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Abstract

Introduction Cyclo-oxygenase (COX)-2 expression correlates
directly with highly aggressive and metastatic breast cancer, but
the mechanism underlying this correlation remains obscure. We
hypothesized that invasive human breast cancer cells that over-
express COX-2 have the unique ability to differentiate into
extracellular-matrix-rich vascular channels, also known as
vasculogenic mimicry. Vascular channels have been associated
with angiogenesis without involvement of endothelial cells, and
may serve as another mechanism by which tumor cells obtain
nutrients to survive, especially in less vascularized regions of the
tumor.

Methods To determine whether COX-2 regulates vascular
channel formation, we assessed whether treatment with
celecoxib (a selective COX-2 inhibitor) or silencing COX-2
synthesis by siRNA inhibits vascular channel formation by breast
cancer cell lines. Cell lines were selected based on their invasive
potential and COX-2 expression. Additionally, gene expression
analysis was performed to identify candidate genes involved in
COX-2-induced vascular channel formation. Finally, vascular

channels were analyzed in surgically resected human breast
cancer specimens that expressed varying levels of COX-2.

Results We found that invasive human breast cancer cells that
over-express COX-2 develop vascular channels when plated on
three-dimensional matigel cultures, whereas non-invasive cell
lines that express low levels of COX-2 did not develop such
channels. Similarly, we identified vascular channels in high-
grade invasive ductal carcinoma of the breast over-expressing
COX-2, but not in low-grade breast tumors. Vascular channel
formation was significantly suppressed when cells were treated
with celecoxib or COX-2 siRNA. Inhibition of channel formation
was abrogated by addition of exogenous prostaglandin E2. In
vitro results were corroborated in vivo in tumor-bearing mice
treated with celecoxib. Using gene expression profiling, we
identified several genes in the angiogenic and survival pathways
that are engaged in vascular channel formation.

Conclusion Antivascular therapies targeting tumor cell
vasculogenic mimicry may be an effective approach to the
treatment of patients with highly metastatic breast cancer.

Introduction
Tumor growth and metastasis are thought to be angiogenesis-

related processes [1]. However, it has recently been reported

that an angiogenesis-independent pathway, in which tumors

can feed themselves without the use of classical blood ves-

sels, exists in very aggressive tumors of the lung and breast, as

well as in melanomas [2-4]. This is known as vasculogenic

mimicry (VM), a phenomenon in which epithelial tumor cells

form vascular channel-like structures to obtain nutrients with-

out the participation of endothelial cells. These laminin-rich

channel-like spaces are lined by tumor cells and contain eryth-

rocytes and plasma. These channels are thought to provide a

mechanism of perfusion and a dissemination route within the

tumor that functions either independently of or simultaneously
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= vascular endothelial growth factor; VM = vasculogenic mimicry.
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with angiogenesis [5]. A connection has been suggested

between VM and angiogenesis based on the existence of

blood flow in the vascular channels [6]. Thus, VM might be an

important factor to consider in the design of antivascular ther-

apies. Importantly, it has been shown that breast cancer

patients who exhibit VM in their resected tumors have a lower

5-year survival than do patients without VM [7].

Although a correlation has been found between the presence

of VM and poor clinical outcome, little is known regarding the

molecular composition and regulation of these channels.

Based on microarray analysis of melanoma cells, the biologi-

cally relevant proteins in VM were vascular endothelial cad-

herin (VE-cadherin), erythropoietin-producing hepatocellular

carcicnoma-A2 (EPHA2), matrix metalloproteinases (MMPs),

and laminin 5-γ-2-chain (LAMC2). Independently reducing

their levels of expression resulted in complete inability of

aggressive melanoma cells to execute VM in three-dimen-

sional culture conditions [8,9]. Furthermore, xenografts gener-

ated from inflammatory breast cancer (IBC) cells that execute

VM in vitro expressed higher levels of angiogenic factors than

did xenografts from non-IBC cells that did not execute VM.

These angiogenic factors included angiogenin-1, vascular

endothelial growth factor (VEGF), basic fibroblast growth fac-

tor (bFGF), flt-1, integrin-β3, and CD31. It has been suggested

that upregulation of angiogenesis-related genes may result in

the observed vascular phenotype of IBC tumor cells [10].

Therefore, it is important to investigate whether known antian-

giogenic agents might prevent VM. A recent report [11] sug-

gested that specific antiangiogenic agents such as anginex,

TNP-470, and endostatin had minimal effect on VM in human

melanoma MUM-2B and C8161 cells, suggesting differential

response of endothelial cell dependent angiogenesis and VM.

It is therefore of great importance to investigate additional fac-

tors that may regulate vascular channel formation and deter-

mine whether inhibiting those factors might prevent VM.

