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Abstract

Electrical waves traveling throughout the myocardium elicit muscle contractions responsible for
pumping blood throughout the body. The shape and direction of these waves depend on the spatial
arrangement of ventricular myocytes, termed fiber orientation. In computational studies simulating
electrical wave propagation or mechanical contraction in the heart, accurately representing fiber
orientation is critical so that model predictions corroborate with experimental data. Typically,
fiber orientation is assigned to heart models based on Diffusion Tensor Imaging (DTI) data, yet
few alternative methodologies exist if DTI data is noisy or absent. Here we present a novel
Laplace–Dirichlet Rule-Based (LDRB) algorithm to perform this task with speed, precision, and
high usability. We demonstrate the application of the LDRB algorithm in an image-based
computational model of the canine ventricles. Simulations of electrical activation in this model are
compared to those in the same geometrical model but with DTI-derived fiber orientation. The
results demonstrate that activation patterns from simulations with LDRB and DTI-derived fiber
orientations are nearly indistinguishable, with relative differences ≤6%, absolute mean differences
in activation times ≤3.15 ms, and positive correlations ≥0.99. These results convincingly show that
the LDRB algorithm is a robust alternative to DTI for assigning fiber orientation to computational
heart models.
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INTRODUCTION

Electrical waves traveling throughout the myocardium trigger the muscle contractions
necessary to pump blood throughout the body. The shape and direction of these waves are
functions of the spatial arrangement of myocytes within the myocardium,28 which is termed
fiber orientation since it macroscopically resembles a network of fibers within a laminar
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sheet architecture.32,22 Furthermore, ventricular mechanics also depends on fiber
orientation.7 Thus, in computational studies that simulate electrical wave propagation or
mechanical contraction in the myocardium,33 fiber orientation should be represented
accurately so that model predictions corroborate with experimental data.18,27,35,36

Common approaches to perform this task include image-based and rule-based methods. The
most utilized image-based method is Diffusion Tensor Imaging (DTI) since it provides non-
destructive three-dimensional information on myocardial fiber orientation. Specifically, DTI
provides three orthotropic axes for every voxel in a data set pertaining to an imaged
heart,19,30 with the axes being in the longitudinal (along the fibers), transverse (along
laminar sheets and perpendicular to the fibers) and sheet normal (orthogonal to the
longitudinal and transverse directions) directions. These axes can be directly interpolated
into a computational heart model constructed from geometrical data acquired on the same
heart with magnetic resonance imaging (MRI).15,34 However, in the presence of noise due to
partial volume effects1 on cardiac surfaces and in anatomical structures with a large surface-
area-to-volume ratio,29 fiber orientation axes are difficult to interpolate accurately.
Furthermore, DTI is performed ex vivo. Therefore, in models constructed from geometrical
data acquired in vivo using computed tomography or MRI, which are not able to image fiber
orientation well, fiber orientation needs to be approximated or mapped from an alternate
source.

For these reasons, rule-based algorithms6,25 serve as an alternative method to DTI for
assigning myocardial fiber orientation to computational heart models. These algorithms are
termed “rule-based” since they generate mathematical descriptions for fiber orientation with
rules formulated on the basis of observations from histology10,11,21,22,32 and DTI.30,31 For
all rule-based algorithms, the transmural and apicobasal directions throughout the entire
myocardium of a model need to be parametrized in order to systematically assign
orthotropic fiber orientation.

Traditionally, rule-based algorithms parameterize the transmural direction based on the
minimal distance between the endocardial and epicardial surfaces, and define the apicobasal
direction parallel to the long axis of the heart.4 This approach has shown some success in
ventricular models with basic geometries.6,25 However, minimal distance parameterizations
do not guarantee the absence of singularities in the minimal distance function throughout the
entire myocardium,3 particularly in the septum, and in endocardial structures such as
papillary muscles. These singularities can yield unpredictable results for the fiber
orientation, and the problem can persist even when weighted distance mapping is performed
to minimize their occurrence. For example, when using minimal distance to determine
transmural depth from the endocardium to epicardium, the normalized distance is zero on
the left ventricle (LV) and right ventricle (RV) surfaces, 1.0 on the epicardial surface, and
0.5 in the middle of the septum and at its junction with the LV and RV walls. The mean
value theorem from calculus says that with this definition, there must be a point interior to
the septum and at its junction with the LV and RV walls where the gradient is zero.
Weighted averages will only exacerbate this problem, and redefining the minimal distance
function in the septum to eliminate these singularities, and in a manner that is also
continuous with the rest of the myocardium, is not trivial. Furthermore, minimal distance
algorithms rely on a fixed apicobasal axis throughout the myocardium to assign fiber
orientation, which can produce inaccuracies in the fiber orientation towards the apex due to
portions of the LV and RV walls not being oriented along the long axis of the heart.

