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Abstract 

The emerging high-rate wireless personal area network (WPAN) technology is capable of 

supporting high-speed and high-quality real-time multimedia applications. In particular, 

video streams are deemed to be a widespread traffic type, and require quality of service 

(QoS) support. However, in the current I E E E 802.15.3 standard for M A C (media access 

control) of high-rate WPANs, the implementation details of some key issues such as 

scheduling and QoS provisioning have not been addressed. Moreover, the hierarchical 

structure of video streams calls for special measures at the M A C layer in order to improve 

the QoS. 

In the first part of this thesis, we propose a frame-decodability aware (FDA) tech-

nique to make the scheduling algorithms aware of the hierarchical structure and decoding 

dependencies in video streams. Simulation results show that the F D A technique can sig-

nificantly improve the performance of F-SRPT [1] and E D D + S R P T [2] schedulers by up 

to 61% and 60%, respectively. We also compare two common performance metrics and 

investigate which one is a more accurate indicator of the QoS given to video streams. 

In the second part of this thesis, we first propose a mathematical model for the optimal 

scheduling scheme for video flows in high-rate WPANs. Using this model, we then propose 
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Abstract 

a scheduler that incorporates reinforcement learning (RL). Simulation results show that 

our proposed scheduler is nearly optimal and performs 42%, 49%, and 53% better than 

E D D + S R P T [2], PAP [3], and F-SRPT [1] schedulers, respectively. 
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Chapter 1 

Introduction 

In the past few years, ultra-wide band (UWB) technology has received increasing at-

tention in the wireless world. It provides short-range connectivity, low transmit power 

levels, and high-data rates, which make U W B the physical layer of choice for high-rate 

wireless personal area networks (WPANs). UWB-enabled WPANs can offer many new 

applications, such as home entertainment, real-time multimedia streaming, and wireless 

USB, to name a few. 

In order to fully exploit U W B technology in high-rate WPANs, upper layers, in-

cluding the media access control (MAC) layer, must be properly designed for high-rate 

applications. Video transmission is one such application for high-rate WPANs, which is 

predicted to constitute a major traffic load. Real-time video flows are delay-sensitive and 

require quality of service (QoS) guarantee. However, in the I E E E 802.15.3 standard for 

M A C [5], which is designed for WPANs, details of scheduling and QoS support are left 

to the developers. Consequently, in this thesis, we aim to design an application-aware 

scheduling algorithm for M A C layer to provide the required QoS for video traffic. 
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Chapter 1. Introduction 

1.1 Motivations and Objectives 

Similar to other real-time traffic, video is delay sensitive and its frames are dropped at 

the receiver if their delay exceeds the maximum tolerable delay. However, video stream 

has a few unique characteristics that make QoS support more challenging than other 

real-time traffic. It has large peak-to-average ratio of the frame sizes and hierarchical 

structure with dependency among its frames [3]. 

The related work on the video traffic schedulers in high-rate WPANs is limited. The 

few existing proposals try to enhance the scheduling performance by using some kind of 

application layer information about video streams. This information is mainly the type 

of the video frames. However, the information about frame type is not used efficiently 

because it can be readily used along with the decoding dependencies in video streams to 

further improve scheduling performance. We aim to design a technique that enables the 

scheduler to be aware of the decoding dependencies, and thus, use the resources more 

efficiently. Furthermore, this technique must 1) be simple to implement, 2) not incur 

signaling overhead in the system, and 3) be independent of the scheduling algorithm 

details. 

Besides not fully using application layer information, all the current proposals are 

heuristics that describe how application layer information can be combined with a con-

ventional scheduling algorithm for better performance. As a result, we are motivated to 

devise an analytical framework to provide us with a foundation to design a systematic 

scheduling algorithm for video traffic. 
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Chapter 1. Introduction 

1.2 Contributions 

Our contributions in this thesis can be summarized as follows: 

� We propose a frame decodability aware (FDA) technique that the scheduler can 

use to determine whether a video frame is decodable at the receiver. The F D A 

technique uses the information about frame type to minimize the channel time 

wastage caused by scheduling undecodable frames. This technique is applicable to 

different schedulers and can improve the QoS [6]. 

� We provide a mathematical framework for finding the optimal scheduler of video 

flows in high-rate WPANs. This framework takes into account the number and 

pattern of video flows, and their hierarchical structure. 

� Based on the above framework, we design a scheduler that provides significantly 

better QoS to video flows when compared to some other schedulers [7]. 

1.3 Structure of the Thesis 

In Chapter 2, we give an overview of U W B physical layer and I E E E 802.15.3 standard for 

M A C . It also summarizes the hierarchical structure of video streams and the related work. 

In addition, Chapter 2 introduces Markov decision process (MDP) and reinforcement 

learning (RL), which lays the foundation for Chapter 4. In Chapter 3, we describe 

our proposed F D A technique which can efficiently use application layer information to 
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Chapter 1. Introduction 

improve performance. The mathematical formulation for optimal video scheduler, as well 

as our proposed scheduling algorithm for video traffic, are presented in Chapter 4. The 

conclusions in Chapter 5 outline the main contributions of the thesis and explain possible 

future works in the area. 

4 



Chapter 2 

Background and Related Work 

In recent years, many researchers have addressed the scheduling and QoS support issues 

in high-rate WPANs, which are not specified in the standard for M A C [5]. The different 

types of physical layer for U W B transmission, as well as attention to different details by 

which performance improvements can be achieved, have resulted in a rich literature in 

this area. 

In this chapter, we first give an overview of the types of U W B physical layer, followed 

by a brief description of the I E E E 802.15.3 standard for M A C . Since real-time traffic is 

envisioned to constitute a major traffic load in WPANs, challenges to provide QoS to 

this traffic type are also addressed in this chapter. After that, we summarize the key 

proposals for M A C scheduling algorithms for WPANs. Since we use Markov decision 

process (MDP) and reinforcement learning (RL) in Chapter 4, we introduce the basics 

of M D P and R L in this chapter as well. 

2.1 Physical Layer 

U W B signal is defined as a signal having a —10 dB fractional bandwidth greater than 

20%, or occupying at least 500 MHz of bandwidth. This section introduces the main 

5 



Chapter 2. Background and Related Work 

types of U W B physical layer. The first type is impulse-based U W B which can further 

be classified as time-hopping (TH)-UWB and direct sequence (DS)-UWB. The former is 

used for low-rate WPANs, while the latter is suitable for high-rate WPANs. The second 

type of U W B physical layer, which is a contender of DS-UWB for physical layer of high-

rate WPANs, is multi-band orthogonal frequency-division multiplexing (MB-OFDM). We 

briefly describe these types in the following subsections. 

