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Introduction

The ER plays a crucial role in several important aspects of eu-

karyotic cell physiology. It assists in the folding and maturation 

of all nascent secretory proteins and initiates their distribution to 

the broader secretory pathway (Ellgaard et al., 1999). In addition, 

the ER in� uences the overall composition of the cellular proteome 

by mediating the ER-associated degradation (ERAD) pathway, 

a pathway that destroys misfolded proteins and also responds to 

speci� c degradation signals to regulate the levels of certain native 

proteins (Hampton, 2002). The ER also houses many lipid bio-

synthetic enzymes, which impact the relative composition and over-

all abundance of lipids throughout the cell (Daum et al., 1998).

Genes involved in protein folding, protein traf� cking, 

ERAD, and lipid metabolism are all transcriptionally activated 

by a conserved ER-initiated signal transduction pathway called 

the unfolded protein response (UPR; Mori, 2000; Travers et al., 

2000; Harding et al., 2001; Patil and Walter, 2001; Kaufman, 

2002). In budding yeast, the UPR pathway begins with an ER 

transmembrane protein, Ire1p (Cox et al., 1993; Mori et al., 

1993). The N terminus of Ire1p lies in the lumen of the ER, 

where it senses the ER’s condition. When Ire1p detects a need 

for increased ER function, it transmits a signal across the ER 

membrane to activate its own cytosolic kinase and endoribo-

nuclease domains (Cox et al., 1993; Mori et al., 1993; Shamu and 

Walter, 1996; Sidrauski and Walter, 1997). Activated Ire1p then 

initiates the unconventional splicesome-independent splicing of 

HAC1 mRNA (Cox and Walter, 1996; Sidrauski and Walter, 

1997). Only the spliced form of HAC1 mRNA can be translated, 

making the splicing step a critical point of regulation (Chapman 

et al., 1998; Ruegsegger et al., 2001). Upon translation, Hac1p 

localizes to the nucleus, where it acts as a transcription factor to 

up-regulate a wide array of UPR target genes (Cox and Walter, 

1996; Kawahara et al., 1997), thus increasing the ER’s capacity 

to serve its many functions (Travers et al., 2000).

Northern analysis, which measures the relative abundance 

of spliced HAC1 mRNA in the cell, is currently the most com-

monly used method of detecting UPR activation (Cox and Walter, 

1996). Using this technique, previous studies have detected 

UPR activation only during extreme conditions of ER stress. 

For example, HAC1 mRNA splicing has been detected in cells 

treated with pharmacological agents that cause widespread pro-

tein misfolding (Cox and Walter, 1996; Kawahara et al., 1997) 

or in cells overexpressing mutant proteins that fold improperly 

(Spear and Ng, 2003). The inability to detect HAC1 mRNA splic-

ing during normal growth has led to the designation of the UPR 

pathway as a stress response pathway. However, it is likely that 

cellular demand for ER function is dynamic even during un-

stressed growth conditions. This evokes the intriguing possibility 

that in addition to responding to conditions of extreme stress, 

the UPR pathway manages the everyday challenges of � uctuat-

ing ER demand. This housekeeping function for the UPR has 

been previously unnoticed, perhaps because it induces a level of 

Ire1p activity that is too subtle to be detected by conventional 

HAC1 Northern analysis.
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Because progression through the cell cycle requires dramatic 

molecular and cellular changes, we hypothesized that cell cycle 

progression requires � uctuations in ER capacity. To isolate a cell 

cycle event that requires particularly high ER functionality, we used 

ER stress as a tool to disrupt ER function. We then asked whether 

any particular cell cycle event was sensitive to this reduction in ER 

capacity. Most cell cycle events that we examined did not require 

exceptionally high ER activity, as they occurred normally during 

ER stress. However, cells experiencing ER stress were speci� cally 

defective in cytokinesis, suggesting that elevated ER functionality 

is required for cells to carry out ef� cient cytokinesis.

Because cytokinesis required a greater ER capacity than 

other cell cycle events, we tested the possibility that the UPR 

plays a role in achieving an increased ER capacity during normal, 

unstressed cytokinesis. Indeed, we found that UPR-de� cient 

cells were unable to carry out ef� cient cytokinesis even in the 

absence of external ER stress. This is the � rst time the UPR 

pathway has been shown to function in cells that are growing 

optimally, expressing no misfolded mutant proteins, exposed to 

no protein misfolding agents, and not differentiating into high 

volume secretory cells. Therefore, our study supports the con-

cept of a UPR that continuously � ne tunes the ER to accommo-

date everyday � uctuations in ER functional demand.

Results

HAC1 mRNA splicing occurs during 

unstressed growth

Because previous HAC1 Northern analysis has not uncovered 

HAC1 mRNA splicing in unstressed cells (Cox and Walter, 1996), 

we performed HAC1 Northern analysis with 30 μg RNA rather 

than the 10 μg RNA that is traditionally assayed. Under these 

conditions, we could clearly detect the spliced form of HAC1 in 

unstressed optimally grown wild-type cells. This spliced form con-

stituted 7.4 ± 0.6% of total HAC1 mRNA (Fig. 1). Basal splicing 

was IRE1 dependent, suggesting the presence of a bona � de UPR 

signal in unstressed cells. The results of our Northern analysis, 

which we con� rmed by RT-PCR (Fig. S1, available at http://www

.jcb.org/cgi/content/full/jcb.200702101/DC1), prompted us to seek 

a functional relevance for basal UPR induction.

ero1-1 cells are delayed in the cell cycle 

with high DNA content, large buds, 

and divided nuclei

To determine whether this low level of UPR activity has a 

role in cell cycle progression, we used the ero1-1 temperature-

 sensitive allele to identify cell cycle stages that are sensitive 

to ER perturbations. In the yeast ER, the essential proteins 

Ero1p (ER oxidoreductin 1) and Pdi1p (protein disulfide 

isomerase 1) work together to catalyze oxidative protein folding 

(Pollard et al., 1998; Frand and Kaiser, 1999; Tu et al., 2000). 

For cells carrying the ero1-1 temperature-sensitive allele, growth 

at the restrictive temperature rapidly induces ER stress (Frand 

and Kaiser, 1998).