Thus, we have developed a novel Laplace–Dirichlet Rule-Based (LDRB) algorithm for
assigning myocardial fiber orientation to computational heart models with speed, accuracy,
and high usability. The first major innovation in this new algorithm is the use of a Laplace–
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Dirichlet method3,5 to simultaneously define the transmural and apicobasal directions for the
entire myocardium. By using the continuity properties of the harmonic solutions to
Laplace’s equation with Dirichlet boundary conditions, instead of minimal distance
parameterizations, our new algorithm ensures that the transmural and apicobasal directions
change smoothly and continuously throughout the entire myocardium, even in models with
complex geometries. The second major innovation in the algorithm is the use of bi-
directional spherical linear interpolation (bislerp) to interpolate fiber orientations within the
myocardium. bislerp guarantees that fiber orientation will change smoothly and
continuously throughout the entire myocardium, particularly in the septum and at its
junctions with the LV and RV.

Here we demonstrate the utility of the LDRB algorithm in an anatomically accurate
computational model of the canine ventricles. To validate this approach, simulations of
electrical activation with the model of the canine ventricles containing LDRB fiber
orientation are compared to simulation results with the same geometrical model but
containing DTI-derived fiber orientation.

MATERIALS AND METHODS

The following methods describe the approach for implementing and testing the LDRB
algorithm. In the first part of the methods, the implementation of the LDRB algorithm in a
generic computational model of the two-chambered mammalian ventricles is presented. The
second part of the methods describes the approach for applying the LDRB algorithm to a
MRI-based model of the canine ventricles, and for comparing the calculated electrical
activation maps in the canine ventricular model with LDRB versus that with DTI-derived
fiber orientation.

LDRB Algorithm

Pseudocode to the full LDRB algorithm for assigning fiber orientation to a model of the
mammalian ventricles, consisting of a finite element mesh denoted Ω, is listed as Algorithm
1 in the online supplement. The inputs and functions of the algorithm are described in detail
below.

LDRB Rules—The LDRB algorithm is based on the following properties of myocardial
fiber orientation derived from histological and DTI data:

R1: The longitudinal fiber direction in the ventricular walls is parallel to the endocardial
and epicardial surfaces.30

R2: The longitudinal fiber direction rotates clockwise throughout the ventricular walls
from the endocardium (+α) to the epicardium (−α), where α is the helical angle with
respect to the counterclockwise circumferential direction in the heart when looking
from the base towards the apex.32

R3: The longitudinal fiber direction in papillary muscles and trabeculae is parallel to the
long axis of these structures.11,21

R4: The transverse fiber direction is perpendicular to the longitudinal fiber direction and
is defined by the angle β, where β is the angle with respect to the outward transmural
axis of the heart.10 Please note, our definition of β is not equivalent to α3 in Streeter et
al.32 For simplicity, β is assumed to vary transmurally from −β on the endocardium to
+β on the epicardium.

R5: The sheet normal is orthonormal to the longitudinal and transverse fiber
directions.22
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R6: Fiber orientation in the septum is continuous with the ventricular walls.31

LDRB Inputs—To assign fiber orientation throughout the myocardium according to the
rules R1–R6 above, the LDRB algorithm takes four functions as inputs, representing the
desired α and β angles within the septum (s) and the ventricular walls (w). The angles α and
β are in degrees and d is the transmural depth normalized from 0 to 1.

(1)

(2)

(3)

(4)

If non-linear interpolation functions are desired, these functions need to satisfy αw(0) =
αs(0) = −αs(1) modulo 180° and βw(0) = βs(0) = −βs(1) modulo 180°. These conditions
ensure that the coordinate systems used for assigning fiber orientation on the endocardium
of Ω will be appropriately oriented, regardless of whether orientations are parametrized in
the LV or RV wall.