2.1.1 Impulse-based U W B 

Impulse-based U W B systems utilize pulses with duration ranging from a few tens of 

picoseconds up to a few nanoseconds, which have frequency components from near di-

rect current (DC) to a few giga Hertz [8]. The typical waveforms used in impulse-

based U W B are Gaussian monocycle (the first derivative of Gaussian pulse with the 

form aiexp(—i
2

/r
2

) , where t is the time, r determines the pulse duration and a is the 

amplitude coefficient) and its derivatives. Standard modulation schemes such as pulse 

amplitude, position or phase modulation can be used. 

The two types of impulse-based U W B systems are T H - U W B and DS-UWB. Using the 

notations in [8], a user of DS-UWB sends a bit in an interval with duration Tj. Within 

this period, each user uses a pseudo random spreading code with length N„ and chip 

duration Tc to spread its data. Thus, the data rate for each user is 1/Tf. On the other 

hand, a user of T H - U W B spreads one bit to Ns intervals each with duration Tf. The 

pseudo random time-hopping code assigned to the user determines the pulse position 

6 
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A B A B A B A B 

� 

time 

Figure 2.1: Multiple access using time-hopping with Ns = 4 and Nh = Tf/Tc = 8. 

Users A and B use 0, 3, 1, 2 and 3, 7, 5, 4 T H codes, respectively. 

within each interval. Therefore, the data rate for each user is l/NsTf. The use of pseudo 

random codes can be used for multiple access. Figure 2.1 illustrates this for T H - U W B . 

Impulse-based U W B system has two main advantages. First, it is robust to multipath 

propagation as most of the multipaths are resolvable. Second, pulses with short dura-

tion can give accurate timing information that can be used for ranging and positioning 

[9]. However, very short duration of pulses requires very long acquisition time; thus, re-

ducing synchronization overhead becomes a challenge. Besides, suppressing narrowband 

interference requires notch filters, which cause additional complexity to compensate the 

distortion of the pulses caused by the notch filters [10]. 

2.1.2 Mult iband O F D M ( M B - O F D M ) 

As its name suggests, M B - O F D M divides the available spectrum into 14 sub-bands with 

528 MHz bandwidth, and uses O F D M modulation within each sub-band. The spectrum 

is divided into five band groups. Each of the first four band groups has three sub-bands, 

whereas the fifth one has only two sub-bands (see Figure 2.2). The M B - O F D M system 

utilizes a time-frequency code (TFC) to interleave coded data over sub-bands of each 
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band group. As shown in Table 2.1, there are four TFCs available to the 3-band groups, 

and two T F C s available to the only 2-band group. Together, these band groups and the 

TFCs define eighteen separate logical channels that can be used by independent piconets. 

TFCs are designed to have good collision properties for all possible asynchronous shifts 

among the simultaneously operating piconets. All devices should be able to operate in 

the band group #1, whereas support for the other band groups is optional and can be 

added in the future [4]. 

Since U W B regulations may vary worldwide, the M B - O F D M approach gives a high 

regulatory flexibility for worldwide operation by simply turning different bands on or off. 

Furthermore, M B - O F D M is flexible in coexisting with other systems in uncoordinated 

environments, by selectively using available bands according to the in-band interference 

level. For instance, U W B systems are likely to receive interference from I E E E 802.11a 

operating at 5 GHz. This interference can be reduced by not using the sub-bands overlap-

ping with the operating spectrum of I E E E 802.11a. In addition, it can efficiently capture 

multipath energy in a single radio frequency (RF) chain [11]. However, the M B - O F D M 

transmitter is slightly complex because it uses an inverse fast Fourier transform (IFFT) 

[12]. 

Band Group #1 Band Group #2 Band Group #3 Band Group #4 Band Group #5 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 

s—\' 

#14 | 

3432 3960 4488 5016 5544 6072 6600 7128 7656 8184 8712 9240 9768 10296 

Frequency (MHz) 

Figure 2.2: Diagram of the sub-bands and band groups of M B - O F D M [4]. 

8 



Chapter 2. Background and Related Work 

T F C Number Length 6 T F C 

1 1 2 3 1 2 3 

2 1 3 2 1 3 2 

3 1 1 2 2 3 3 

4 1 1 3 3 2 2 

5 1 2 1 2 1 2 

6 1 1 1 2 2 2 

Table 2.1: Time Frequency Codes (TFC) used in M B - O F D M . The first four TFCs are 

used for the 3-band groups, and the last two TFCs are for the 2-band group. 

2.2 IEEE 802.15.3 Standard for M A C 

Personal operating space is a space around a person or an object with a typical radius 

of up to 10 m [5]. WPANs are used to convey information within personal operating 

space. As a result, unlike wireless local area networks (WLANs), link robustness at long 

range is not a primary concern in the development of W P A N standards. This allows 

the standard to primarily focus on issues such as cost, size, power consumption and 

data rate. The I E E E 802.15.3 Task Group has designed the M A C standard for WPANs, 

which aims to provide low cost, low power consumption, and high data rate within the 

personal operating space. In the following subsections, we describe the main features of 

the standard based on [5]. 

9 
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2.2.1 Communication Structure 

According to [5], a piconet is defined as a "wireless ad hoc data communications sys

tem which allows a number of independent data devices (DEVs ) to communicate wi th 

each other." The size of a piconet is generally confined to the personal operating space 

which is much smaller than the coverage area of local or metropolitan area networks, 

and hence the name. Figure 2.3 shows the different elements (DEVs and P N C ) of an 

802.15.3 piconet, hereafter briefly referred to as a piconet. A s i l lustrated, communication 

wi th in a piconet is based on central coordination and peer-to-peer data transfer. One 

D E V called the piconet coordinator ( PNC ) is responsible for providing basic t iming, per

forming scheduling, managing QoS, and controling access to the piconet. M A C overhead, 

including headers and acknowledgement frames, is normally transmitted at a lower rate, 

called the base rate, to guarantee reliable detection at the receiver. 