In asynchronous cultures, the restrictive growth of ero1-1 

cells caused an accumulation of cells with a 2C or greater DNA 

content (Fig. S2, available at http://www.jcb.org/cgi/content/full/

jcb.200702101/DC1). This suggests that ER stress delays cell 

cycle progression at a point subsequent to DNA replication. To 

speci� cally de� ne this ER-sensitive stage of the cell cycle, we 

induced ER stress in α-factor synchronized ero1-1 cells (Fig. 2 A). 

When grown at the restrictive temperature, synchronized ero1-1 

cells experienced severe ER stress, as measured by HAC1 splic-

ing (Fig. 2, B and C). Compared with wild-type cells, these 

ER-stressed cells proceeded normally through the initial stages 

of the cell cycle. By 30 min after the temperature shift, both cell 

types completed DNA replication, thus adopting a 90–95% 2C 

DNA content (Fig. 2, D and quantitated in E). After 1 h of growth 

at 37°C, wild-type cells began to divide and reenter G1 phase. In 

contrast, only a small percentage of ero1-1 cells divided at 37°C. 

Instead, ER-stressed cells retained a 2C DNA content or began 

to acquire abnormally high amounts of DNA (Fig. 2 D).

Microscopic examination of synchronized wild-type and 

ero1-1 cells revealed that ER-stressed cells were delayed with 

large buds and divided nuclei. After 30 min of 37°C growth, 

90% of cells of each cell type had initiated bud formation 

(Fig. 2, F and H). After 45 min, both cell types remained budded, 

and, by this time, 60–70% of both cell populations had divided 

nuclei (Fig. 2 G). After 1 h, wild-type cells began to divide and 

become newly divided unbudded cells with a single nucleus. 

In contrast, ero1-1 cells did not divide but remained budded 

with divided nuclei for the remainder of the time course (Fig. 2, 

F and G), suggesting that ER stress slows the cell cycle at a point 

after nuclear division, probably during late M phase or cyto-

kinesis. In fact, many ero1-1 cells began to adopt a multibudded 

morphology after 1.5 h of 37°C growth (Fig. 2 H). This multi-

budded morphology was never seen in wild-type cells. The 

appearance of extra buds coupled with the appearance of 3C/4C 

DNA peaks strongly suggests that ero1-1 cells initiate a new 

round of the cell cycle despite a block or delay in the previous 

cell division.

Tunicamycin-treated cells are delayed 

in the cell cycle with high DNA content, 

large buds, and divided nuclei

To con� rm that ER stress is speci� cally responsible for delaying 

the cell cycle in ero1-1 cells, we examined the effects of another 

well-characterized ER stress inducer, tunicamycin (Tm), on cell 

Figure 1. HAC1 mRNA splicing occurs during unstressed 
growth. Wild-type cells (MNY1002) were treated with 1 μg/ml 
Tm for 1.5 h to induce UPR. 10 μg RNA were loaded on 
a Northern gel (lane 1). Indicated amounts of RNA from un-
treated asynchronous wild-type (MNY1002) cells (lanes 2–6) 
and ire1∆ (MNY1011) cells (lanes 7–11) were loaded on a 
Northern gel. The gel was probed with a HAC1-specifi c probe 
to detect unspliced (U) and spliced (S) forms. The arrow indi-
cates the presence of spliced HAC1 in the unstressed sample.
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cycle progression. Tm inhibits N-linked glycosylation in the ER, 

which causes the accumulation of unfolded proteins. Consistent 

with previous studies (Arnold and Tanner, 1982; Vai et al., 1987), 

we found that Tm inhibits the budding process when added im-

mediately after α-factor release (Fig. S3, available at http://www

.jcb.org/cgi/content/full/jcb.200702101/DC1). Budding inhibition 

is known to activate the morphogenesis checkpoint and induce a 

G2/M delay (McMillan et al., 1998), which would likely obscure 

a subsequent ER-induced delay. Therefore, we introduced Tm 

to synchronized cultures 30 min after G1 release, after cells had 

already initiated the budding process (Fig. S3).

Tm treatment recapitulated the cell cycle effects of the 

ero1-1 mutation. As expected, Tm-treated cells displayed 90% 

HAC1 mRNA splicing 1 h after α-factor release (Fig. 3, A and B) 

and retained maximal UPR induction for the entire 3-h time 

course. Both Tm-treated and untreated synchronized cultures 

contained �90% 2C cells after 1 h, indicating that they had pro-

gressed through S phase and into G2/M phase (Fig. 3, C and D). 

After 1.25 h of growth , untreated cells began to divide, as indi-

cated by the return to a 1C DNA content, and continued through 

the next cell cycle, ultimately losing synchronicity. Like ero1-1 

cells, Tm-treated cells failed to divide and instead began to attain 

a 3C or 4C DNA content (Fig. 3 C).

Untreated and Tm-treated cells were �90% budded after 

1 h of synchronized growth (Fig. 3 E). After 1.5 h of growth, 

untreated cells divided and became unbudded before reentering 

the next cell cycle. Tm-treated cells remained 80–90% budded 

for the entire duration of the time course. Furthermore, after 

1.75 h of growth, Tm-treated cells began to attain a multibudded 

morphology (Fig. 3 G).