Over-expression of cyclo-oxygenase (COX)-2 is known to cor-

relate with the aggressive and invasive potential of tumor cells

by several mechanisms [12]. One of the mechanisms modu-

lated by COX-2 during carcinogenesis is angiogenesis, pre-

sumably through increased production of proangiogenic

factors such as VEGF and IL-8 [13]. Similarly, COX-2-specific

inhibitors reduce angiogenesis by inhibiting mitogen activated

protein kinase (extracellular signal regulated kinase [ERK]2)

activity and by interfering with nuclear translocation of ERK

[14]. To determine whether COX-2 regulates vascular channel

formation, we assessed whether treatment with celecoxib (a

selective COX-2 inhibitor) or silencing COX-2 synthesis by

siRNA inhibits vascular channel formation. The aims of our

study were to compare the ability of human breast cancer cells

expressing high and low levels of COX-2 to form vascular

channels on three-dimensional matrigel cultures, and to

assess the effect of therapeutically targeting COX-2 in vitro
and in vivo on VM. In additional, we sought to identify candi-

date genes that are involved in COX-2-induced channel forma-

tion by microarray analysis and, finally, to correlate the cell line

data with findings in surgically resected human breast cancer

specimens.

Materials and methods
Cell culture

The human breast cancer cell lines MDA-MB-231, MDA-MB-

435, MCF-7, and ZR-75-1 were obtained from the American

Type Culture Collection (Rockville, MD, USA). Briefly, cells

were grown in Dulbecco's modified Eagle medium (DMEM)

supplemented with 5% fetal calf serum, 100 U penicillin, 0.1

µg streptomycin, and 2 mmol/l L-glutamine. Cells were main-

tained at log phase at 37°C with 5% carbon dioxide.

Assay for vasculogenic mimicry

The assay was performed as described previously [14].

Briefly, cells were grown until they were about 80% confluent.

Cells (4 × 104 cells/ml) were plated with increasing concen-

trations of celecoxib (a specific COX-2 inhibitor; from 40 to 60

µmol/l). Dimethyl sulfoxide (DMSO; vehicle) was used as a

negative control. In some experiments, exogenous prostaglan-

din (PG)E2 (50 ng/ml) was added to the cells in addition to

celecoxib (40 µmol/l, which is the 50% inhibitory concentra-

tion for MDA-MB-231 cells). Celecoxib concentrations were

based on our previously reported study [15]. Similar doses

were also utilized by other investigators on additional cell lines

[16-18]. The optimal dose of exogenous PGE2 was deter-

mined by titrating doses (25, 50, 100, 200, 400, 800, 1600,

3200, and 6400 ng/ml) of PGE2 with 40 µmol/l celecoxib

(data not shown). The optimal dose of 50 ng/ml PGE2 was

based on low cell death accompanied with reversal of

celecoxib-induced inhibition of channel formation. Beyond

200 ng/ml PGE2, significant cell death was observed.

A 24-well tissue culture plate was evenly coated with 0.1 ml/

well growth factor-reduced matrigel (BD Biosciences, San

Jose, CA, USA), which was allowed to solidify at 37°C for 30

min, before the celecoxib-treated cells were plated. The cell

suspension was added (1 ml/well) onto the surface of the

matrigel and incubated at 37°C for varying times. Cells were

photographed using a phase contrast microscope (Nikon

USA, Garden City, NY, USA). Vascular channels were quanti-

fied by counting the number of connected cells in five ran-

domly selected fields, using × 200 magnification, and dividing

the number by the total number of single cells in the same field.

Small interfering RNA transfections

MDA-MB-231 (high COX-2 expression) cells were plated at

225,000 cells/well in six-well plates and grown to 50% conflu-

ence. Cells were transfected with COX-2-specific or control

siRNA purchased from Dharmacon (Lafayette, CO, USA) in

lipofectamine-2000 transfection reagent (Invitrogen,

Carlsbad, CA, USA), in accordance with the manufacturer's

instructions. Briefly, for each well, 10 µl transfection reagent
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was incubated with 500 µl OPTI-MEM medium (Gibco,

Carlsbad, CA, USA) for 5 min. Subsequently, the respective

siRNA in OPTI-MEM medium was added to the transfection

media, resulting in siRNA concentrations of 10, 50, and 100

nmol/l, and added to the wells. Two days after transfection,

COX-2 protein expression was determined. siRNA-treated

cells were plated on growth factor-reduced matrigel and chan-

nel formation was evaluated 48 hours after transfection.

Protein analysis

Protein lysates were prepared from cell lines in lysis buffer

containing 20 mmol/l Hepes, 0.15 M NaCl, and 1% Triton X-

100 supplemented with 80 µl/ml phosphatase inhibitor cock-

tail II (Sigma P-5726, St. Louis, MO, USA) and 10 µl/ml com-

plete protease inhibitor cocktail (Boehringer Mannheim

GmbH, Indianapolis, IN, USA). Protein was quantified using

the BIO-RAD Protein Assay (BioRad, Hercules, CA, USA) kit

with bovine serum albumin as control. Protein (100 µg) was

separated by SDS-PAGE (8% gel). Membranes were probed

for COX-2 and β-actin. COX-2 antibody was purchased from

Cayman Chemical (Ann Arbor, MI, USA) and used at 1:250

dilution. β-Actin antibody was purchased from Santa Cruz Bio-

chemicals (Santa Cruz, CA, USA) and used at 1:200 dilution.