2.2.2 Piconet Initiation, Maintenance and Termination 

Since a piconet is a k ind of ad hoc network, and thus infrastructure-less, a procedure is 

required to create a piconet. In this procedure, a D E V , which is capable of performing the 

roles of P N C , scans the available channel. The number of available channels depends on 

the underlying physical layer and is specified in the standard. If the P N C finds an unused 

channel, it starts sending beacons in that channel. Otherwise, it can associate wi th an 

existing piconet. This starting procedure does not guarantee that the most capable D E V 

wi l l be the P N C . Therefore, a P N C handover procedure is also defined which is described 
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DEV 

Figure 2.3: Elements of I E E E 802.15.3 piconet 

later in this section. A D E V can join or leave a piconet by using associate or disassociate 

procedures, respectively. After association, D E V is provided with a unique one-octet ID, 

called DEVID. This DEVID is used instead of DEV's 8-octet address in order to reduce 

the overhead. This imposes a limit on the maximum number of DEVs in a piconet. 

When a new D E V associates with the piconet, the P N C checks its capabilities. If it is 

more capable than the P N C itself and the current security policy also allows handover, 

the P N C can handover the control of the piconet to that D E V . Several criteria, such as 

being able to support security, are considered to determine the capabilities. When a D E V 

disassociates from the piconet, its DEVID is no longer valid. The P N C does not re-assign 

it until expiration of a waiting period. When the P N C wants to shutdown, it handovers 

the control to another PNC-capable D E V in the piconet; otherwise, it sends a shutdown 
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information element (IE) to inform the members of the piconet. If the PNC abruptly 

leaves, the piconet terminates its operation for the duration of association timeout period 

(ATP). After expiration of ATP, another PNC-capable DEV can start a piconet using 

the procedure described earlier in this section. 

2.2.3 The Superframe Structure 

The timing in the piconet is based on the superframe, which consists of three parts (see 

Figure 2.4) as follows: 

1. Beacon - It announces timing allocations and is also used to communicate manage-

ment information for the piconet. It contains piconet synchronization parameters, 

such as superframe duration and contention access period end time. It may also 

include several IEs, such as channel time allocation, DEV association, PNC shut-

down, or PNC handover. 

2. Contention Access Period (CAP) - The presence of this part is optional. It is 

used to communicate commands and asynchronous data. It is stated in the beacon 

the types of command and data that are allowed to be transmitted during CAP. 

Some examples of command are association request /response, PNC handover re-

quest/response, and channel time request/response. The access method within 

CAP is carrier sense multiple access with collision avoidance (CSMA/CA) with 

binary exponential backoff. The length of CAP is determined by the PNC and may 

vary from one superframe to another. 
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Superframe #m-1 Superframe #m Superframe #m+1 

Beacon 

#m 
CAP 

CTAP 
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CTA 1 CTA 2 � � � CTA n 

Figure 2.4: Superframe structure. The presence of C A P is optional. The number, 

duration and order of the CTAs and M C T A s can vary from one superframe 

to another. 

3. Channel Time Allocation Period (CTAP) - This period is composed of channel 

time allocations (CTAs), and may include management CTAs (MCTAs). When 

a D E V is assigned a C T A , it can use it for commands, isochronous streams, and 

asynchronous data transfer. Channel access during C T A P is time division multiple 

access (TDMA) and there is no contention within this time. At the beginning of 

the superframe, the P N C announces the start time and length of each C T A as well 

as the DEVs that are allowed to use it (typically, source and destination of a flow, 

which are referred to as SrcID and DestlD. In the case of broadcast or multicast, 

more DEVs are involved.) This will allow DEVs to operate in normal power con-

sumption mode only during their C T A and switch to low power consumption mode 

throughout the rest of CTAP. This scheme also allows the P N C to support QoS. If 

either the source or destination of a C T A is the PNC, that C T A is called M C T A . 

The P N C has the option of using M C T A s instead of C A P for sending or receiving 

command frames. Like other CTAs, the number and position of M C T A s may vary 

from superframe to superframe and the appropriate number is determined by the 
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PNC. M C T A s can be assigned to a specific source or destination, and function as 

direct uplink or downlink, respectively. For example, in the superframe following 

the successful association of a new D E V , the P N C can allocate an M C T A to that 

D E V . Thus, it is guaranteed that the newly associated D E V can communicate its 

traffic needs with the P N C as soon as possible, which in turn, results in fast con-

nection to the piconet. It is also possible that an M C T A be shared among several 

DEVs, as in open and associate MCTAs. An M C T A is open if its SrcID is the 

broadcast identifier (BcstID). Therefore, all associated DEVs can send command 

frames to the P N C during open M C T A . On the other hand, the SrcID of associate 

M C T A is UnassocID, which means that all DEVs that are not currently associated 

in the piconet can attempt to send association request to the P N C in order to 

become a member of the piconet. Channel access during shared M C T A is slotted 

A L O H A . 

2.2.4 Data Communication Between DEVs 

As mentioned in Section 2.2.1, all data exchange is peer-to-peer. Furthermore, C A P can 

be used to send asynchronous data, and C T A P is used for both isochronous streams and 

asynchronous data transfer. Isochronous streams require channel time on a regular basis, 

whereas in the case of asynchronous data transfer, only the total amount of required 

channel time is important. The P N C can split this amount among several superframes in 

any manner, as long as they sum up to the requested amount. According to its current 
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Figure 2.5: A C K policies denned in I E E E 802.15.3 Standard for M A C : (a) no-ACK, (b) 

Imm-ACK, (c) Dly-ACK. 

needs, each D E V can send a C T A request to the P N C to modify the length or number of 

its allocated CTAs. However, the P N C may or may not be able to fulfill all the requests 

of the DEVs. In any case, the P N C will notify the D E V of its decision, through the 

channel time response command. 

Three acknowledgement (ACK) policies are defined for M A C (see Figure 2.5): no-

A C K , immediate A C K (Imm-ACK) and delayed A C K (Dly-ACK). The No-ACK policy 

is used for applications that do not require guaranteed delivery, and two successive frames 

are separated by minimum interframe space (MIFS). On the other hand, when Imm-

A C K is used, every frame should be acknowledged upon reception. The short interframe 

space (SIFS) separates the transmitted frame and A C K . Dly-ACK is a hybrid of the two 

previous policies. In this mechanism, the receiver groups the A C K s of a burst of frames 

and sends them all to the source in one A C K frame. Adjusting the burst size can balance 

between overhead and transmission reliability. 
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2.3 QoS Issues 

Providing guaranteed QoS is a crucial issue in the design of networks that are aimed to 

serve different types of traffic including multimedia and real-time traffic. For the QoS 

traffic classes, networks should be able to, deterministically or statistically, satisfy some 

performance criteria, such as minimum bandwidth allocation or bounded transmission 

delay. QoS management methods include resource reservation, admission control, QoS 

routing, and packet scheduling, many of which are related to M A C protocol [13]; hence, 

M A C design is of vital importance to provide QoS. 