We also examined the timing and integrity of nuclear divi-

sion in Tm-treated cells. In addition to following the segrega-

tion of DAPI bodies in these cells, we expressed a GFP fusion 

protein that localized to both copies of chromosome IV (see 

Materials and methods). This allowed us to visualize sister 

chromatids segregating to separate nuclei during nuclear divi-

sion (Biggins et al., 1999) to con� rm that DNA segregation was 

occurring appro priately. We found that nuclear division oc-

curred with the same kinetics in Tm-treated cells as in untreated 

cells, as both conditions allowed �45% of cells to divide their 

nuclei after 1 h of growth and �75% of cells to divide their 

nuclei after 1.25 h of growth (Fig. 3 F). After 1.5 h of growth, 

untreated cells divided to become unbudded cells with a single 

nucleus. Tm-treated cells continued to contain 70–80% divided 

nuclei for the remainder of the time course. Furthermore, we never 

observed DAPI bodies separating with improperly segregated 

Figure 2. ero1-1 cells are delayed in the cell 
cycle with high DNA content, large buds, and 
divided nuclei. Wild-type (MNY1002) and 
ero1-1 (MNY1003) cells were shifted to 37°C 
after α-factor synchronization and 25 min of 
recovery at 25°C. The 25 min after α-factor 
removal prevented cells from undergoing the 
heat-specifi c G1/S phase delay that was ob-
served in asynchronous experiments (Fig. S2, 
available at http://www.jcb.org/cgi/content/
full/jcb.200702101/DC1), thus allowing the 
examination of subsequent ER-specifi c cell cycle 
effects. (A) Schematic representation of the ex-
periment. Note that the 0-h time point is defi ned 
as the time of shifting to 37°C growth. (B) North-
ern analysis with a HAC1-specifi c probe shows 
the conversion of unspliced HAC1 mRNA (U) 
to spliced HAC1 mRNA (S) in ero1-1 cells ex-
periencing ER stress upon growth at 37°C. 
(C) Quantitation of B calculated as spliced HAC1 
mRNA divided by total HAC1 mRNA. (D) Flow 
cytometric analysis of cells stained with Sy-
tox green, a fl uorescent dye that binds DNA 
quantitatively and emits fl uorescence with an 
intensity corresponding to cellular DNA content 
(Haase and Reed, 2002). The fi rst peak in the 
histogram (indicated as 1C) represents prerep-
lication cells, and the second peak (2C) rep-
resents postreplication cells. The appearance 
of 3C and 4C cells is represented by a third 
and fourth peak. (E) Quantitation from D of the 
percentage of cells in the population that con-
tained 2C or greater DNA content combined. 
(F) 200 cells per time point were scored as + 
or – bud. The graph represents the percentage 
of total cells that contained a bud. (G) Cells 
were stained with DAPI to visualize nuclei, and 
200 cells per time point were scored as + or 
– divided nuclei. The graph represents the per-
centage of total cells that contained divided 
nuclei. (H) Cells were stained with DAPI. The 
red arrow indicates an additional bud. All error 
bars represent the SD of three repeats.
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sister chromatids, indicating that mitosis occurred properly in 

these Tm-treated cells (Fig. 3 G, white arrows denote GFP-

marked chromosomes). Therefore, similar to ero1-1 cells grown 

at the restrictive temperature, cells experiencing ER stress as a 

result of Tm treatment were delayed with a budded morphology 

after nuclear division.

Tm treatment and ero1-1-restrictive growth had very 

similar effects on the cell cycle, strongly suggesting that 

these effects are the speci� c result of ER stress rather than ER-

 independent effects of Tm treatment or the ero1-1 allele. To verify 

that the cell cycle is sensitive specifically to ER stress, we 

 examined the effects of Tm treatment on the cell cycle of 

synchronized hac1∆ cells. Because HAC1 is required for re-

covery from ER stress, hac1∆ cells should be unable to re-

cover from any speci� c effect of ER stress but should respond 

normally to ER-independent stimuli. Indeed, the absence of 

HAC1 rendered cells incapable of recovering from the Tm-

induced appearance of cells with a high DNA content. The 

percentage of 3C/4C cells in the wild-type Tm-treated popula-

tions peaked at 40% after 2 h of growth (see Fig. 5, A and B) 

and then began to decline, reaching 25% after 3 h of growth. 

In contrast, hac1∆ cells continued to be 40–45% 3C/4C for the 

entire 3-h time course.

ER stress induces cytokinesis delay

To distinguish between the possibilities of a late M-phase delay 

or a delay in cytokinesis, we examined the effect of ER stress on 

several mitotic events: Clb2p production/degradation, Cdc14p 

release, and mitotic spindle formation/depolymerization. Clb2p 

is a major regulator of cell cycle progression. Its levels increase 

as cells enter mitosis and decrease as cells exit mitosis. Cells 

delayed in mitotic exit typically display sustained high levels of 

Clb2p (Mendenhall and Hodge, 1998). Directly after the tem-

perature shift (0-h time point), both wild-type and ero1-1 cells 

contained very low levels of Clb2p (Fig. 4 A), which is consis-

tent with most cells being in G1 or S phase. In both cell types, 

Clb2p levels began to increase 30 min after the temperature 

shift, marking mitotic entry 15 min before nuclear division 

(Figs. 3 F and 4 A). Similarly, Clb2p degradation, marking 

mitotic exit, occurred at the same time (60 min) in wild-type 

and ero1-1 cells. In wild-type cells, this Clb2p decrease corre-

lated well with the onset of cytokinesis (Figs. 3 E and 4 A), but, 

in ero1-1 cells, cytokinesis did not occur.

The key events of mitotic exit are signaled by the phos-

phatase Cdc14p, which is only active during anaphase. During 

all other times in the cell cycle, Cdc14p is kept inactive by vir-

tue of its nucleolar localization. After nuclear division, Cdc14p 

Figure 3. Tm-treated cells are delayed in the 
cell cycle with high DNA content, large buds, 
and divided nuclei. Wild-type (MNY1005) 
cells were synchronized with α factor and 
treated with +/− Tm 30 min after α-factor 
release (Fig. S3, available at http://www.jcb
.org/cgi/content/full/jcb.200702101/DC1). 
Indicated time points refer to time after α-factor 
release. (A) Northern analysis with a HAC1-
specifi c probe shows the conversion of un-
spliced HAC1 mRNA (U) to spliced HAC1 
mRNA (S) in cells experiencing ER stress. 
(B) Quantitation of A calculated as spliced HAC1 
mRNA divided by total HAC1 mRNA. (C) Flow 
cytometric analysis of cells stained with Sytox 
green to measure DNA content. The arrow in-
dicates the appearance of 3C cells. (D) Quan-
titation from C of the percentage of cells in the 
population that contained 2C or greater DNA 
content. (E) Percentage of total cells that were 
budded during synchronized growth +/– Tm. 
(F) Percentage of total cells that contained di-
vided nuclei with properly segregated sister chro-
matids during synchronized growth +/− Tm. 
(G) Pictures show DAPI-stained nuclei (blue) 
and GFP-marked sister chromatids (indicated 
by white arrows). The red arrow indicates 
an additional bud. All error bars represent the 
SD of three repeats. The 15-min difference in 
wild-type cell division time (1.25 vs. 1.5 h), as 
assayed by fl ow cytometry versus the budding 
index (compare B with C), is likely the result of 
differences in the cell fi xing protocol for the 
different assays (see Materials and methods). 
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is released into the nucleus and cytoplasm, where it signals 

multiple key cell cycle events, including the completion of Clb2 

degradation, breakdown of the mitotic spindle, and cytokinesis 

(Shou et al., 1999; Stegmeier and Amon, 2004).