Experiments were performed in triplicate and representative

Western blots are shown.

Transmission electron microscopy

Cells were plated on matrigel and fixed in 4% buffered glutar-

aldehyde and then postfixed in 1% osmium tetroxide. After

dehydration in ethanol and propylene, cells were embedded in

Epon epoxy resin (Resolution Performance Products, Hou-

ston, Texas, USA). Cells were microdissected under magnifi-

cation to identify areas that exhibited a lobular organization

suggestive of the presence of channels. Ultrathin sections

stained with uranyl acetate and lead citrate were examined

with a Philips EM410 transmission electron microscope.

Measurement of angiogenic proteins using human 

angiogenesis array kit

Human Angiogenesis Array I (Ray Biotech Inc., Norcross, GA,

USA) consisted of antibodies to 20 proteins spotted in dupli-

cate onto a membrane. The manufacturer's recommended

protocol was followed.

Microarray analysis

Expression profiling was performed to detect alterations in

gene expression in the MDA-MB-231 cells treated with 40

µmol/l celecoxib or vehicle for 24 hours by a method previ-

ously described [19,20]. Briefly, RNA was extracted using the

Qiagen RNAeasy Kit from cells plated on matrigel, and 6 µg

cytoplasmic RNA from each sample was converted to double-

stranded cDNA using the Superscript Choice System kit and

T7-(dT)24 primer (100 pmol/µl; Invitrogen, Carlsbad, CA,

USA). Report files generated from the emitted fluorescence

were reviewed to ensure all quality control standards were

met, including percentage of present calls, presence of spike

controls, signal scaling factors per chip, and the GAPDH 3'/5'

ratios. Expression differences between the experimental and

control assays were determined in GeneChip Operating Soft-

ware (GCOS) from Affymetrix (Santa Clara, CA, USA) and

stringent filters on the Detection and Change calls for each

probe set were enforced to find those genes with at least a

twofold increased or decreased change in expression with the

control assay as the baseline.

Xenografts

Five male athymic nude mice, aged 6 to 8 weeks (NxGen Bio-

sciences Inc., San Diego, CA, USA), were prophylactically

treated with either celecoxib (25 mg/kg) or vehicle (DMSO) for

7 days before the tumor cells were inoculated. MDA-MB-231

cells (5 × 106) were suspended in 150 µl serum-free DMEM

with an equal volume of cold liquid growth factor reduced

matrigel (10 mg/ml) and injected subcutaneously in the mice.

All xenografts were excised, fixed in formalin, and paraffin-

embedded blocks were sectioned at 7 µm thickness. Histo-

logic evaluation of vascularity was determined by factor VIII

staining. Immunohistochemical localization of factor VIII

related antigen on endothelial cells was determined using the

polyclonal rabbit anti-human Von Willebrand Factor (Dako

Cytomation, Carpinteria, CA, USA), using the manufacturers'

recommended staining protocol. Red blood cells (RBCs) were

detected using Biebrich Scarlet staining. All human breast

cancer tissues were obtained from the Mayo Clinic Scottsdale

(Department of Pathology) and stained with anti-CD34 (Dako)

to identify endothelial cells and Biebrich Scarlet to identify

RBCs. COX-2 staining was achieved by using specific goat

anti-human COX-2 antibody (Santa Cruz). Grading of the

tumors was done according to the Nottingham and modified

Bloom Richardson grading criteria. The Mayo Clinic institu-

tional review board approved this research study.

Results
Biomechanical potential of invasive breast cancer cells 

differs from that of non-invasive breast cancer cells

Both the highly invasive MDA-MB-231 cells [15], which over-

express COX-2, and the moderately invasive MDA-MB-435

cells [21], which express moderate levels of COX-2, gener-

ated patterns that consisted of a translucent tubular network

when plated on matrigel. These vascular tubular channels

evolved dynamically and anastomosed over a 2 to 7 hour

period (Figure 1). In contrast, the non-invasive MCF-7 and ZR-

75-1 cells [22], which either lack or have very low expression

of COX-2, did not form tubular networks on matrigel at 7 hours

(Figure 1); channels were undetectable for up to 48 hours

after plating (data not shown). In comparison with endothelial

cell cords in vitro that typically demonstrate a uniform diameter

on most matrices [23-26], the lumen diameter in these tubular

networks varied widely. To highlight the matrix-associated vas-

cular channels formed by the MDA-MB-231 cells, they were

stained with periodic acid-Schiff, which identified the
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glycogen and related mucopolysaccharides secreted by the

cells to form the extracellular-matrix-rich channels (Figure 2a).