Multimedia traffic, and more specifically video traffic, requires QoS support in high-

rate WPANs. Besides typical challenges to meet QoS requirements of multimedia traffic, 

such as strict delay and loss bounds, video stream introduces other complexities. It has 

large peak-to-average ratio of the frame sizes and hierarchical structure with dependency 

among its frames [3]. Consequently, it is essential to study the performance of proposed 

scheduling algorithms for I E E E 802.15.3 under video flows. 

In the following subsections, we first describe different video frame types and hierar-

chical structure of video streams. We then introduce the performance metrics that will 

be used in Chapters 3 and 4. 

2.3.1 Characteristics of Video Streams 

A typical video encoder generates a sequence of three types of compact frames: intra-

coded (7), predictive (P), and bidirectional (B) frames [14]. Because of the different 
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N = 9 

F i g u r e 2 .6: G O P structure for (TV—9,M=3). The arrows show the decoding dependen-

cies. 

compression schemes used to encode the different frame types, / frames tend to be larger 

(less compressed) than P and B frames, and P frames tend to be larger than B frames. 

Video encoders generate the three frame types according to a predefined pattern called 

group of pictures (GOP). This pattern is characterized by two parameters (N, M), where 

N is the I-to-I frame distance, and M is the I-to-P frame distance [14]. This pattern 

is generally fixed for a given video sequence, and N is a multiple of M. Figure 2.6 

illustrates the hierarchical structure of video streams, as well as decoding dependencies 

among the frames. In order for a frame to be decodable at the receiver, all other frames 

that it depends on, including the frame itself, must be available at the receiver. A 

frame is undecodable if it is directly or indirectly lost [15]. Direct loss happens when the 

receiver does not receive the frame completely, either because of channel error or deadline 

expiration. A frame is indirectly lost when some frames that it depends on are directly 
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Frame type Number of frames depending on it 

I N + (M-1) 

Pki k = 1, . . . , — 1 N-l-(k-l)M 

B 1 

Table 2.2: Number of frame dependencies for each video frame 

lost. As an example, in Figure 2.6, all the frames in a G O P depend on the only I frame 

in that GOP; therefore, if that I frame does not meet its deadline, the whole G O P is 

considered undecodable (direct loss of the I frame and hence, indirect loss of the rest of 

the frames). For instance, with iV = 12 and frame rate of 30 frames per second (fps), 

this would result in impaired quality for about 360 ms, which is fairly obvious to a user. 

Similarly, loss of P frames can also degrade the quality of video streams. Table 2.2 shows 

the number of frames depending on each frame inside a GOP. The larger the number of 

dependencies on a frame, the more important that frame is for decoding process at the 

receiver. Consequently, video frame types can be ranked, from the most important to 

the least important, as I, P, and B. 

2.3.2 Performance Metrics 

Video frames, like other real-time traffic, are delay sensitive. The video frames will be 

dropped at the receiver if their delay exceeds the maximum tolerable delay. This is the 

base of job failure rate (JFR) criterion for evaluating performance of schedulers in the 

M A C layer. For a delay sensitive flow, J F R is defined as the fraction of frames that 
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do not meet their transmission deadlines, and are hence useless and get dropped. An 

important consequence of hierarchical structure of video stream is that JFR, by itself, 

cannot accurately reflect the QoS given to a video flow at the M A C layer. In other words, 

low J F R does not necessarily indicate high QoS. As a result, another performance metric 

is required for comparing the performance of different schedulers. We use the decoding 

failure rate (DFR) criterion, which takes frame dependencies into account. It is defined 

as the ratio of the total number of undecodable frames to the total number of frames [15]. 

D F R can be viewed as an objective measure of user-perceived degradation of quality, and 

is the main performance metric in this thesis. 

2.4 Related Work on MAC Enhancement 

This section gives an overview of the related work on scheduling algorithms for M A C 

in WPANs. In Section 2.4.1, we introduce the proposals that incorporate the unique 

properties of impulse-based U W B physical layer, especially the possibility of simultaneous 

transmissions. In Section 2.4.2, we summarize those proposals that are applicable to 

various types of U W B physical layer. 

2.4.1 Scheduling Proposals for Impulse-based UWB 

Both DS-UWB and T H - U W B have the potential to support concurrent transmissions, 

by using time hopping and spreading codes, respectively. Many researchers have tried to 

take advantage of this property and improve the efficiency of resource allocation. The 
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scheduling scheme proposed in [16] chooses the appropriate scheduling method out of 

single-link transmission policy and concurrent-links transmission policy, based on the 

power level of the active links. Since transmission power in U W B networks is very 

low, two links with a large separation in space will cause negligible interference to each 

other and thus can be active at the same time. To clarify such large space separation, 

a concept, called exclusive region, is defined in [17] and [18], which is used to choose 

between concurrent and single transmission policies. Another approach is the resource 

allocation algorithm proposed in [19]. It uses /^-coloring problem from graph theory 

to perform scheduling. This problem is that, given a graph G with V vertices and E 

edges, find the minimum number of colors for coloring the vertices in such a way that no 

adjacent vertices (i.e., connected with an edge) have the same color. Links, time slots, 

and the number of time slots in a superframe can be mapped to the vertices, colors, 

and the number of colors in the ^-coloring problem. The edges also represent heavy 

interference between two links. The output of this algorithm is the list of links that are 

allowed to transmit in each of the time slots. If more than one link is scheduled in a time 

slot, they will transmit concurrently. Shen et al. used a different approach in [20]. They 

define a weight for each link that is a measure of potential interference on that link. In 

other words, the larger the weight is, the more the links that can interfere with that link 

will be. These weights are then used by an algorithm called maximal weighted matching 

to group flows into concurrent transmission groups. They also consider the fact that not 

all the flows that are scheduled to transmit concurrently during a time slot use the whole 
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time slot. By taking the duration of each transmission into account, they reuse these idle 

times to further enhance the throughput and channel reuse. 