The LDRB algorithm also requires the definition of the following surfaces in order to assign
Dirichlet boundary conditions:

∂Ωapex: the apex of the ventricles

∂Ωbase: the base of the ventricles

∂Ωepi: the epicardial surface of the ventricles

∂Ωlv: the endocardial surface of the LV

∂Ωrv: the endocardial surface of the RV

For most studies, the surface ∂Ωbase can be extracted by taking a cutting plane at the
apicobasal junction, and the surface ∂Ωapex can be extracted by finding the point lying
closest to the ventricular apex of Ω. The surfaces ∂Ωepi, ∂Ωlv, and ∂Ωrv can then be extracted
by choosing an arbitrary point on the epicardium, LV endocardium, and RV endocardium,
then iteratively expanding from these three points along the surface of Ω until intersection
with ∂Ωbase.

LDRB Functions—The LDRB algorithm uses four distinct functions in sequential order
to compute the fiber orientation. Pseudocode of these are listed as Functions 1–4 in the
online supplement, and each of them is explained below.

Function 1: Laplace–Dirichlet Parameterization of the Myocardium

Laplace(Ω, A, B): Returns the scalar values of the solution to Laplace’s equation on a mesh
Ω with Dirichlet boundary conditions defined by surfaces A (maximum) and B (minimum).

Using Laplace, the LDRB algorithm solves one Laplace equation for a “potential energy”
function ψab between ∂Ωapex and ∂Ωbase, and 3 more functions (ϕlv, ϕrv, ϕepi) between ∂Ωepi,
∂Ωlv, and ∂Ωrv. The system of equations for ψ or ϕ, which are solved for by constructing the
weak form of Laplace’s equation and applying the Galerkin weighted residual method
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outlined in Chapter 2 of Reddy,26 as well as equations 1–10 in Bayer et al.,3 are listed in
Function 1 of the online supplement. We found that a matrix solver which employs the
conjugate gradient method preconditioned with block Jacobi containing blocks ILU(0) and a
stop condition relative error of 10−7 works well for computing ψ and ϕ.

By taking the gradient of the Laplace solutions, ∇ψab is used to define the apicobasal
direction, and ∇ϕlv, ∇ϕrv, and ∇ϕepi are used to find the transmural direction. Notice that in
Algorithm 1 and Function 1 in the online supplement, the boundary conditions chosen for
ϕlv, ϕrv, and ϕepi allow the following conservation laws to be written:

(5)

(6)

Within the septum, ϕepi will be approximately zero, which implies that within the septum
∇ϕlv≈ −∇ϕrv. Thus, in the septum either ∇ϕlv or ∇ϕrv can be used to obtain the transmural
direction. The same argument applies for the pairs (ϕlv, ϕepi) and (ϕrv, ϕepi) within the LV
and RV walls, respectively.

Function 2: Constructing the Fiber Orientation Coordinate System

axis(u, v): Given two vectors u (apicobasal) and v (transmural), returns a 3 × 3 orthogonal
matrix representing the coordinate system for assigning fiber orientation within the
myocardium.

The function axis takes as inputs, for a given point in Ω, a vector from ∇ψab along with a
vector from either ∇ϕlv, ∇ϕrv or ∇ϕepi, then yields a right-handed axis system (Q = [ê0, ê1,
ê2]) where ê0 is oriented in the circumferential direction, ê1 in the apicobasal direction, and
ê2 in the transmural direction. The Q generated by axis is consistent with the coordinate
system used in histology studies to quantify myocardial fiber orientation.2,14,22,32 Lastly,
due to the manner in which the Laplace gradients are solved, ∇ψ and ∇ϕ are predominately
perpendicular and aligned in the apicobasal and transmural directions, respectively.
However, when ∇ψ and ∇ϕ are not perpendicular, as in endocardial structures
(trabeculations or papillary muscles), the direction ê1 is preserved over ê2 in order to satisfy
R3.

Function 3: Defining the Orthotropic Fiber Orientation

orient(Q, α, β): Takes a coordinate system Q and the fiber orientation angles α and β from
Eqs. (1)–(4) at a given point in Ω, then returns an orthonormal coordinate system (F  S  T),
where F is the longitudinal direction, S is the sheet normal, and T is the transverse direction,
as outlined in the Introduction. Refer to Fig. 1a for further detail.