Fluid conductance within the channels was monitored using a

fluorescence recovery after photobleaching (FRAP) assay on

MDA-MB-231 cells stained with carboxy-fluorosuccinidylester

(CFSE). Total recovery of fluorescence was observed within

10 to 12 seconds of photobleaching, suggesting active fluid

conductive through the channels as opposed to passive diffu-

sion process, which takes longer (data not shown).

Electron microscopic analysis of MDA-MB-231 cells 

exhibiting vasculogenic mimicry

Ultrastructurally, the microvascular channels exhibited elon-

gated tumor cells having oval euchromatic nuclei with promi-

nent nucleoli (Figure 2b–d). The cytoplasm contained many

mitochondria, well developed Golgi apparatus and vesicles,

rough endoplasmic reticulum cisternae, and ribosomes. Extra-

cellular basement membrane material was also noted. Numer-

ous membrane bound granules of variable size and electron

density were present. A cluster of cells contacted each other

to form vascular channels, which were associated with cyto-

plasmic ruffling and protrusions at cell contact positions (Fig-

ure 2b). In Figure 2c we observed five cells stretching their

cellular contents to form a tubular channel-like structure with

no distinct plasma membrane between them. There was an

absence of tight junctions between adjacent cells closely

apposed to each other (Figure 2d). These morphologic fea-

tures suggest that apposed cells become fused, which results

in a channel-like structure lined by epithelial cells.

Celecoxib inhibits vascular channel formation in vitro

Because COX-2 modulates several pathways during carcino-

genesis including angiogenesis, we investigated the ability of

COX-2 to regulate vascular channel formation. The MDA-MB-

231 cells were chosen not only because they express high lev-

els of COX-2, but also because they differentiate into tubular

structures within 2 hours of plating on matrigel and form well

defined vascular channels by 7 hours (Figure 1). We recently

showed that treatment with celecoxib maximally affected

growth of MDA-MB-231 cells at 48 hours after treatment [15],

and so we tested the ability of celecoxib to affect vascular

channel formation at 48 hours after treatment. We found that

at 40 and 60 µmol/l doses, celecoxib treatment was able to

reduce significantly the number of vascular channels formed

by these cells as compared with cells treated with vehicle (P
< 0.001; Figure 3 panels a [parts i and ii] and c), suggesting

a role for COX-2 in channel formation. Similar reduction in

channel formation was observed at 24 hours (data not shown).

At a lower dose (20 µmol/l) of celecoxib, there was no effect

on formation of vascular channels (data not shown). To deter-

mine whether celecoxib-induced inhibition of channel forma-

tion could be abrogated by adding exogenous PGE2, MDA-

MB-231 cells were treated with 40 µmol/l celecoxib with or

without varying dose of PGE2 (100 ng to 6.4 µg/ml). Addition

of 50 ng/ml PGE2 completely restored channel formation in

cells treated with 40 µmol/l celecoxib (Figure 3 panels a [part

iii] and c), suggesting that the celecoxib-mediated inhibition

was dependent on PGE2. Similar results were observed in

other aggressive breast cancer cell lines (data not shown).

Figure 1

Kinetics of vascular channel formation by breast cancer cellsKinetics of vascular channel formation by breast cancer cells. MDA-MB-231, MDA-MB-435, MCF-7, and ZR-75-1 cells were serum starved over-
night, plated on matrigel, and images using phase contrast microscopy were taken at the times indicated. The MDA-MB-231 and MDA-MB-435 cells 
started to form vascular channels as early as 2 hours after plating on matrigel. Well defined patterned networks were observed by 7 hours. MCF-7 
and ZR-75-1 cells failed to form patterned networks.
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Vascular channel formation decreased when MDA-MB-

231 cells were treated with COX-2-specific siRNA

To verify our in vitro observation with celecoxib, we silenced

the expression of COX-2 protein in MDA-MB-231 cells using

siRNA technology. At all three concentrations (10, 50, and

100 nmol/l), the COX-2 siRNA oligos were able to significantly

knock down COX-2 protein levels by 48 hours after transfec-

tion, as compared with control siRNA treated cells (Figure 3b).

Because all three concentrations of the oligos were efficient in

downregulating expression of COX-2, we selected 50 nmol/l

(based on the manufacturer's recommendation) of the siRNA

oligo treated cells for evaluation of channel formation. We

observed a significant (P < 0.001) decrease in the number of

channels formed by the COX-2 siRNA treated cells (50 chan-

nels) as compared with the control siRNA treated cells (175

channels; Figure 3c).

Figure 2

PAS staining and electron microscopic analysis of vascular channels formed by MDA-MB-231 cellsPAS staining and electron microscopic analysis of vascular channels 
formed by MDA-MB-231 cells. (a) PAS staining was performed on 
MDA-MB-231 cells plated on matrigel for 24 hours to identify the extra-
cellular matrix secreted by cells. Pink staining refers to the glycogen 
and related mucopolysaccharides secreted by the cells to form the 
extracellular matrix-rich vascular channels. (b) Transmission electron 
microscopic analysis was performed on MDA-MB-231 cells plated on 
matrigel for 24 hours. A cluster of cells came into contact with each 
other to form vascular channels. There was cytoplasmic ruffling and 
protrusion at cell contact position. (c) There was evidence of stretching 
of cellular contents to form the tubular channel-like structure. (d) 
Absence of tight junctions between adjacent cells involved in vascular 
channel formation was observed. PAS, periodic acid-Schiff.