Concurrent transmission causes multi-user interference (MUI), which can limit the 

capacity of the system. Similar to other spread spectrum systems such as C D M A , power 

allocation can be used in impulse-based U W B systems to combat MUI. However, in U W B 

systems, under some conditions, power control is not an efficient way to guarantee the 

required signal to interference and noise ratio (SINR) at the receiver [11]. An effective 

way to compensate for the shortcomings of power control is rate control. There are two 

main ways to adjust the rate of a node in an impulse-based U W B system. The first 

method is to use adaptive channel coding [17], where the code rate is adapted to the 

channel condition. Based on the feedback information that the sender obtains from the 

receiver, the sender uses a lower (higher) rate channel code if the channel becomes worse 

(better). An efficient way of implementing this adaptive channel coding is to use codes 

that provide incremental redundancy. In these codes, a high-rate code is a subset of lower 

rate codes. Therefore, additional protection can be provided to high-rate codes by only 

transmitting the extra redundancy and not the whole data encoded with the stronger 

code. The second method is to alter T H sequence parameters, i.e. number of pulses for 

each bit (Ns), maximum time hopping shift (Nh), and time hopping unit (Tc) [19]. This 

is a unique control method inherent in impulse-based U W B networks. 

Combined with rate allocation, the power allocation problem can be formulated as 

a joint optimization problem so as to minimize the total power consumption [19] or 
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maximize the total throughput of the system [16]. Bit-level QoS constraints can also 

be included in the optimization problem to guarantee QoS. This QoS is expressed in 

terms of an upper bound on the bit error rate (BER), which can be translated into SINR 

threshold. The powers and rates should be allocated in such a way that the SINR of all 

the links be above the threshold. Similarly, rate guarantee can also be implemented to 

provide QoS based on rate requirements [21]. However, the optimal scheduling problem 

for peer-to-peer concurrent transmissions is NP-hard [22]. Since P N C itself is an ordinary 

device in terms of computational capacity, optimal scheduling would be a significant 

burden on it. To reduce the computation load, Liu et al. proposed two simple heuristic 

scheduling algorithms with polynomial time complexity [22]. In [23], Jiang et al. tried to 

solve this problem with an effective distributed resource allocation. Using this method, 

the burden of resource allocation is distributed among all the nodes. They have also 

proposed a novel message exchange procedure to convey control messages required for 

the distributed algorithm. 

2.4.2 Scheduling Proposals for IEEE 802.15.3 Standard for 

M A C 

The proposed channel time allocation algorithms for piconet generally consist of two 

parts: signaling and scheduling. As the central coordinator, P N C is responsible for 

scheduling. Depending on the scheduling algorithm, P N C requires certain information 

such as the number of flows, their reserved rates, their queues' status, type and deadline 
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of the frames in their queues, in order to allocate CTAs to different flows. Therefore, a 

signaling scheme is necessary so that DEVs can inform P N C of the required information. 

As specified in the standard, DEVs can use C A P for this purpose; however, this scheme 

has limitation in providing QoS for delay sensitive traffic. The devised frame format is 

also limited in the diversity of information that can be conveyed to the PNC. Hence, 

many proposed channel time allocation algorithms propose their own signalling scheme, 

so that the scheduler receives all the necessary information in a timely manner. In this 

subsection, we focus on the scheduling and signaling schemes for piconet. 

General Schemes 

It has been shown that the Shortest Remaining Processing Time (SRPT) scheduling 

algorithm minimizes the number of pending jobs in the system, and thus minimizes the 

average waiting time of the jobs [24]. It schedules different jobs in the system in the order 

of their remaining processing time, from the shortest to the longest. In the preemptive 

case, SRPT switches to a newly arrived job if the processing time of that job is shorter 

than the job currently being served. (In an 802.15.3 piconet, the C T A requirements of a 

flow can be regarded as a job.) 

In systems with heterogeneous flows that have different average data rates, SRPT 

naturally favors the flows with smaller average data rate since they tend to have smaller 

frames. Motivated by merits of SRPT, Mangharam et al. proposed a solution to this 

natural unfairness of SRPT. In [1], they proposed a slight variation of SRPT, which 
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maintains fairness among flows with different data rates. This scheduling algorithm, 

called Fair-SRPT (F-SRPT), first normalizes the size of the frames belonging to a flow 

to the mean rate of that flow. This normalized size is then used by SRPT to sort the 

frames. As a result of the normalization in the first step, flows with smaller mean data 

rate will not dominate channel access. Hence, network resources are allocated in a fair 

manner. 

The channel time allocation algorithm proposed in [1] guarantees that all the flows 

receive at least as much as their reserved amount of C T A . If a flow does not require all 

of its reserved CTAs (i.e., under-loaded), the excess is added to the idle channel time. 

This idle channel time is shared among the overloaded flows, which require more C T A 

than their reservation. It is highlighted in [1] that the subtle variations in allocation of 

idle channel time to overloaded flows can significantly affect the overall scheduling per-

formance. Their simulation results show that using F-SRPT gives a lower J F R compared 

to the I E E E 802.15.3 standard. 

The F-SRPT scheduling algorithm proposed in [1] includes a signaling scheme, called 

the one-byte solution. As the name suggests, a' field with one byte is added to the M A C 

header. A D E V can use this field to inform the P N C of its current queue size. Despite 

its simplicity, this approach has a few drawbacks. First, this scheme works best when 

P N C is the destination of all the flows in the system, so that the P N C would be able 

to extract the extra one-byte from the M A C header and use it for scheduling. This 

is generally not the case, since P N C is not responsible for packet forwarding. Second, 
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Figure 2.7: Flaws of one-byte solution for updating the status of the queues at the P N C 

[1]. In superframe n from time t\ to t2 is allocated to flow i. Using the one-

byte approach, P N C has the queue status of flow i up to time f2- At time 

t3 and £ 4 , new data arrive for flow i and change its queue status. Therefore, 

P N C schedules the flows in superframe (n + 1) at time £ 5 based on incorrect 

information about flow i. Flow i cannot update its queue status sooner 

than 7 j 6 . 

the last opportunity for a D E V to update the P N C about its queue status is the end 

of its allocated C T A period (see Figure 2.7). Therefore, if new data frames arrive for 

one of the D E V s flows and change its queue status, it cannot update P N C sooner than 

its allocated C T A within the next superframe. As a result, P N C schedules the flows 

based on inaccurate information about the status of the D E V s queues. Lastly, most of 

the one-byte-information units sent to the P N C are not necessary and are not used by 

the scheduler. As far as the scheduling algorithm is concerned, the only useful piece of 

information is the most recent one, which is sent to the P N C in the header of the last 

M A C frame. 

In [25], Liu et al. proposed a signaling scheme to mitigate the flaws of the one-byte 

solution. It allocates one M C T A to each flow at the end of the superframe. This M C T A 

is used to send control information to the PNC. The main advantage of this scheme is 
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that it does not alter the I E E E 802.15.3 standard. Furthermore, since the M C T A s are 

at the end of the superframe, more recent information is given to the PNC. This scheme 

reduces the average queueing delay of the system. 