10 min after temperature shift, for both wild-type and 

ero1-1 cells, Cdc14p-GFP colocalized with a portion of the 

nucleus, which is consistent with the expected nucleolar localiza-

tion of Cdc14p (Fig. 4 B). After 55 min of 37°C growth, both 

cell types released Cdc14p-GFP into their nucleus and cyto-

plasm, demonstrating that these conditions of ER stress did not 

delay Cdc14p release. Wild-type cells divided and resumed the 

nucleolar localization of Cdc14p by 70 min. Mutant cells also 

reabsorbed Cdc14p into the nucleolus at the 70-min time point 

but did not divide and eventually assumed a multibudded mor-

phology (Figs. 3 G and 4 B).

Finally, we used a TUB1-GFP fusion gene (Straight et al., 

1997) to examine the formation and breakdown of the mitotic 

spindle during ER stress. By 45 min after the temperature shift, 

both wild-type and ero1-1 cells exhibited fully formed mitotic 

spindles between their two spindle pole bodies, indicating that 

ER stress did not delay spindle formation. Spindle breakdown 

also occurred at the same time (75 min) in both cell types. Again, 

ero1-1 cells did not divide. In the absence of cell division, some 

ero1-1 cells rereplicated their spindle pole bodies, rebudded, and 

reformed a mitotic spindle, thus forming the unusual cells de-

picted in Fig. 4 C (150′ panel).

We also examined Clb2 � uctuations, Cdc14p release, and 

mitotic spindle formation and breakdown in synchronized 

 untreated and Tm-treated cells. We found that like ero1-1, Tm 

had no effect on these mitotic markers (Fig. S4, available at http://

www.jcb.org/cgi/content/full/jcb.200702101/DC1). Therefore, 

ER stress delays cell division but does not affect mitotic entry, 

mitosis, or mitotic exit, suggesting that ER stress speci� cally 

inhibits cytokinesis or cell separation.

Figure 4. Ero1p inactivation causes cytokinesis delay. (A–D) Experiments were performed according to the schematic in Fig. 1 A, and cells were collected 
for immunoblot analysis, probing for Pgk1p (loading control) and Clb2p (A), Cdc14p-GFP visualization (B), Tub1p-GFP visualization (C), and Alexa-
Fluor546-phalloidin staining to visualize actin patch localization (D). Blue indicates DAPI staining. Bars, 2 μm. (E) Wild-type (MNY1002), cts1∆ (MNY1012), 
and ero1-1 (MNY1003) cells were α-factor synchronized and released at 30 (wild type and cts1∆) or 37°C (ero1-1). Cells were grown for the indicated 
times, and α factor was added back to the medium to prevent second cell cycle initiation. Cells were fi xed, and the budding index was calculated before 
and after lyticase treatment. The graph depicts lyticase resistance, which was calculated as the budding index after lyticase treatment divided by the budding 
index before lyticase treatment. Error bars represent the SD of three repeats.
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Cytokinesis creates a membrane barrier between mother 

and daughter cells. After cytokinesis, the septum continues 

to hold the two cells together; the septum must be degraded 

for cell separation to occur (Yeong, 2005). Experimentally, ly-

ticase can be used to degrade the septum of delayed cells, thus 

differentiating between a cytokinesis defect and a defect in 

cell separation.

Lyticase treatment demonstrated that ER-stressed cells 

fail to divide because of incomplete cytokinesis rather than in-

complete cell separation. We collected ero1-1 cells 2.5 h after 

temperature shift as described in Fig. 2 A except that α factor 

was added back to the medium 45 min after G1 release to pre-

vent the initiation of a second cell cycle. As before, most cells 

were delayed with a budded morphology at this time point. 

Their delay was clearly caused by a cytokinesis defect, as 79% 

of these budded cells were resistant to cell separation by lyticase 

treatment (Fig. 4 E). Con� rming that lyticase treatment only 

separated cells that had completed cytokinesis, wild-type cells 

in M phase (collected 1 h after α-factor release) remained 96% 

budded after lyticase treatment. In addition, cts1∆ cells, which 

are known to be defective in cell separation (Kuranda and 

Robbins, 1991), were 43% budded 1.5 h after α-factor release 

(unpublished data). Of the budded cts1∆ cells, 86% were separated 

by lyticase (Fig. 4 E), con� rming that the experimental condi-

tions used here were suf� cient to dissociate the majority of 

separation-defective cells.

Successful cytokinesis requires that cortical actin patches 

become polarized to either side of the bud neck late in the cell 

cycle (Kilmartin and Adams, 1984; Novick and Botstein, 1985; 

Mulholland et al., 1994; Doyle and Botstein, 1996; Waddle 

et al., 1996). We followed actin patch localization in synchro-

nized cells and found that wild-type and ero1-1 cells displayed 

bud-localized cortical actin patches throughout S, G2, and most 

of M phase (Fig. 4 D). Just before cytokinesis, the actin patches 

of ero1-1 cells redistributed to the bud neck in a manner in-

distinguishable from wild-type cells (Fig. 4 D). Therefore, the ER 

stress–induced cytokinesis defect is not caused by a delay or 

alteration in actin patch redistribution.