Figure 3

COX-2 inhibition by celecoxib or specific siRNA inhibits vascular chan-nel formationCOX-2 inhibition by celecoxib or specific siRNA inhibits vascular chan-
nel formation. (a) Phase contrast images show vascular channel forma-
tion in growth factor reduced matrigel of MDA-MB-231, treated with 
vehicle or 40 mmol/l celecoxib. Images were captured 48 hours after 
plating using a phase contrast microscope. (part i) With vehicle treat-
ment, MDA-MB-231 cells form well differentiated tubular structures. 
(part ii) With celecoxib treatment, differentiation into channels was sig-
nificantly reduced in MDA-MB-231 cells. (part iii) Addition of 50 ng/ml 
PGE2 to MDA-MB-231 cells treated with 40 µM celecoxib could 
reverse the inhibitory effect of celecoxib. (b) COX-2 expression 
decreases in MDA-MB-231 cells with siRNA treatment. COX-2 protein 
expression was measured by Western blot. Treatment with a COX-2 
siRNA for 48 hours significantly inhibited COX-2 expression at siRNA 
concentrations of 10, 50, and 100 nmol/l. Data shown are representa-
tive of three independent experiments. (c) Inhibition of vascular channel 
formation in MDA-MB-231 cells with celecoxib and COX-2-specific 
siRNA treatment. Quantitative analysis of vascular channel formation: 
the number of vascular channels was determined by counting the 
number of connected cells in five randomly selected fields, using 200 × 
magnification, and dividing that number by the total number of cells in 
the same field. Raw data from five standardized fields for each treat-
ment from three separate experiments are shown. Treatment with 40 
and 60 mmol/l celecoxib and treatment with a 50 nmol/l concentration 
of COX-2 siRNA for 48 hours caused significant decrease in the 
number of channels formed by MDA-MB-231 cells, and addition of 50 
ng/ml of PGE2 was able to reverse the effect observed with treatment 
with 40 mmol/l celecoxib. P values represent significant difference 
between vehicle control and celecoxib treatment. COX, cyclo-oxygen-
ase; PG, prostaglandin; siRNA, small interfering RNA.
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Celecoxib treatment alters expression of genes 

associated with angiogenesis, proliferation, apoptosis, 

and cell cycle

Because we established that inhibition of COX-2 decreases

channel formation, we sought to elucidate the regulatory

mechanism underlying the effect. To do so, differential gene

expression was evaluated by comparing cells plated on three-

dimensional matrigel cultures that were either treated with

vehicle or 40 µmol/l celecoxib for 24 hours using expression

profiling with Affymetrix Human Genome 133A (Affymetrix Inc.,

Santa Clara, CA, USA). As illustrated in Figure 4, numerous

gene expression patterns were altered in association with

treatment. A treatment/vehicle signal ratio (fold change) of = 2

or = 0.5 was considered a significant induction or repression,

consistent with previous reports of microarray gene expres-

sion analysis [27,28]. Briefly summarized, of the 1069 known

genes that were differentially expressed in these two treatment

conditions, approximately 35 have been previously associated

with the angiogenic, proliferative, apoptotic/survival, cell cycle,

and COX pathways (Figure 4). This is consistent with the view

that COX-2 inhibitors have multiple mechanisms of action as

cancer chemopreventive agents.

A series of genes that could generate relevant biologic mole-

cules to form vascular channels were observed to be down-

regulated with celecoxib treatment, including fibronectin,

collagen, and laminin. Similarly, in the angiogenic pathway,

celecoxib treatment caused downregulation of IL-6 receptor,

the ADAM8 (a disintegrin and metalloproteinase domain 8)

gene, CD44 and integrin-β binding proteins, and upregulation

of neuropilin 2 (a VEGF receptor). In addition, celecoxib

affected the proliferation pathway by causing decreased

expression of epidermal growth factor (EGF) receptor, FGF

receptor 2, transforming growth factor-β receptor 2, mitogen-

activated protein kinase, Ras oncogenes, transforming growth

factor-α, and STAT1 (signal transducer and activator of tran-

scription 1). Activation of the apoptotic/survival machinery was

also observed, whereby celecoxib treatment induced expres-

sion of genes encoding such products as cytochrome C oxi-

dase subunit VIII, BAX, BCLxs, presenillin 2 (structural protein

Figure 4

Treatment with celecoxib regulates gene expression in MDA-MB-231 cellsTreatment with celecoxib regulates gene expression in MDA-MB-231 cells. Differential gene expression was assessed by comparing MDA-MB-231 
cells treated with or without 40 mmol/l celecoxib for 24 hours using the Affymetrix Human Genome 133A Gene Chip. Replicate microarray analyses 
were employed. A total of 44,760 genes were initially evaluated, and of these 1069 had a twofold or greater change. Selected results compare 
genes of interest associated with important cell pathways. Bars on the right represent an increase in gene expression and bars on the left indicate a 
decrease. COX, cyclo-oxygenase.
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from cleavage of death substrate), apoptotic chromatin con-

densation inducer, and PDCD5 (programmed cell death 5).