The optimality of SRPT, in that it minimizes the average waiting time of the jobs 

in the system, holds only when the jobs have no delay constraint. Thus, in the systems 

with delay sensitive traffic, SRPT need not be the best scheduler, and using deadline 

information can yield better performance. One scheduler that considers the deadline of 

the frames is the earliest due date (EDD). It schedules the frames in the order of their 

deadlines, from the earliest on. It is proven that E D D policy minimizes the probability 

of packet dropping in the system due to delay violation [26]. 

However, in wireless systems like WPANs, where the P N C should be informed of the 

internal state of the system queues, it is not practical to convey the exact deadline. This 

information is represented in a quantized form, usually with respect to the superframe 

size. For instance, a D E V may inform the P N C that the frame in its queue will expire after 

j full superframes. As a result of quantization, many frames can have equal deadlines, 

hence a tie-breaking method is needed. 

In [2], Torok et al. used E D D along with SRPT as the tie-breaking method. They 

mainly studied the performance of this scheduler under real-time traffic with variable 

frame sizes. They modeled this traffic with batch arrival process. Each batch is the 

M A C fragments of a frame and all have the same deadline. In addition, the inter-arrival 

time of the batches is equal to the inter-arrival time of the frames and can be constant 
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or variable. For each flow, P N C has the information about the size and deadline of 

its first (head-of-the-queue) frame, as well as the total size of its queue. E D D + S R P T 

scheduler first selects the flows based on the deadline of the first frame in their queue (i.e., 

according to EDD). If the first frame of several flows have equal deadline, then they are 

scheduled in ascending order of their frame size (i.e., according to SRPT). After serving 

the frames closest to expiration, the remaining channel time, if any, is allocated to the 

flows according to their total queue size using SRPT algorithm. 

A new signaling scheme is also presented in [2]. When control information is piggyback 

onto the data, it requires a complementary method to signal new arrival during the off 

period of data. Reserving fields in the M A C header for piggyback control information 

also incurs excessive overhead. The signaling method in [2] provides a solution. In this 

scheme, when a D E V finishes the transmission of its burst, a time slot is assigned to the 

D E V for sending its control packet. If the D E V has no data to send, the P N C allocates 

one time slot to the D E V in each superframe so that it can signal new arrival. 

Reference [2] also describes burst eligibility method which improves the scheduling 

efficiency. Channel time wastage can be caused by partial transmission of bursts. When 

a burst expires before being completely transmitted, the transmitted portion is useless for 

the receiver and wastes channel time. Using burst eligibility scheme, the P N C determines 

if a burst can be fully transmitted by its deadline. If this is not possible, the burst is not 

scheduled at all. Thus, channel time can be utilized more efficiently. 

Channel time wastage can also be caused by incomplete usage of CTAs. Allocating 
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the exact instantaneous required C T A to the flows in the system incurs a lot of overhead 

caused by the control messages that convey the status of the queues. Furthermore, the 

variable size of the frames makes it even more difficult to allocate the exact required 

C T A . Also, if a D E V does not receive a beacon correctly (because of channel error), it 

cannot use the CTAs allocated to it, and those CTAs would be unused. 

An idle timeslot reuse scheme is proposed in [27] to increase channel utilization. This 

scheme consists of three phases: detection, cancelation and reuse. The detection of idle 

C T A can be done in two ways. First, the P N C can determine if a C T A is idle using clear 

channel assessment (CCA) procedure. Second, when a D E V partially uses its C T A , it 

may send a cancellation request to the P N C and let the P N C know that it is not using 

the rest of its C T A . After detecting the idle C T A , the P N C broadcasts a cancellation 

message. After that, all the DEVs can contend to use the idle part of the C T A . The 

result is higher channel utilization and lower average queueing delay. 

According to the current I E E E 802.15.3 standard, once a C T A request is received 

from a D E V , the P N C shall remember that as the outstanding request for that stream 

for every superframe until another C T A request for that stream is received from the D E V . 

Since C T A P is shared between different priority classes, it can fill up very fast, and new 

connections will be rejected regardless of their priority class. This can cause undesirably 

long waiting time and poor QoS for high priority streams. A QoS degradation policy is 

proposed in [28] to mitigate this problem. It is suggested that the lower priority traffic 

lend some channel time to the newly arrived traffic with higher priority so that they 
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do not get rejected. An M/M/c/oo queueing model is used to analyze the impact of 

changing c (number of available CTAs) on the average waiting time. By getting some 

share of low priority traffic in favor of the higher priority class, some CTAs are released 

(i.e., c increases), and consequently the average waiting time reduces. 

As a result of reducing the average waiting time, more DEVs get the chance to use 

C T A P . This causes more C T A requests and other commands to be transmitted during 

CAP, and the limited capacity of C A P may partly cancel out the benefit of the proposed 

scheduling algorithm for CTAP. In order to increase the number of successful requests 

(or other commands in general) during CAP, the overhead should be decreased. The 

command frames have very long headers and preamble, compared to their actual pay load. 

The command-aggregation scheme proposed in [28] divides C A P into two parts: CAP1 

and CAP2. During CAP1, each D E V aggregates all of its commands in a single command 

and sends it to the P N C within one access to the channel. During CAP2, the P N C 

aggregates the responses to all the commands, again in a single message. Aggregating 

the commands significantly reduces the overhead of headers and preamble. It also reduces 

the number of contentions within CAP. Thus, the collision probability is decreased. The 

result is the overhead reduction and capacity improvement of the C A P period, so that 

the enhancement in the C T A P can be fully utilized. 
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Application-aware Schemes 

In this section, we summarize the scheduling proposals that are specifically designed to 

provide QoS to video streams. They use application layer information for scheduling 

video frames, namely the type of the frames. 

Kim and Cho suggested that each video frame type be scheduled with a pre-assigned 

priority (PAP) based on its importance, i.e., in / , P, and B order [3]. E D D and SRPT are 

used to break ties among frames of the same type, when they cannot be served together 

in one superframe. 

They also proposed using mini packets with short duration for signaling purposes. 

This method divides the C T A P part of the superframe into two parts. The first part is 

C T A and is used for transmission of real-time traffic. The second part is Feedback CTAs 

(FCTAs). The P N C allocates this part for transmission of mini packets. 

