss the effect of the tuning parameter τ upon
the proposed robust Kalman filter. Substituting (67) in (57),
the modified predicted error covariance matrix P̃k|k−1 can be
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reformulated as

P̃
(i+1)
k|k−1=

{
(û

(i+1)
k − n− 1)(Û

(i+1)
k )−1

}−1

E(i+1)[ξk]

=
Û

(i+1)
k

(û
(i+1)
k − n− 1)E(i+1)[ξk]

. (70)

Using (26)-(27) and (51)-(52) in (70) results in

P̃
(i+1)
k|k−1 =

τPk|k−1/E
(i+1)[ξk] +D

(i)
k

τ + 1
. (71)

It is seen from (71) that τ can be deemed as a harmonic
weight to balance the efficacy of Pk|k−1/E

(i+1)[ξk] and D
(i)
k .

On the one hand, if τ is too large, the substantial prior
uncertainties induced by the heavy-tailed process noise are
introduced into the measurement update, which degrades the
performance of the proposed filter. On the other hand, if τ is
too small, a large quantity of information about the process
model is lost, which also degrades the performance of the
proposed filter. In this paper, the tuning parameter is chosen
to lie within the range τ ∈ [2, 6], and the proposed filter with
τ ∈ [2, 6] has essentially consistent estimation performance,
as shown in the later simulation.

IV. SIMULATION

In this simulation, the superior performance of the proposed
robust Kalman filter as compared with existing filters is
illustrated in the problem of tracking an agile target that is
observed in clutter. The target moves according to a constant
velocity model in two-dimensional space and its position is
observed. The linear state space can be formulated as [3]

xk = Fxk−1 +wk−1 (72)

zk = Hxk + vk, (73)

where the state xk = [xk yk ẋk ẏk]; xk, yk, ẋk and ẏk denote
the cartesian coordinates and corresponding velocities; F and
H denote the state transition matrix and observation matrix
respectively, which are given by

F =

[
I2 ∆tI2
0 I2

]
H =

[
I2 0

]
, (74)

where the parameter ∆t = 1s is the sampling interval and I2 is
the two-dimensional identity matrix. Outlier corrupted process
and measurement noises are generated according to [12]

wk ∼
{
N(0,Q) w.p. 0.95
N(0, 100Q) w.p. 0.05

(75)

vk ∼
{
N(0,R) w.p. 0.90
N(0, 100R) w.p. 0.10

, (76)

where Q and R are respectively nominal process and mea-
surement noise covariance matrices

Q =

[
∆t3

3 I2
∆t2

2 I2
∆t2

2 I2 ∆tI2

]
q R = rI2, (77)

where q = 1 and r = 100m2. Equations (75)-(76) imply
that wk and vk are most frequently drawn from a Gaussian

TABLE I: AAVBs of the proposed filters and existing filters

Filters AAVBpos (m) AAVBvel (m/s)

KFTCM 0.948 0.303

HKF 0.728 0.272

MCCKF 0.742 0.277

STF 0.918 0.349

The proposed filter-fixed 0.607 0.257

The proposed filter-Σ 0.561 0.243

TABLE II: Implementation times of the proposed filters and
existing filters in single step run when N = 10

Filters Time (s)

KFTCM 2.7× 10−5

HKF 5.1× 10−4

MCCKF 1.0× 10−4

STF 3.9× 10−5

The proposed filter-fixed 6.5× 10−4

The proposed filter-Σ 7.4× 10−4

distribution with covariance matrix Q or R and five percent
of process noise values and ten percent of measurement noise
values are generated from Gaussian distributions with severely
increased covariance matrices. Process and measurement nois-
es, which are generated according to (75)-(76), have heavier
tails.

In this simulation, the Kalman filter with true covariance
matrices (KFTCM), the Huber based Kalman filter (HKF)
[16], the maximum correntropy criterion Kalman filter (MC-
CKF) [22], the Student’s t filter (STF) [3], the proposed filter
with fixed Σk = Pk|k−1 (The proposed filter-fixed), and the
proposed filter with estimated Σk (The proposed filter-Σ) are
tested. The tuning parameter and the number of iterations of
the HKF are chosen as γ = 1.345 [16] and N = 10, the kernel
size of the MCCKF is chosen as σ = 15, and the dof parameter
of the STF is chosen as ν = 3 [3]. In the proposed filter-
fixed and the proposed filter-Σ, the dof parameters, tuning
parameter and the number of iterations are set as: ω = ν = 5,
τ = 5, N = 10. The proposed filters and existing filters
are coded with MATLAB and the simulations are run on a
computer with Intel Core i7-3770 CPU at 3.40 GHz.