Figure 5. UPR signaling facilitates cytokinesis 
during normal cell growth. (A) Wild-type 
(MNY1002) and hac1∆ (MNY1010) cells were 
treated with +/− Tm 30 min after α-factor 
release. Cells were fi xed, stained with Sytox 
green, and analyzed by flow cytometry. 
Bars defi ne a subpopulation of high DNA 
content cells, and the given numbers indicate 
percentages of the total live cell population 
that has a high DNA content. (B) Quantita-
tion of A. (C) Wild type (WT; MNY1002), 
hac1∆ (MNY1010), and ire∆ (MNY1011) 
were released from α-factor arrest for 3 h 
 before fi xation and microscopic examination. 
(D) Wild type (RHY2724), hrd1∆ (RHY5088), 
hof1∆ (RHY5954), chs2∆ (RHY5955), cyk3∆ 
(RHY5956), mlc2∆ (RHY5957), doa10∆ 
(RHY5958), and bni1∆ (RHY5959) cells, which 
expressed a 4× UPRE-GFP reporter construct, 
were analyzed by fl ow cytometry to measure 
UPR activity in the absence of externally in-
duced ER stress. Graphs represent fold induc-
tion compared with wild-type cells. All error 
bars represent the SD of three repeats. 
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UPR signaling facilitates cytokinesis during 

normal cell growth

The induction of ER stress in synchronized cell populations 

 revealed that cytokinesis is highly sensitive to the state of the ER. 

This suggests that ER capacity increases during cell division, 

a process that might be facilitated by UPR signaling. To deter-

mine whether UPR signaling affects cytokinesis during normal 

cell growth, we examined cytokinesis in hac1∆ strains. In the 

absence of any external ER stressor, wild-type cell populations 

never exhibited cells with a >2C DNA content. In contrast, 

 after 1.5 h of normal synchronized growth, 15% of untreated 

hac1∆ cells were >2C. This number increased to 20% after 2 h 

of growth and remained �20% until the end of the 3-h time 

course (Fig. 5 A). Untreated hac1∆ cells were almost as cytoki-

nesis de� cient as wild-type cells treated with Tm (Fig. 5 A, 

compare wild-type +Tm to hac1∆ −Tm). Furthermore, we ex-

amined hac1∆ and ire1∆ strains for the multibudded morphol-

ogy that is indicative of cells with a cytokinesis defect. We 

found that a small percentage of cells (<1%) did display this 

multibudded morphology, whereas we never observed multi-

budded cells in wild-type populations (Fig. 5 C). A complete 

cytokinesis block should cause a much higher percentage of cells 

to attain multiple buds. Therefore, UPR mutants are delayed 

in cytokinesis rather than blocked.

To further investigate the link between UPR signaling 

and the cytokinesis process, we measured basal UPR activity in 

various cytokinesis mutants using a 4× UPRE-GFP reporter 

construct (Pollard et al., 1998). MLC2, CHS2, HOF1, CYK3, and 

BNI1 all participate in cytokinesis (see Discussion). Of the 

cytokinesis mutants tested, mlc2∆ and chs2∆ strains did not 

 exhibit basal UPR activity (Fig. 5 D). However, in the absence of 

any external ER stress induction, hof1∆, cyk3∆, and bni1∆ strains 

exhibited three- to sixfold UPR reporter gene expression com-

pared with wild-type cells. This level of reporter activity re� ects 

a true link between the UPR and cytokinesis, as hrd1∆ and 

doa10∆ mutants, which are ERAD de� cient and are known to 

induce functionally relevant levels of UPR activity (Travers et al., 

2000; Swanson et al., 2001), exhibited similar levels of reporter 

gene expression. The � nding that some cytokinesis mutants 

exhibit UPR activation is quite novel: the detection of basal UPR 

activity has been previously limited to mutants with speci� c 

ER defects.

Discussion

A housekeeping function for the UPR: 

how the ER adapts to normal fl uctuations 

in cellular demand

In eukaryotic cells, critical cellular functions are organized and 

performed by functionally specialized organelles. This com-

partmentalization of function eases the maintenance of cellular 

homeostasis, as each organelle can separately control its own 

function in accordance with the complex requirements of the 

cell. The ER, for example, has a vital role in the production of 

lipids and proteins that make up the secretory pathway, plasma 

membrane, and, in yeast, the cell wall. Even during normal, 

unstressed growth, different internal cellular conditions, such 

as different stages of the cell division cycle, probably require 

different levels of ER functionality. However, the precise mech-

anism of adapting ER function to suit physiological � uctua-

tions in internal cellular conditions is unknown. Because such 

a mechanism would be capable of sensing the condition of the 

ER and adjusting the ER’s capacity, the UPR pathway is an 

excellent candidate for a mechanism of ER adaptation.

In our study, we have shown that cytokinesis requires 

higher levels of ER functionality than other cell cycle events. 

This � nding implies that ER functionality increases during cyto-

kinesis and allowed us to examine the UPR’s role in achieving this 

functional increase. We found that UPR-de� cient strains were 

cytokinesis defective. In addition, several cytokinesis-defective 

strains displayed elevated basal UPR activity. Collectively, our 

data establish a function for the UPR pathway in facilitating 

cell division during normal cell growth. The UPR presumably 

achieves this function by adapting ER capacity.

The UPR’s role in cytokinesis, which is revealed in this 

study, represents a novel type of UPR activity, as it can be de-

tected during optimal unstressed growth conditions. All previ-

ous studies of UPR mutants describe their inability to respond to 

unusually stressful growth conditions such as inositol starvation 

(Nikawa and Yamashita, 1992; Cox et al., 1993), drug treatments 

that induce widespread protein misfolding (Cox et al., 1993; 

Mori et al., 1993), overexpression of a misfolded mutant protein 

(Casagrande et al., 2000; Friedlander et al., 2000; Spear and Ng, 

2003), or development into a specialized secretory cell (Reimold 

et al., 2001; Gass et al., 2002; Iwakoshi et al., 2003; van Anken 

et al., 2003). Each of these known UPR-requiring conditions 

 imposes a massive load on the ER. The newly discovered impor-

tance of UPR signaling during normal cell growth uncovers a 

novel housekeeping function for the UPR pathway. In addition to 

responding to stressful growth conditions, the UPR must moni-

tor and manage the cell’s � uctuating ER requirements.