Concomitantly, antiapoptotic genes such as MCL1 and BCL2

were downregulated. Consistent with the expression data, we

previously showed a significant increase in BAX protein and

decrease in BCL2 protein on celecoxib treatment [15,29].

Celecoxib also affected the cell cycle pathway by causing an

upregulation of cyclin-dependent kinase inhibitors p57, p21

and kip2, and downregulation of cyclin F and cell division cycle

associated 3 proteins. Finally, in the COX pathway, celecoxib

treatment caused downregulation of phospholipase A2 recep-

tor 1 and prostaglandin E synthase 2, which is consistent with

our previous report in which PGE2 protein was shown to be

significantly downregulated after celecoxib treatment [15,29].

In summary, the expression analysis allowed us to begin to elu-

cidate the mechanisms by which celecoxib may play a role in

reducing VM and angiogenesis.

Celecoxib treatment caused decreased expression of 

angiogenic proteins

The cell culture supernatant from MDA-MB-231 cells treated

with vehicle or celecoxib (40 µmol/l) for 24 hours was tested

on a human angiogenesis array. Several angiogenic proteins

were downregulated by celecoxib on membrane arrays con-

taining 20 different angiogenic proteins (Figure 5). The cell

culture supernatants of vehicle treated cells had greater

amounts of growth related protein (GRO), IL-6, IL-8, tissue

inhibitor of matrix metalloproteinase (TIMP)1 and TIMP2, and

VEGF, based on gray levels or brightness values as compared

with cells treated with celecoxib. Other proteins affected were

EGF, bFGF, and angiogenin, which were already low in the

supernatant of cells, treated with vehicle, but were not

detected in supernatants of cells treated with celecoxib. The

presence of these proteins was not due to the fetal bovine

serum in the DMEM medium, because incubation with the

medium alone did not result in reactivity with any of the anti-

body spots (data not shown).

Celecoxib treatment in vivo inhibited vasculogenic 

mimicry

Presence of blood vessels lined by endothelial cells was eval-

uated by factor VIII related antigen staining and Biebrich Scar-

let staining for RBCs (Figure 6a). Blood vessels were detected

predominantly in the capsular and peripheral regions of the

MDA-MB-231 transplanted tumors excised from athymic nude

mice. In contrast to blood vessels, which were lined by

endothelial cells, vascular channels were identified as vessels

in the tumors containing erythrocytes (detected by Biebrich

Scarlet staining) but that lacked endothelial cell lining (deter-

mined by the lack of factor VIII staining; Figure 6b). Previously,

we showed that blood vessels lined by endothelial cells (vas-

cularization) were significantly decreased in tumor implants

dissected from mice treated with celecoxib [15]. Similarly,

tumor weight was significantly (P = 0.01) lower in mice treated

with celecoxib than in mice treated with vehicle (0.6 ± 0.1 g

versus 1.9 ± 0.1 g, respectively; n = 5 mice/group) [15]. In the

present study we extend our observation to vascular channel

formation in mice treated with celecoxib. Tumors excised from

mice treated with celecoxib were devoid of vascular channels

(data not shown). Furthermore, the presence of vascular chan-

nels was only detected in the central hypoxic sections of the

tumors from mice treated with vehicle (Figure 6b), confirming

that the vascular channels may be used to obtain nutrients in

less vascularized tumor regions.

Vasculogenic mimicry was detected in high-grade 

human breast cancer tissues

We identified VM in three out of ten cases of high-grade

(grade 3) tumors examined. Vascular channels were detected

Figure 5

Cell supernatant analysis of angiogenic proteins revealed decreased levels with celecoxib treatmentCell supernatant analysis of angiogenic proteins revealed decreased 
levels with celecoxib treatment. The cell culture supernatants from 
MDA-MB-231 cells treated with vehicle and 40 mmol/l celecoxib for 24 
hours were tested on a human angiogenesis protein array. The cell cul-
ture supernatants of cells treated with vehicle had higher amounts of 
GRO, IL-6, IL-8, TIMP1, TIMP2, and VEGF based on gray levels or 
brightness values as compared with cells treated with celecoxib. Other 
proteins affected by treatment were EGF, bFGF, and angiogenin. The 
array template is shown in the lower panel, with dark gray indicating 
high expression. bFGF, basic fibroblast growth factor; EGF, epidermal 
growth factor; IFN, interferon; IGF, insulin-like growth factor; IL, inter-
leukin; MCP, monocyte chemoattractant protein; PDGF, platelet-
derived growth factor; PG, prostaglandin; RANTES, regulated on acti-
vation, normal T cell expressed and secreted; TIMP, tissue inhibitor of 
matrix metalloproteinase; VEGF, vascular endothelial growth factor.
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by staining tumor specimens with Biebrich Scarlet for RBCs