There are two classes of information contained in the mini packets. The first class 

is used for C T A allocation to video flows in the system. This includes data rate, A C K 

policy and fragmentation threshold between source and destination of the flow, as well 

as video frame type and queue status information of the source of the flow. These pieces 

of information are contained in the mini packet only when necessary (i.e., when their 

value changes). The second class of information is used for deciding the allocation of 

F C T A for mini packets. In order not to waste channel time with unused F C T A , it is only 

allocated to the DEVs that need to send mini packet to the P N C (i.e., when a new video 

frame arrives at the DEV) . Therefore, this class of information includes the time of the 
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next arrival. By using that information, the P N C can allocate FCTAs only to the flows 

that need it. After receiving all the mini packets from the DEVs, the P N C performs 

scheduling based on the received information. 

In the scheme proposed in [29], each D E V informs the P N C about the maximum size 

of its 7, P and B frames, as well as its G O P pattern. Thus, the P N C can determine the 

type of each frame, and allocates channel time to it as much as its maximum size. Since 

even one frame type of video stream has high maximum to mean size ratio, this scheme 

suffers from low channel utilization. 

Energy efficiency is considered by the scheduler proposed in [30]. It defines different 

service categories in order to balance between energy efficiency and QoS. It also uses the 

application layer information to assign priorities to the buffered frames at the source of 

a flow. Furthermore, a simple flow admission control is proposed to admit new flows of 

different service categories to the system. 

Other Schemes 

Choosing a proper A C K policy for data communication is not addressed in the I E E E 

802.15.3 standard for M A C . In [31], Xiao et al. studied optimal A C K policies under 

U W B channel error condition. For a given A C K policy and error channel condition, 

they analytically determined the optimal payload size, which maximizes the throughput. 

Since C T A P and C A P have different channel access mechanism, the optimal A C K policies 

are studied separately for each case. In C T A P , the analytical model gives the optimal 
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payload size for each A C K policy, given a fixed (allocated) C T A . In CAP, however, a 

model similar to Bianchi's model [32] is used to calculate C A P throughput for each A C K 

policy. The optimal payload size is calculated by maximizing the throughput. 

The proper burst size of Dly-ACK policy is also not covered in the standard. The 

overhead of Imm-ACK policy is very high because A C K frame is sent at the base rate, 

which can be much less than the data rate. Furthermore, the interframe spacing of 

Imm-ACK (SIFS) is longer that that of Dly-ACK (MIFS). Therefore, using Dly-ACK 

can potentially reduce the overhead caused by A C K frames. Liu et al. [33] present an 

adaptive delay acknowledgement algorithm for video traffic. It dynamically adjusts the 

burst size of the Dly-ACK policy in response to the channel quality. The results show 

that this scheme gives a higher throughput and lower JFR, compared to Dly-ACK with 

fixed burst size or Imm-ACK. 

2.5 Markov Decision Process (MDP) 

In real life, as well as laboratory and simulation settings, there are many cases where one 

should make decisions while accounting for the relationship between present and future 

decisions. In other words, decisions are not made in isolation. Such decision making 

problems can formally be analyzed using the model for probabilistic sequential decision 

making under uncertainty. In this model, a decision maker or an agent observes the 

system state at any decision making epoch, based on which it chooses an action. As 

a result of the chosen action, the agent receives (incurs) an immediate reward (cost) 
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and the system evolves to a new state according to a probability distribution. Both the 

reward and the transition probabilities depend on the state and the chosen action. At 

the next decision epoch, the agent faces a similar decision making problem. However, the 

system may be in a different state and there may be a different set of actions to choose 

from [34]. 

At any decision epoch, the action is chosen according to a decision rule, which may 

depend on the current state alone, or on all previous states and actions. A policy provides 

the agent with a set of decision rules so that the agent can choose an action in any possible 

system state. In other words, the agent uses the policy as a prescription to choose an 

action in any situation. When an agent implements a policy, it receives a sequence of 

rewards over time. The sequential decision problem is: given the system information (i.e., 

the set of decision epochs, states, actions, rewards and transition probabilities), what the 

optimal policy is with respect to a predetermined performance criterion. This criterion 

can be a function of the reward sequence yielded by the policy. Possible choices for this 

function include the expected total discounted reward or the long-run average reward 

[34]. 

Markov decision process (MDP) is a special case of sequential decision making model, 

where the set of available actions, the rewards, and the transition probabilities depend 

only on the current state and action, and not on the visited states and chosen actions 

in the past. Any decision making problem modeled by M D P has the following elements: 

decision epochs, system states, available actions, transition probabilities, and immediate 
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rewards. 

Decision epochs are the points of time at which the agent makes decisions. The set of 

decision epochs can be either a discrete set or a continuum. It can also be classified into 

finite or infinite set, based on its size. The MDPs based on the former are finite horizon, 

as opposed to infinite horizon MDPs that are based on the latter. In this chapter, we 

consider the discrete set of decision epochs for infinite horizon MDPs. Thus, the set of 

decision epochs is the set of integers. At each decision epoch, the system is in a state. 

This state describes the status of the system at that epoch. We denote the set of possible 

states by S. Hence, the underlying Markov chain of an M D P with discrete epochs set is 

given by X = {Xn : Xn € S, n = 0, 1, ...}, where Xn denotes the system state at the 

nth decision epoch. Depending on the system state s 6 S at any decision epoch, there is 

a set of available actions As that the agent can choose from. When the agent chooses an 

action a € As, the system state evolves according to the transition probability p(s'\s,a), 

which represents the probability of moving from state s to state s' under action a in one 

step. Furthermore, the agent receives an immediate reward r(s, a). This reward function 

is defined as r: S x A —> It, where R denotes the set of real numbers, and r(s, a) is the 

expected reward for taking action a in state s. That is, r(s, a) — ^2sieS r(s, a, s')p(s'\s, a), 

where r(s, a, s') is the immediate reward in transition from state s to state s' under the 

action a. 

Sequential decision problem consists of stages of decision making and receiving reward. 

This allows the use of of dynamic programming, where the whole multi-stage problem 
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of finding the optimal value can be reduced to a sequence of simpler inductively defined 

single-stage "choosing action and receiving reward" problems. 

When the decision making agent follows policy it up to the decision epoch T , it yields 

a bivariate discrete-time reward process given by [34] 

{(Xn,r(XniYn))\Xn€S,YneAXn,n = 0, 1, . . . , T } . 