The UPR’s ability to serve a housekeeping function sheds 

new light on the mode of UPR activation. In theory, the UPR 

pathway might operate according to one of two modes of activa-

tion. It could activate in a manner similar to an on/off switch. 

In this case, the pathway remains “off” until a threshold level of 

stress is experienced, at which point the pathway turns “on” and 

becomes highly active. Alternatively, the UPR pathway might 

operate as a dimmer switch in which the off state and on state 

actually represent two extremes on a continuum. Previous studies 

have investigated the UPR pathway by inducing crisis levels of 

ER stress (Cox et al., 1993; Mori et al., 1993; Casagrande et al., 

2000; Spear and Ng, 2003). If the UPR pathway could � ne tune 

the level of ER function, this could actually prevent such an ER 

crisis by allowing the gradual adaptation of ER capacity.

Data from previous studies provide support for both 

modes of activation. In support of the on/off switch mode of 

 activation, HAC1 mRNA remains unspliced during normal cell 

growth but becomes rapidly and ef� ciently spliced upon treat-

ment with DTT or Tm or upon the overexpression of misfolded 

proteins (Cox and Walter, 1996). In addition, certain modest 

amounts of ER stress have been shown to not activate the UPR 

pathway at all. For example, expression of the misfolded mutant 

protein CPY* from its genomic locus does not activate UPR 
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signaling, and ERAD of genomic CPY* does not require UPR 

components (Friedlander et al., 2000). However, data are also 

accumulating to support the dimmer switch mode of UPR acti-

vation. For example, certain mutations in the ERAD pathway 

have been shown to induce intermediate levels of UPR activity 

(Cox and Walter, 1996; Friedlander et al., 2000; Travers et al., 

2000). Our study further supports the dimmer switch mode of 

UPR activation, as we have shown that subtle activation of the 

UPR pathway contributes to ef� cient cytokinesis.

The ER’s role in cytokinesis

Although DNA replication, mitotic entry, spindle formation, 

nuclear segregation, Cdc14p release, mitotic exit, spindle dis-

assembly, and actin patch repolarization all occur normally during 

ER stress, cytokinesis does not (summarized in Fig. 6). There-

fore, we have found that ER stress speci� cally disrupts cyto-

kinesis, and we have ruled out the possibility that this disruption 

is caused by a defect in actin patch relocalization. This disrup-

tion could be caused by a stress-induced attenuation of any of 

the ER’s many functions, including secretion, ERAD, or phos-

pholipid metabolism.

Despite the ER’s well-characterized role in initiating 

protein secretion, it remains unknown whether ER stress in-

hibits the entire secretory pathway. If it does, there are several 

reasons that this may impact cytokinesis. Cytokinesis begins 

with the assembly and contraction of an actomyosin ring. In 

animal cells, it has been shown that membrane deposition at the 

cleavage furrow must accompany actomyosin ring contraction 

for proper cytokinesis to occur (Skop et al., 2001; Shuster and 

Burgess, 2002). The extra membrane, which is delivered in the 

form of secretory vesicles, presumably relieves the tension cre-

ated by membrane constriction. Perhaps, as in animal cells, the 

yeast secretory pathway assists in cytokinesis by providing new 

membrane to the site of ring contraction, and it is the lack of 

membrane at the bud neck that prevents cytokinesis under con-

ditions of ER stress.

Regardless of whether membrane addition itself is re-

quired for yeast cytokinesis, it is clear that Golgi-derived vesicles 

are targeted to the yeast bud neck at the end of the cell cycle 

and that these vesicles assist in the process of cytokinesis. 

First, vesicles carry cargo that is necessary for actomyosin ring 

 contraction. Cells that are defective in vesicle fusion assemble 

an actomyosin ring normally, but the assembled ring is unstable 

and does not properly contract (VerPlank and Li, 2005). Second, 

during cytokinesis, secretory vesicles provide the yeast bud 

neck with the enzymes responsible for septum formation, a pro-

cess that is essential for yeast cytokinesis (Shaw et al., 1991; 

Valdivia and Schekman, 2003; VerPlank and Li, 2005). There-

fore, if ER stress disrupts vesicle traf� cking, this could slow 

membrane deposition, ring contraction, and/or septation and, 

thereby, delay cytokinesis, thus explaining the results of our 

study. This explanation implies that during normal cytokinesis, 

the UPR manifests its housekeeping function by increasing the 

cell’s secretory capacity, thus ful� lling the enhanced secretory 

requirements of cytokinesis.

Despite expectations that ER stress would broadly inhibit 

secretion, some studies � nd that ER stress has a minimal impact, 

if any, on the overall secretory pathway (Casagrande et al., 2000; 

Spear and Ng, 2003). This suggests that the ER might play a role 

in cytokinesis through one of its cellular functions besides protein 

folding and traf� cking. This possibility is especially intriguing, 

as it implies that the UPR pathway can detect ER functional 

cues other than the simple accumulation of unfolded proteins in 

the ER. Although previous studies have not tested this prospect 

directly, UPR target genes represent the entire spectrum of 

ER functions (Travers et al., 2000).

In addition to functioning in protein folding and secretion, 

the ER has the task of regulating phospholipid metabolism. 

Because cytokinesis entails a membrane fusion event and the 

creation of a membrane barrier between mother cell and daughter 

cell, it is not surprising that certain phospholipids are necessary 

for its proper completion. Phosphatidylethanolamine and phos-

phatidylinositol 4,5-bisphosphate become locally concentrated 

to the cleavage furrow during cytokinesis in various eukaryotic 

cell types. Interfering with the production of either of these two 

phospholipids results in a cytokinesis defect (Brill et al., 2000; 

Emoto and Umeda, 2001; Emoto et al., 2005; Janetopoulos and 

Devreotes, 2006). Therefore, the disruption of cytokinesis by 

ER stress may be caused by the effects of ER stress on phos pho-

lipid metabolism. If this is the case, the UPR’s role during 

 normal cytokinesis may be to up-regulate genes involved in 

phospholipid metabolism.