To compare the performance of existing filters and the
proposed filter, the root mean square errors (RMSEs), the
averaged RMSEs (ARMSEs) and the averaged absolute value
of biases (AAVBs) of position and velocity are chosen as
performance metrics. The RMSE, ARMSE and AAVB of
position are respectively defined as follows

RMSEpos =

√√√√ 1

M

M∑
s=1

((xs
k − x̂s

k)
2 + (ysk − ŷsk)

2) (78)
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Fig. 3: True and estimated trajectories of the target
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Fig. 4: RMSEs of the position from existing filters and the
proposed filters

ARMSEpos =

√√√√ 1

MT

T∑
k=1

M∑
s=1

((xs
k − x̂s

k)
2 + (ysk − ŷsk)

2)

(79)

AAVBpos=
1

T

T∑
k=1

∣∣∣∣∣ 1M
M∑
s=1

(xs
k − x̂s

k)

∣∣∣∣∣+
1

T

T∑
k=1

∣∣∣∣∣ 1M
M∑
s=1

(ysk − ŷsk)

∣∣∣∣∣ , (80)

where (xs
k, y

s
k) and (x̂s

k, ŷ
s
k) are the true and estimated po-

sitions at the s-th Monte Carlo run, and M = 1000 and
T = 100s are respectively the total number of Monte Carlo
runs and the simulation time. Similar to the RMSE, ARMSE
and AAVB in position, we can also write formula for the
RMSE, ARMSE and AAVB in velocity.

The true and estimated trajectories obtained from the exist-
ing filters and the proposed filter in a single Monte Carlo run
are shown in Fig. 3. The RMSEs and AAVBs of position and
velocity from the existing filters and the proposed filter are
respectively shown in Fig. 4–Fig. 5 and Table I. The imple-
mentation times of the proposed filters and existing filters in
single step run when N = 10 are shown in Table II. It is seen
from Fig. 3 that the estimated trajectories from the proposed
filter are closer to the true trajectory as compared with existing
filters, particularly around coordinates (1500, 1200), which is
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Fig. 5: RMSEs of the velocity from existing filters and the
proposed filters
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Fig. 7: ARMSEs of the velocity of the target when N =
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caused by the process and measurement outliers. We can see
from Fig. 4–Fig. 5, Table I and Table II that the proposed
filter has smaller RMSEs and AAVBs of position and velocity
but slightly higher computational complexity than existing
filters. Moreover, as expected, the proposed filter-Σ has higher
estimation accuracy and smaller bias than the proposed filter-
fixed.

Fig. 6–Fig. 7 show the ARMSEs of position and velocity
from the existing filters and the proposed filters with different
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Fig. 8: RMSEs of the position from the proposed filters when
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Fig. 9: RMSEs of the velocity from the proposed filters when
τ = 2, 3, 4, 5, 6

numbers of iterations N = 1, 2, . . . , 20. It can be seen from
Fig. 6–Fig. 7 that the proposed filter-fixed and the proposed
filter-Σ respectively outperform existing filters for N ≥ 7 and
N ≥ 3. The proposed filter-Σ has higher estimation accuracy
than the proposed filter-fixed for N ≥ 2.

Fig. 8–Fig. 9 show the RMSEs of position and velocity
from the proposed filters with different tuning parameters
τ = 2, 3, 4, 5, 6. We can see from Fig. 8–Fig. 9 that the
proposed filter-Σ with tuning parameters τ = 2, 3, 4, 5, 6 has
almost identical estimation accuracy, however, it outperforms
the proposed filter-fixed in terms of RMSEs of position and
velocity.

V. CONCLUSIONS

In this paper, a new robust Student’s t based Kalman filter
was proposed for linear systems with heavy-tailed process and
measurement noises, which provided a Gaussian approxima-
tion to the posterior PDF. The one-step predicted PDF and
likelihood PDF were modelled as Student’s t distributions with
different dof parameters, and the PDF of the unknown scale
matrix was modelled as an inverse Wishart distribution. A
Student’s t based hierarchical Gaussian state-space model is
presented by introducing auxiliary random variables, based
on which approximate posterior PDFs of state, unknown
scale matrix and auxiliary random variables can be obtained

by performing structured VB inference. Simulation results
illustrated that the proposed robust Kalman filter outperforms
existing state-of-the-art filters in a manoeuvring target tracking
example with moderate contaminated process and measure-
ment noises.
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