For a given point in Ω, the direction F is obtained by rotating Q around ê2 by the angle α at
that point (Fig. 1b):
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(7)

The same logic is used to obtain the S and T directions. Given a point in Ω, S and T are
generated by rotating the axis system (F êf ê2) from Eq. (7) around F by the angle β at that
point (Fig. 1c):

(8)

The combination of these equations into one operation can be found in Function 3 of the
online supplement.

Function 4: Interpolating Fiber Orientations

bislerp(QA, QB, t): Linearly interpolates two orthogonal matrices QA and QB to produce a
new orthogonal matrix determined by the interpolation factor t. When t is 0, bislerp returns
QA, and when t is 1, bislerp returns QB.

The function bislerp is used by the LDRB algorithm to interpolate fiber orientation axes
continuously throughout the myocardium. To satisfy R6, the LDRB algorithm uses bislerp
to: (i) perform a weighted average between the axis systems Qlv and Qrv by using ϕlv and ϕrv
to determine t, in order to obtain continuous fiber orientation between the RV and LV
(Qendo), and then (ii) perform a second weighted average between the axis systems Qendo
and Qepi by using ϕepi to determine t, in order to obtain continuous fiber orientation between
Qendo and the rest of the ventricles. Note that in Algorithm 1 of the online supplement, when
one of the energy functions goes to zero, the remaining two fiber axis systems become
identical and the weighted averaging has no effect. Thus, weighted averaging occurs
primarily at the junctions of the LV, RV, and septum to continuously blend fiber orientation
according to R6. A more detailed description on the inner workings of bislerp can be found
in the online supplement under Function 4.

Application of the LDRB Algorithm to a MRI-Based Model of the Canine Ventricles

Development of the Model of the Canine Ventricles—The LDRB algorithm was
tested in a MRI-based computational model of the structurally normal canine ventricles. The
geometry and DTI-derived fiber orientation of the model were constructed using the
methods of Vadakkumpadan et al.34 applied to MRI and DTI data collected by Helm et al.16

To generate the same model but with LDRB fiber orientation, the input functions in Eqs.
(1)–(4) were optimized so that the mean angle between the LDRB and DTI-derived fiber
orientations was minimal. The optimal values for the input parameters αendo, αepi, βendo and
βepi of the LDRB algorithm were determined by varying each parameter in the range of
±90° in intervals of 5°, then choosing the parameter combination that produced the smallest
mean angle (θmean) between the LDRB and DTI vectors (F  S  T) calculated over the total
number of elements in Ω(Nelem). Since fiber orientation is bi-directional, θmean was
calculated as
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(9)

Membrane kinetics in this model of the canine ventricles were described by the Greenstein–
Winslow myocyte model.12 Orthotropic tissue conductivities of 0.5 (S/m) along F, 0.3 (S/m)
along T, and 0.16 (S/m) along S were assigned to produce conduction velocities within the
range of 20–80 cm/s as observed in experiments.8 Monodomain simulations were performed
with the model of the canine ventricles using the Cardiac Arrhythmia Research Package37

(CardioSolv LLC) running on 16 compute nodes, each with four Dual Core AMD Opteron
processors (Model 2222) and 8GB of memory. All simulations were executed with a 10 µs
time step.

Simulation Protocol and Activation Maps—Since the pattern of electrical activation
in the myocardium, which underlies cardiac pump function, is dependent on fiber
orientation, ventricular activation maps were generated and used to analyze the
correspondence between the simulation results with LDRB and DTI-derived fiber
orientations. Two sets of simulations were performed. The first set was performed by pacing
the canine ventricles with LDRB and DTI-derived fiber orientations at the LV epicardium
midway between the apex and base to elicit transmural electrical wave propagation, and the
second set was performed by pacing at the LV endocardial apex to elicit apicobasal
propagation. At each location, the myocardium was paced at a cycle length of 600 ms for 10
beats with stimuli of 2 ms duration and twice diastolic threshold amplitude. Activation maps
were generated for the 10th beat by computing, at each location within the myocardium, the
moment in time when the action potential upstroke velocity reached maximum. Differences
in the activation maps between simulations with LDRB and DTI-derived fiber orientation
were quantified using the methods of Han et al.,13 in which a relative difference (RD), root
mean square difference (RMSD), and correlation coefficient (CC) were computed for each
pacing protocol.