Three cytokinesis mutants, bni1∆, hof1∆, and cyk3∆, 

exhibit constitutive UPR activity. Strains deleted for MLC2 

Figure 6. Summary of results. When the ER is perturbed (ero1-1-restrictive 
growth or Tm treatment), budding, DNA replication, Clb2p synthesis, 
spindle formation, nuclear division, Cdc14p release, Clb2p degradation, 
spindle breakdown, and actin repolarization occur at the same time as 
unstressed cells. However, ero1-1-restrictive growth and Tm treatment de-
lay cytokinesis, resulting in the formation of cells with extra buds and 
high DNA content. Green, tubulin; red, actin; dark blue, nucleus; light 
blue, Cdc14p. 
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or CHS2, which are involved in the cytokinesis processes of 

 actomyosin ring disassembly and septum formation, respec-

tively (Shaw et al., 1991; Luo et al., 2004), did not activate the 

UPR. During yeast cytokinesis, BNI1 promotes actomyosin ring 

assembly (Tolliday et al., 2002), HOF1 coordinates ring con-

traction with septum formation (Lippincott and Li, 1998; Luo 

et al., 2004), and CYK3 mediates septum formation (Korinek 

et al., 2000). There is no indication that any of these mutants are 

defective in protein secretion or any other aspect of ER  function. 

This is the � rst instance of UPR activity in mutants that are 

not directly defective in an ER-associated function. Further-

more, unlike previous cases of basal UPR activity in mutants, 

none of these three genes is a UPR target gene (Travers et al., 

2000). Therefore, the UPR induction in these mutants does 

not represent the cell’s attempt to transcriptionally activate the 

speci� c gene that is absent. Increased UPR activity in hof1∆, 

cyk3∆, and bni1∆ strains probably helps these cells partially 

overcome their cytokinesis defect. This implies that the UPR 

pathway can directly or indirectly sense and modify the cell’s 

cytokinesis ef� ciency.

Our data highlight a new role for the UPR pathway in 

 cytokinesis. Cytokinesis probably represents only one of many 

normal cellular functions that invoke a moderate level of UPR 

induction. Although dif� cult to detect, these instances of mod-

erate UPR induction could help the ER constantly maintain an 

appropriate capacity in a � uctuating cellular environment.

Materials and methods

Strains, media, growth conditions, and synchronization
Yeast strains containing MNY numbers were in the W303 strain back-
ground, and strains containing RHY numbers were derived from the S288C 
strain background. All strains were generated using standard genetic meth-
ods and are listed in Table I. MNY1008 and MNY1009 were constructed 
by integrating StuI-linearized pAFS125 (Straight et al., 1997) at the URA3 
locus. All strains carrying the UPRE-GFP reporter were constructed by 
integrating StuI-linearized pJCI86-GFP (Pollard et al., 1998) at the URA3 
 locus. Wild-type and ero1-1 CDC14-GFP strains were constructed using 
a one-step PCR-mediated technique (Longtine et al., 1998). All deletion 
strains were constructed by amplifi cation of the Research Genetics hetero-
zygous diploid collection followed by G418 selection and verifi cation 
by PCR.

Cells were grown in YPD medium (1% yeast extract, 2% bactopep-
tone, and 2% glucose) at 30°C unless otherwise noted. All strains carrying 
the 4× UPRE-GFP reporter construct were grown in synthetic complete 
–URA medium at 30°C. For synchronization, α factor (stored as 1-mg/ml 
stock in PBS at –20°C) was added to early log-phase cultures to a fi nal 
concentration of 50 ng/ml for 2.5 h (30°C growth conditions) or 3 h (25°C 
growth conditions). To release cells from α-factor arrest, cells were col-
lected by centrifugation, washed twice with an equal volume of medium, 
and resuspended in fresh medium to an OD of 0.25. Tm was stored as 
10-mg/ml stock in DMSO and added to cells at a fi nal concentration of 
1 μg/ml. During Tm experiments, 0.1% DMSO was added to untreated 
cells to control for effects of the vehicle.

Cell extracts, Northern blotting, and immunoblotting
For Western blot analysis, �3 × 107 cells were harvested by centrifuga-
tion at 4°C, washed with 1 ml H2O, frozen with liquid N2, and stored at 
–80°C. Pellets were resuspended in 100 μl of lysis buffer (50 mM Tris-HCl, 
pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 1 mM sodium pyrophos-
phate, 1 mM PMSF, 1 mM sodium orthovanadate, 2 μg/ml pepstatin A, 

Table I. Yeast strains used in this study

Strain Relevant genotype Source

MNY1000 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15 Cox et al., 1993

MNY1001 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15, ero1-1::HIS3 Frand and Kaiser, 1998

MNY1002 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15::HIS3, bar1::LEU2 This study

MNY1003 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15, ero1-1::HIS3, bar1::LEU2 This study

MNY1004 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15::UPRE-lacZ:HIS3 Cox et al., 1993

MNY1005 MATa, leu2-3,112, trp1-1::lacO:TRP1, can1-100, ura3-1, ade2-1, his3-11,
 15::pCUP1-GFP12-LacI12:HIS3, bar1∆

Biggins et al., 1999

MNY1006 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15::HIS3, 
 bar1::LEU2, CDC14-GFP::KanMX

This study

MNY1007 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15, bar1::LEU2, 
 ero1-1::HIS3, CDC14-GFP::KanMX

This study

MNY1008 MATa, leu2-3,112, trp1-1, can1-100, ura3-1::TUB1-GFP:URA3, ade2-1, 
 his3-11,15::HIS3, bar1::LEU2

This study

MNY1009 MATa, leu2-3,112, trp1-1, can1-100, ura3-1::TUB1-GFP:URA3, ade2-1, 
 his3-11,15, bar1::LEU2, ero1-1::HIS3

This study 

MNY1010 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15::HIS3, 
 bar1::LEU2, hac1∆::KanMX

This study

MNY1011 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15::HIS3, 
 bar1::LEU2, ire1∆::KanMX

This study

MNY1012 MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15::HIS3, 
 bar1::LEU2, cts1∆::KanMX

This study

RHY2724 MATα, met2, lys2-801, ura3-52::4xUPRE-GFP:URA3, ade2-101, his3∆200 This study