and anti-CD34 antibody for endothelial cells. Vascular chan-

nels were not lined by endothelial cells as evidenced by the

lack of CD34 (brown) staining around the pool of RBCs (Fig-

ure 6d). In comparison, typical blood vessels exhibit RBCs in

spaces lined by endothelial cells (brown stain; Figure 6c). VM

was not observed in any of the low-grade breast cancer spec-

imens examined (n = 10 cases). Human high-grade invasive

tumor specimens that expressed high levels of COX-2 pro-

teins (Figure 6f) had detectable vascular channels, whereas

low-grade tumors with no or low COX-2 expression (Figure

6e) had little evidence of VM. Representative COX-2 staining

patterns for a high-grade metastatic ductal carcinoma and a

low-grade (grade 1) non-invasive tumor are shown (Figure

6e,f).

Discussion
Vascular channels can be formed by epithelial tumor cells and

are detected in several high-grade invasive tumor specimens,

indicating that endothelial cell mediated angiogenesis is not

the only mechanism providing nourishment to tumors and met-

astatic lesions [2-4]. Our study addresses the intriguing cellu-

lar and molecular mechanisms underlying the role of COX-2 in

vascular channel formation in human breast cancer cells. The

data reveal that COX-2 plays a vital role in vascular channel

formation by breast cancer cells in vitro and in vivo. First, we

found that only the highly invasive breast cancer cells with high

levels of COX-2 form patterned vascular channels, and these

channels are different from endothelium-derived angiogenic

vessels. Second, inhibiting COX-2 reduced channel forma-

tion, and addition of exogenous PGE2 restored channel forma-

tion. Finally, we identified vascular channels in necrotic areas

of primary human high-grade invasive breast cancer speci-

mens that express high levels of COX-2, suggesting that these

channels may serve as an alternative means of generating

microcirculation in hypoxic regions of the tumor and thus facil-

itate metastasis.

Highly invasive MDA-MB-231 and less invasive MDA-MB-435

cells form patterned matrix-associated vascular channels in
vitro. In contrast, poorly invasive ZR-75-1 and MCF-7 cell lines

are not able to generate patterned vascular channels (Figure

1). A number of markers expressed by the MDA-MB-231 cells,

including thrombin receptor, TIE-2, CD31, VEGF, and bc-48,

have been shown to be associated with endothelial cells [30-

34]. The presence of these typical endothelial proteins

expressed in the MDA-MB-231 cells may increase invasive

and metastatic activity, and help to elucidate the molecular

mechanisms that underlie the channel-forming ability of these

highly aggressive tumor cells. The ability of the highly invasive

COX-2high but not the poorly invasive COX-2low breast cancer

cell lines to generate patterned vascular channels in vitro cor-

relates well with the presence of vascular channels only in the

high-grade, COX-2high invasive human ductal adenocarcinoma

specimens (Figure 6c–f).

We therefore hypothesized that COX-2 may play a regulatory

role in vascular channel formation in breast cancer. The ability

of MDA-MB-231 cells to differentiate into channels was signif-

icantly reduced when they were treated with increasing doses

of celecoxib (40 to 60 µmol/l; Figure 3a,c). These results were

verified by downregulating COX-2 protein expression using

the siRNA approach (Figure 3b). The effect of celecoxib to

inhibit vascular channels was dependent on PGE2, because

Figure 6

In vivo inhibition of VM with treatment and presence of VM in breast cancer specimensIn vivo inhibition of VM with treatment and presence of VM in breast 
cancer specimens. (a) Vascularity of tumor xenografts in mice was eval-
uated by factor VIII related antigen staining (brown) for endothelial 
cells, and Biebrich Scarlet staining (red) for RBCs. (b) Absence of 
endothelial cells lining the pools of RBCs (vascular channels) was 
shown by no staining for factor VIII related antigen and positive staining 
for RBC by Biebrich Scarlet. C) Histological features of the primary 
human grade 1 breast tumor specimen showing blood vessels positive 
for CD34 staining (brown) for endothelial cells, and Biebrich Scarlet 
staining (red) for RBCs. No vascular channels were detected. (d) RBC 
pooling without the lining of endothelium (vascular channels) in the 
high-grade invasive ductal breast carcinoma specimen. (e, f) COX-2 
staining pattern in grade 1 primary human breast tumor specimen 
(panel e) and in high-grade invasive ductal carcinoma specimen (penal 
f). Magnifications are as follows: panels a and b, 100 ×; panels c and d, 
200 ×; and panels E and F, 100 × magnification). COX, cyclo-oxygen-
ase; RBC, red blood cell; VM, vasculogenic mimicry.
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adding exogenous PGE2 to cultures restored the ability of cells