Visualization—All vectors in (F  S  T) were normalized to have unitary magnitude, then
visualized as streamlines using the software SpiderView (www.meshing.org). Streamlines
were colorized according to transmural depth, which was determined using the Laplace
solutions for ϕepi, ϕlv and ϕrv. Please note, when streamlining fibers on the epicardial and
endocardial surfaces in DTI data sets, streamlines in noisy regions will either appear
missing, or be similar to the underlying fiber directions not containing partial volume
effects. Activation maps from the simulation protocols described above were visualized
using the software Meshalyzer (carp.meduni-graz.at/).

RESULTS

LDRB Fiber Orientation in the Model of the Canine Ventricles

The conformal boundary-fitted mesh of the canine ventricles contained 823,077 vertices and
4,588,291 tetrahedra with a mean edge length of 600 µm. Within this mesh, the solutions for
Laplace’s equation with Dirichlet boundary conditions applied to the ventricle surfaces (Fig.
2a) were both smooth and harmonic (Fig. 2b). Using the gradients of the Laplace solutions,

Bayer et al. Page 7

Ann Biomed Eng. Author manuscript; available in PMC 2012 December 11.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

http://www.meshing.org
http://carp.meduni-graz.at/


a coordinate system consistent with histology studies (Fig. 1a) was automatically generated
to accurately perform the α and β rotations (Figs. 1b and 1c) necessary to generate fiber
orientation according to the rules R1–R6. The optimized LDRB parameters for these
rotations in the canine ventricles were αendo = 40°, αepi = 250°, βendo = 265° and βepi = 25°,
which are within the range reported by Helm et al.,15 and were used in the model of the
canine ventricles with LDRB fiber orientation presented in Figs. 3, 4, 5, and 6. The
computation time needed to calculate LDRB fiber orientation for any combination of α and
β did not exceed 5 min on a single CPU (a maximum of 249 s to compute the Laplace
functions, and 48 s to compute the orient, axis, and bislerp functions).

Panels (a) and (b) in Figs. 3, 4, and 5 show the LDRB fiber orientation obtained for the
canine ventricles next to the DTI-derived fiber orientation (refer to Section 2 of the online
supplement for full-size images of the streamlined fiber orientations), while Figs. 3c, 4c, and
5c present the angles between the LDRB and DTI vector fields for the fiber orientation
directions F, S, and T. As seen in Figs. 3a and 3b, the DTI-derived fiber orientation direction
F displayed a profound transmural rotation parallel to the ventricular surfaces, which is
consistent with rules R1 and R2, and was captured well by the LDRB algorithm. The largest
differences between the LDRB and DTI-derived F (Fig. 3c) were localized near the
endocardial and epicardial surfaces due to partial volume effects. As shown in Figs. 4a and
4b, the DTI-derived T displayed a predominant pattern of −β on the endocardium
transitioning to +β on the epicardium, which is consistent with R4 and which the LDRB
algorithm was able to capture. However, in contrast to θmean(F), the distribution of
differences between the LDRB and DTI-derived T was more homogeneous (Fig. 4c), but
this was expected since the DTI-derived T is susceptible to noise throughout the entire
myocardium because its eigenvalues are similar in magnitude to S.24 Therefore, S in Fig. 5
displayed results similar to T since S is just the cross-product of T with F (R5). Lastly, the
use of quaternions to interpolate fiber orientation proved successful for preserving R6 in all
three fiber directions.

Simulations of Electrical Activation with the Model of the Canine Ventricles

Shown in Fig. 6a are the calculated electrical activation maps for pacing at the LV
epicardium and apex in the model of the canine ventricles with LDRB and DTI-derived fiber
orientations. Despite the differences in S and T between the LDRB and DTI-derived fiber
orientations (Figs. 4c and 5c), the LDRB model activation maps were nearly
indistinguishable from the DTI model activation maps for both LV epicardial and apical
pacing. The magnitude of the absolute difference in activation times between simulations in
the model with the LDRB and DTI-derived fiber orientations did not exceed 11 ms (Fig. 6b).
The activation time statistics at the top of Table 1 show that the LDRB and DTI activation
maps were in excellent agreement, with small RD ≤ 6% and RMSD ≤ 3.15 ms, along with
strong positive CC ≥ 0.99.