RHY5088 MATα, met2, lys2-801, ura3-52::4xUPRE-GFP:URA3, ade2-101, his3∆200, 
 hrd1∆::KanMX

This study

RHY5954 MATα, met2, lys2-801, ura3-52::4xUPRE-GFP:URA3, ade2-101, his3∆200, hof1∆::KanMX This study

RHY5955 MATα, met2, lys2-801, ura3-52::4xUPRE-GFP:URA3, ade2-101, his3∆200, chs2∆::KanMX This study

RHY5956 MATα, met2, lys2-801, ura3-52::4xUPRE-GFP:URA3, ade2-101, his3∆200, cyk3∆::KanMX This study

RHY5957 MATα, met2, lys2-801, ura3-52::4xUPRE-GFP:URA3, ade2-101, his3∆200, mlc2∆::KanMX This study

RHY5958 MATα, met2, lys2-801, ura3-52::4xUPRE-GFP:URA3, ade2-101, his3∆200, doa10∆::NatMX This study

RHY5959 MATα, met2, lys2-801, ura3-52::4xUPRE-GFP:URA3, ade2-101, his3∆200, bni1∆::NatMX This study
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2 μg/ml leupeptin, 20 mM NaF, 5 μg/ml aprotinin, and 1.75 mM 
β-glycerophosphate). 100 μl of acid-washed glass beads were added, and 
cells were vortexed at 4°C for 5 min. Lysates were centrifuged at 13,000 g 
for 8 min at 4°C, and the supernatant was collected. Protein concentration 
was determined using a BCA protein assay kit (Pierce Chemical Co.). 
30 μg of protein was denatured at 95°C in 2× loading buffer (125 mM 
Tris-HCl, pH 6.8, 2% SDS, 50% glycerol, 12% β-mercaptoethanol, and 
0.02% bromophenol blue) and was loaded on a 10% SDS-polyacrylamide 
gel (Invitrogen). Clb2p was detected with a 1:1,000 dilution of anti-Clb2 
antibody (Santa Cruz Biotechnology, Inc.) followed by anti–rabbit secondary 
antibody at a dilution of 1:10,000 (GE Healthcare) and ECL detection (GE 
Healthcare). RNA isolation and HAC1 Northern blotting were performed 
essentially as described previously (Cox and Walter, 1996) and were 
quantifi ed using a phosphorimager (Typhoon; GE Healthcare).

DNA staining and fl ow cytometry
Approximately 107 cells were collected by centrifugation at 4°C, washed 
with 1 ml of ice-cold H2O, and resuspended in 400 μl of cold H2O. 1 ml 
of ice-cold EtOH was added slowly, and cells were fi xed at 4°C overnight 
or longer. After fi xation, cells were collected by centrifugation, washed 
with 1 ml PBS, and treated with 1 mg/ml RNase A in 100 μl PBS at 37°C 
for 2–12 h. Cells were then treated with 5 mg/ml pepsin in 200 μl H2O, 
pH 2.0, at 37°C for 20 min followed by washing and resuspension in 1 ml 
PBS. Cells were sonicated for 15 s at 15%. 100 μl of cells (106 cells) were 
stained with 1 μM Sytox green (Invitrogen) in PBS. Data were collected 
 using a fl ow cytometer (FACSCalibur; BD Biosciences) and analyzed using 
FlowJo software (Tree Star).

Strains carrying the 4× UPRE-GFP reporter construct were analyzed 
for UPR induction by measuring GFP fl uorescence in live log-phase cells 
with a FACSCalibur fl ow cytometer. The mean fl uorescence for each strain 
was divided by the mean fl uorescence of an isogenic wild-type strain to 
calculate fold induction.

Microscopy
Cells were fi xed in 4% PFA and sonicated briefl y before analysis. Budding 
index was calculated as the number of cells with an obvious bud divided 
by the total number of cells counted. For visualization of nuclei, DAPI was 
added to a concentration of 0.04 μg/ml. Nuclear division was scored 
as positive when two separate DAPI bodies were present in a single cell. 
To visualize sister chromatid segregation, MNY1005 cells expressed a 
LacI12-GFP fusion protein and contained a Lac operon at the TRP1 locus. 
This caused both copies of chromosome IV to be GFP marked (Biggins 
et al., 1999). For the visualization of actin, cells were fi xed in 4% PFA/PBS, 
washed with PBS, and incubated with 6.6 μM AlexaFluor546-phalloidin 
(Invitrogen). All cells were visualized using a microscope (Axiovert 200M; 
Carl Zeiss MicroImaging, Inc.) with a 100× 1.3 NA objective. Images 
were captured using a monochrome digital camera (Axiocam; Carl Zeiss 
MicroImaging, Inc.) and analyzed using Axiovision software (Carl Zeiss 
MicroImaging, Inc.).

Lyticase treatment
Cells were fi xed in YPD/4% formaldehyde for 10 min followed by 1 h in 
400 mM KHPO4, pH 6.5, 500 μM MgCl2, and 4% formaldehdye. Cells 
were then washed in 400 mM KHPO4, pH 6.5, and 500 μM MgCl2 and 
resuspended in 400 mM KHPO4, pH 6.5, 500 μM MgCl2, and 1 M sorbitol. 
Fixed cells were sonicated (15% for 15 s) and treated with 80 U/ml 
lyticase at 37°C for 1 h.

Online supplemental material
Fig. S1 shows by RT-PCR that spliced HAC1 mRNA is present in unstressed 
wild-type cells but not in ire1∆ cells. Fig. S2 shows that asynchronous 
ero1-1 cells accumulate with a 2C or greater DNA content when shifted 
to restrictive growth. Fig. S3 demonstrates that Tm inhibits budding when 
added directly after α-factor release but has no effect on DNA replica-
tion. This budding inhibition is bypassed when Tm is added 30 min 
after α-factor release. Fig. S4 shows that Tm treatment does not affect 
Clb2p production/degradation, Cdc14p release, mitotic spindle forma-
tion/depolymerization, or actin patch relocalization but still inhibits 
cytokinesis. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200702101/DC1.
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