to form channels. Differential gene expression analysis sug-

gests that celecoxib treatment, impinging on VM, has impacts

on multiple pathways including angiogenesis. Decreased

expression of angiogenic proteins such as IL-6R, ADAM family

genes, CD44, IL-8, Rho family genes, integrin-β binding pro-

teins, MMPs, and laminin was observed with celecoxib treat-

ment in MDA-MB-231 cells. In melanoma cells, it has been

reported that in the VM signaling cascade there is activation of

phosphatidylinositol-3 kinase, which in turn promotes the

activity of MMPs and cleavage of laminin 5γ 2 chain, releasing

signals into the tumor microenvironment to execute VM [5]. In

our study celecoxib was able to neutralize the inductive poten-

tial of the tumor cell microenvironment by decreasing levels of

MMPs, TIMP1, TIMP2, and laminin (Figures 4 and 5). Consist-

ent with a significant decrease in PGE2 secretion by MDA-MB-

231 cells after celecoxib treatment [15], we observed a two-

fold decrease in prostaglandin E synthase 2 (Figure 4), which

is the enzyme involved in the synthesis of PGE2. This is partic-

ularly relevant because COX-2-dependent PGE2 represents a

likely candidate for the angiogenic response observed in sev-

eral tumors, including mammary tumors [29,35-38].

Vascular mimicry and COX-2 are both associated with angio-

genesis [39], and gene expression data implicated genes in

the angiogenic pathway, and so we evaluated the angiogenic

proteins affected by celecoxib during vascular channel forma-

tion using an angiogenesis protein array. The major angiogenic

proteins downregulated by celecoxib treatment were VEGF,

GRO, IL-6, IL-8, TIMP1, and TIMP2 (Figure 5). The array data

confirm our previous data on dose-dependent inhibition of

VEGF in MDA-MB-231 cells after celecoxib treatment [15]

and our gene expression data. Of interest is the increase in the

neuropillin 2 VEGF receptor gene expression (Figure 4) but a

decrease in VEGF levels (Figure 5), suggesting a novel auto-

crine feedback mechanism during VM. Furthermore, there

were decreases in EGF, transforming growth factor-α, and

bFGF levels upon celecoxib treatment, both at gene and pro-

tein levels (Figures 4 and 5). It is well documented that tumor

cells synthesize and respond to growth factors such as EGF,

FGF, and PDGF [40], and that NSAIDs negatively regulate the

EGF/PDGF pathway with evidence of crosstalk between

COX-2 and EGFR [41-43].

Because celecoxib treatment also regulates genes in the

apoptosis and cell cycle pathways (Figure 4), it may be argued

that the negative effect on vascular channel formation may be

in part an indirect effect of apoptosis and/or cell cycle arrest.

However, it is important to note that the gene expression anal-

ysis was performed only on live, adherent cells, and genes

involved in vascular channel formation including fibronectin,

collagen, and laminin were downregulated with celecoxib

treatment. Thus, we suggest that celecoxib may have an inde-

pendent effect on vascular channel formation.

To confirm the in vitro data, the effects of celecoxib on channel

formation and angiogenesis were evaluated in an in vivo
xenograft model using MDA-MB-231 cells. With celecoxib

treatment in vivo, we were unable to detect any channel forma-

tion. In contrast, vehicle-treated tumors exhibited substantial

vascular channel formation specifically in necrotic areas of the

tumor (Figure 6b). Previous studies have reported similar

effects of COX-2 inhibitors on angiogenesis using the murine

mammary tumor cell line C3L5 [12]; however, there have been

no reports thus far on the effect of COX-2 inhibitor on vascular

channel formation by breast cancer cells. Additional studies

are needed to elucidate fully the complex events involved in

COX-2-mediated vascularization and channel formation in pri-

mary human tumors.

Of relevance is the occurrence of VM in three out of ten pri-

mary human high-grade invasive tumor specimens, with no evi-

dence of VM in low-grade tumors (n = 10; Figure 6c,d). Thus

far, there has only been one report of VM in primary human IBC

specimens in which the authors correlated VM with high

expression of Flt-1 and TIE-2 and absence of CD31 and

thrombin [7]. Our studies suggest a correlation between chan-

nel formation and high COX-2 expression. Although we

recognize that not all breast cancer specimens that were

COX-2-positive exhibited VM, our evaluation implies that

specimens lacking channel formation were always negative for

COX-2. Inhibiton of COX-2 may therefore be considered part

of a treatment regimen for patients with high-grade invasive

ductal carcinomas. Interestingly, one of the three specimens

that were positive for VM was obtained from a patients with

IBC.

Conclusion
Our data, for the first time, implicate COX-2 as a regulator of

vascular channel formation in human breast cancer cells. The

data demonstrate a mechanistic role for COX-2 in vascular

channel formation, with significant inhibition of channel forma-

tion when COX-2 is specifically inhibited. Gene expression

and protein array data implicate several factors that help to

explain the molecular basis underlying the unique architecture

of vascular channels formed by aggressive breast cancer cells

and regulated by COX-2.
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