DISCUSSION

The goal of this study was to develop a novel rule-based algorithm for incorporating
myocardial fiber orientation into computational heart models with speed, accuracy, and high
usability. To achieve this task, we developed an algorithm termed LDRB, then demonstrated
the algorithm’s capabilities by assigning fiber orientation to a realistic image-based
computational model of the canine ventricles. The results presented in this study show that
the LDRB algorithm is (i) fast, even for large meshes, (ii) accurate, by producing activation
maps strikingly similar to those obtained from the model with DTI-derived fiber orientation,
and (iii) user friendly, by providing a robust framework to easily navigate throughout the
model’s geometry in order to automatically assign continuous fiber orientation. These

Bayer et al. Page 8

Ann Biomed Eng. Author manuscript; available in PMC 2012 December 11.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



findings provide strong evidence that the LDRB algorithm is a robust and inexpensive
alternative to the use of DTI-derived fiber orientation in computational models of the heart.

LDRB Computation Time

In modeling pipelines designed for clinical use,34 the recent focus has been on fully
automating and speeding up the model construction. We have shown that the LDRB
algorithm is fast for large meshes. Specifically, the computation time needed to execute the
LDRB algorithm in the image-based model of the canine ventricles, on a single CPU, was
slightly less than 5 min. For comparison, when applying the minimal-distance rule-based
(MDRB) algorithm by Potse et al.25 to generate fiber orientation (though only for F since the
algorithm does not include rotations for T and S) in our model of the canine ventricles, the
computation time was just shy of 13 min on the same CPU (See Section 4 in the online
supplement for details). Thus, run times for the LDRB algorithm are just as fast or faster
than existing rule-based methods, making it ideal for rapidly generating fiber orientation in
geometrical models constructed from both in vivo and ex vivo MRI or CT scans.

LDRB Accuracy

If activation patterns are significantly altered by the underlying fiber orientation, both the
dynamics of electrical activity and the sequence of contraction would be altered. Thus, if
fiber orientation is unrealistic for a given model, it is unlikely the electrical and mechanical
behaviors in simulations with this model would be physiologic. Therefore, we conducted
tests to make sure that activation patterns generated by the LDRB algorithm compare well to
those in models with the gold standard, DTI-derived fiber orientation. The LDRB algorithm
compared extremely well, in that only small differences existed in the activation maps
resulting from LV epicardium and LV apex pacing (small RD = 4–6% and RMSD = 1.48–
3.15 ms, high CC ≥ 0.99).

To ensure these values are dependent on changes in activation patterns due to fiber
orientation, and not the mesh resolution (which can potentially alter wavefront shape at
larger discretizations9), the mesh of the canine ventricles was re-discretized to have a
smaller mean edge length of 300 µm (6,344,174 vertices and 36,706,328 tetrahedra). The
orthotropic tissue conductivities for this mesh were set to 0.36 (S/m) along F, 0.18 (S/m)
along T, and 0.08 (S/m) along S to produce the conduction velocities observed in
experiments.8 Then with this model, the same simulation protocol outlined in the methods
was performed. As shown at the bottom of Table 1, activation time statistics hardly changed
from the values determined at the 600 µm discretization (|ΔRD| ≤ 2%, |ΔRMSD| ≤ 0.91 ms,
|ΔCC| ≤ 0.01). These results indicate that wavefront distortion due to the mesh resolution
did not significantly factor into the activation time statistics for our study.

Lastly, to understand how activation time statistics change when the LDRB inputs α and β
in Eqs. (1)–(4) are varied, we performed additional simulations with the model of the canine
ventricles (at the 600 µm discretization since computation times were more than 10× faster
than with the 300 µm discretization) using a wide range of values for α and β. These results
are included in Section 3 of the online supplement and show that activation patterns
calculated from simulations with the model of the canine ventricles including unrealistic
fiber orientation can produce RD as high as 54%, RMSD as large as 26 ms, and CC as low
as 0.69.

LDRB Usability

The rule-based algorithms used currently for mammalian ventricles6,25 are based on minimal
distance parameterizations and rely on nearest neighbor averaging of the minimal distance
parameterizations to prevent discontinuities in fiber orientation, specifically in the middle of
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the septum, at the junctions of the LV and RV walls with the septum, and at the junctions of
papillary muscles and trabeculae with the ventricular walls (See S-Figures 13 and 18 in the
online supplement). Repairing anomalous fiber orientations, which could potentially alter
electrical activation or mechanical deformation patterns, is not trivial and may require time-
consuming manual intervention. In contrast, the LDRB’s use of bislerp guarantees that fiber
orientation changes smoothly and continuously at these locations while avoiding the need to
develop complicated conditions in order to tune the algorithm to individual models. This
renders the LDRB algorithm virtually automatic after the definition of the input parameters
(which can be directly taken from histology and DTI studies), thereby making it very user-
friendly, and with results that are consistent for any model.

Alternatively, the use of a large deformation diffeomorphic metric mapping (LDDMM)
approach34 to map ventricular fiber orientation into computational meshes of the ventricles
could also potentially solve the problems encountered with minimal-distance based methods.
However, execution times are very long (at the order of hours), and the LDDMM algorithm
does not work well when the resolution of the target heart model is higher than that of the
atlas template. For example, if the target model is of high resolution with endocardial
structures that cannot be imaged with DTI, LDDMM will have trouble mapping fibers into
and around these regions, where the LDRB algorithm would not.

Additional LDRB Capabilities

First, the LDRB algorithm is not limited by the model’s resolution (the mean edge length).
However, the full capability of the LDRB algorithm to effortlessly incorporate fiber
orientation into complex endocardial structures could not be exploited with the model of the
canine ventricles employed in this study. This is due to the fact that available DTI data sets
of entire mammalian ventricles are too low in resolution to capture trabeculations and
papillary muscles; achieving the sub-millimeter resolution necessary to accurately capture
these features with DTI is inherently expensive due to the long scan times.15 In Section 5 of
the online supplement, we present the application of the LDRB algorithm to a high-
resolution (25 µm isotropic resolution) MRI data set of rabbit LV. The LDRB algorithm was
able to successfully define a continuous mathematical description for fiber orientation from
the myocardium into the trabeculations and the papillary muscle according to R5 in the
methods, while the MDRB algorithm we implemented could not (See S-Figures 18–22 in
the online supplement). To the author’s knowledge, no other existing rule-based algorithm is
capable of performing this task with automaticity.

Secondly, the angle β does not necessarily change linearly within the ventricular walls, and
may vary from apex to base. Depending on the location within the myocardium (RV, LV,
apex, base), the transmural function for β may be uniform,2 bimodal,14 or sigmoidal.22

Since the results in Table 1 revealed small differences between simulations with LDRB fiber
orientation, generated using a simple linear transmural formulation for β throughout the
entire myocardium, to the simulations with the DTI-derived fiber orientation, we did not
explore the impact of such nonlinearities in β. However, with slight modification to the
LDRB algorithm inputs in Eqs. (1)–(4), the algorithm can accommodate differences in fiber
orientation between the LV and RV by checking for ϕlv > ϕrv, as well as between the apex
and base by expanding Eqs. (1)–(4) to be functions of ψab. This approach would be
especially useful in capturing changes in fiber orientation resulting from disease such as
heart failure, where the sheet angle gradually steepens from apex to base in the septum of
the failing heart.16

Thirdly, the LDRB algorithm can be easily modified to test various hypotheses regarding
fiber orientation and its role in electrical activation and mechanical contraction. As
presented above, the LDRB algorithm assumes the transverse angle, i.e., the imbrication

Bayer et al. Page 10

Ann Biomed Eng. Author manuscript; available in PMC 2012 December 11.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



angle of F around the ê1 axis, is zero. However, this may not always be the case for all
hearts and could potentially affect transmural activation sequences.20,23 To incorporate the
transverse angle into the orient function of the LDRB algorithm, only one additional
rotation (as a function of ψ and ϕ) around the ê1 axis would need to be included between the
α and β rotations. Furthermore, it is feasible that fiber orientation in the septum may only be
continuous with the LV wall in order to optimize LV work,17 which would contradict R6. In
this case, one needs to modify Eqs. (1)–(4) to ensure that functions for the fiber orientation
in the septum are continuous with only the fiber orientation in the LV wall.

Lastly, the LDRB algorithm is very versatile. In addition to computational modeling studies
requiring accurate fiber orientation, it is becoming increasingly important to model spatial
heterogeneity in ion channel density and conductivity throughout the myocardium.38

Assigning such properties throughout models with complex cardiac geometries poses the
same challenges as encountered when assigning fiber orientation. From the results presented
in this study, it is evident that the LDRB algorithm provides the accurate parameterization of
the myocardium that is necessary to easily perform this otherwise daunting task.

Limitations

The first limitation of the LDRB algorithm is that it is not applicable to computational
models with surfaces that are not well defined. Well defined boundaries make it possible to
apply Dirichlet boundary conditions and solve Laplace’s equation. However, this is typically
only a problem when constructing models from imaging data sets acquired at low-resolution
where surfaces bounding the thin RV wall may contain holes or be extremely jagged.
Secondly, the LDRB algorithm produces artificially smooth fiber orientation and lacks
natural variability in fiber orientation found in histology10,11,21,22,32 and DTI30,31 studies. It
is feasible to add this variation to α and β throughout the myocardium using a random
number generator, but in its absence we found the differences between activation maps with
LDRB and DTI-derived fiber orientation to be subtle, so the effects of incorporating such
variation are likely negligible for the pacing protocols typically used in simulation studies.
Lastly, the LDRB fiber orientations need to be validated in simulations of mechanical
contraction.

Conclusion

The LDRB algorithm is inexpensive, efficient, and easy to implement. It is capable of
rapidly producing fiber orientation based on a-priori knowledge, and the fiber orientation
obtained when using this method compares well both qualitatively and quantitatively with
DTI-derived fiber orientation. The LDRB algorithm is ideal for cardiac electrophysiology
studies, both in vivo and ex vivo, that utilize computational models with realistic
descriptions of myocardial fiber orientation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
The coordinate system used for assigning fiber orientation to computational models of the
ventricles. (a) The longitudinal fiber (F) and transverse (T) directions with respect to the
circumferential (ê0), apicobasal (ê1) and transmural (ê2) axes derived from the Laplace
solutions. (b) The rotation of F, and (c) the rotation of T, in the axis system with respect to
the input angles α and β, respectively. The green dots represent axes pointing out of the
page.
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FIGURE 2.
Solutions to the Laplace–Dirichlet scalar fields in the canine ventricles. (a) The Dirichlet
boundary conditions (0 or 1) applied to the surfaces of the ventricles. Please note, the
boundary condition ∂Ωapex is a single point located on the epicardial apex. (b) Solutions to
Laplace’s equation with the Dirichlet boundary conditions from (a). The arrows shown in
(b) point in the direction of the gradient of the Laplace–Dirichlet scalar field.
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FIGURE 3.
The LDRB and DTI-derived longitudinal fiber direction (F) in the model of the canine
ventricles. (a) The streamlined LDRB and DTI-derived longitudinal fiber directions defined
by the angle α. (b) Streamlines peeled away to visualize the internal longitudinal fiber
directions. (c) The mean angle (θmean(F)) between the LDRB and DTI-derived longitudinal
fiber directions.
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FIGURE 4.
The LDRB and DTI-derived transverse direction (T) in the model of the canine ventricles.
(a) The streamlined LDRB and DTI-derived transverse directions defined by the angle β. (b)
Streamlines peeled away to visualize the internal transverse fiber directions. (c) The mean
angle (θmean(T)) between the LDRB and DTI-derived transverse directions.
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FIGURE 5.
The LDRB and DTI-derived sheet normal direction (S) in the model of the canine ventricles.
(a) The streamlined LDRB and DTI-derived sheet normal directions defined by the cross-
product of the fiber directions T and F. (b) Streamlines peeled away to visualize the internal
sheet normal directions. (c) The mean angle (θmean(S)) between the LDRB and DTI-derived
sheet normal directions.
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FIGURE 6.
Simulation results from the model of the canine ventricles. (a) Activation maps obtained
with the model of the canine ventricles with LDRB and DTI-derived fiber orientations
during pacing at the LV epicardium and LV apex. Isochrone lines have a 10 ms spacing. (b)
The absolute difference between the activation maps in (a).
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TABLE 1

Activation time statistics for the model of the canine ventricles.

Activation map comparisons ATLDRB
vs. ATDTI

LV epi pacing LV apex pacing

600 µm mesh

  RD (%) 4 6

  RMSD (ms) 1.48 ± 1.42 3.15 ± 2.28

  Max. |ΔAT| (ms) 8 11

  CC 0.996 0.988

300 µm mesh

  RD (%) 4 8

  RMSD (ms) 1.53 ± 1.45 4.06 ± 3.31

  Max. |ΔAT| (ms) 9 14

  CC 0.996 0.977
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