The first component is the state of the system at decision epoch n which was described 

before. The second component is the reward received when action Yn is chosen in state 

Xn according to policy it. The average reward or gain of policy it is defined to be 

p ' ( S )4 r l im i £ 7 r | ^ r ( X n , y n ) | 

^ n=l ' 

where E*{-} is the expectation over all the possible state-action sequences beginning with 

s that the policy can yield: {(Xi,Yi,X2,Y2, � � �) \Xi = s}. Dynamic programming (DP) 

methods can find a stationary deterministic policy it* (which is a mapping it*: S —> A), 

that is optimal with respect to the average reward criterion (i.e., optimal gain policy). 

Value iteration and modified value iteration [34] are examples of DP technique. 

2.6 Reinforcement Learning (RL) 

In many real-life sequential decision making problems, DP techniques are not practi-

cal because of two main reasons. First, the agent may not have complete knowledge 

about dynamics of the system or environment. Second, when the system state and/or 

action space is huge (e.g., continuous state spaces), it is not feasible to exploit DP. The 
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former problem is called curse of modeling, while the latter is called curse of dimension-

ality. Reinforcement learning (RL) combines DP methods with other methods including 

stochastic approximation and function approximation to tackle these problems [35]. RL 

is the problem faced by a decision making agent that must learn from its own experience 

of interacting with a dynamic environment. The agent should learn a policy (i.e., how to 

map situations to actions) through trial and error. The agent is not provided with the 

policy, but instead it must discover which actions yield the most reward by trying them. 

Figure 2.8 illustrates the standard RL model. In this model, the agent has an indication 

i of the system state s (e.g., if the agent is a robot, this indication can be the signals that 

the robot receives from its different sensors). The agent takes action a, which leads the 

system to another state. The value of this state transition is communicated to the agent 

through a scalar reinforcement signal (or reward) r. The agent should choose actions 

that tend to increase some function of r. Similar to DP, this function can be average 

discounted reward, average reward, or other reward functions. Unlike DP, however, the 

agent should learn to maximize this function over time by systematic trial and error, 

guided by a wide variety of algorithms [35] [36]. The system environment can be either 

real or simulated. If a simulator is used, complete knowledge of the random variables 

that govern the system dynamics is required [37]. 

In order to obtain a lot of rewards, the agent should be greedy; i.e., it should choose 

the actions that it has discovered to produce a lot of reward. In other words, it should 

exploit its current experience. However, there might exist better actions that the agent 
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^— Real or Simulated Model 

j System 

Figure 2.8: Standard R L model 

has not yet discovered or explored. As a result, if the agent occasionally deviate from the 

greedy manner (i.e., perform exploration), chances are that it can find better actions. The 

dilemma in R L is that neither exploration nor exploitation should be pursued exclusively. 

In fact, one of the challenges of RL is to balance the trade-off between exploitation and 

exploration. The agent must try a variety of actions and progressively favor those that 

appear to be best. On a stochastic task, each action must be tried many times to gain a 

reliable estimate of its expected reward [36]. In the next section, we elaborate more on 

how RL overcomes the challenges that render DP to be impractical. 

2.6.1 Curse of Modeling 

As mentioned in Section 2.5, DP requires the exact information about all the components 

of the M D P that it tries to solve. The component that gives the system model is the 

transition probabilities p(s'\s,a) for all states and actions. In many applications, this 

model is not available. In this section, we summarize an algorithm to overcome this 
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problem, which is proposed in [38]. 

Model-free Q-Learning 

When the agent does not have the system model, it should build a knowledge base ac-

cording to its interaction with the system. In Q-learning, this knowledge base is made 

up of factors called Q-values. For each state s € S and each action a G A3, the agent 

saves a Q-value Q(s, a) and updates these values as the agent learns. Before the learn-

ing begins, all the Q-values are set to the same value. At a decision epoch, when the 

system is in state 5, the agent chooses an action a that maximizes the Q-value (i.e., 

a = argmax Q / g A 3 Q(s,a')). The simulator will then simulate the chosen action a in the 

current state s and evolve to the new state s'. It also gives the accrued reward and the 

time spent during the state transition. The learning algorithm embedded in the agent 

will then use this information to update Q(s,a). Basically, Q(s,a) increases if a was a 

good action (i.e., good actions are rewarded), and decreases otherwise (i.e., bad actions 

are punished). As mentioned before, an exclusively greedy learning algorithm is not the 

best. Consequently, the agent should occasionally explore and choose an action other 

than the one with the maximum Q-value. Over time, as the agent explores and tries out 

all the state-action pairs often enough, it learns the best action in each state. In other 

words, it learns an optimal (or near-optimal) policy. At this point, the agent should cease 

exploration and follow the learned optimal policy in a greedy manner. 

Q-learning is a value iteration based RL. It learns the Q-value of taking action a in 
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state s using the following updating procedure [37]: 

Q(s,a) — r(s, a)p(s'\s, a) max Q(s', a') 
a'eA., 

s'es 3 

r(s, a, s') + max Q(s', a') 
a'eA,, 

(2.1) 

s'es 

where the last equality follows from the definition of r(s, a). There are at least two reasons 

that RL, including Q-learning, requires the updating in equation (2.1) to be gradual [37]. 

First, R L is asynchronous (i.e., unlike DP, the Q-factors of state-action pairs are not all 

updated simultaneously at each iteration) and requires a proper learning rate to converge. 

Second, the major goal of RL is to avoid computation of transition probabilities, which 

also requires a learning rate. For a learning rate p G (0,1], we can write the equation 

(2.1) as: 

Q(s,a) = (1 - p)Q(s,a) + p^2p{s'\s,a) r(s, a, s') + max Q(s', a') 
a'eA,, 

(2.2) 

s'es 

Since equation (2.2) uses the probability distribution p(s'\s,a), it gives the updating 

equation for model-based Q-Learning algorithm, which still suffers from the curse of 

modeling. Stochastic approximation schemes can be used to circumvent this problem. 

One such scheme is proposed by Robbins and Monro [39], which is used to approximate 

the mean of a random variable with methods such as simulation. Given a stochastic 

function f(Q), the updating procedure Q *— (1 — p)Q + p[f(Q)\ with a suitable learning 

rate produces an averaging effect (i.e., converges to the average of /(Q)) if updating is 

performed frequently enough. This updating procedure is very similar to equation (2.2). 

Since the term [r(s,a,s') + maxa,eAs, Q(s',a')] is averaged anyway, one can replace the 
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expectation over s' in equation (2.2) by a sample. Thus, the Robbins-Monro version of 

Q-learning can be written as follows [40]: 

Q(s, a) <— (1 - p)Q(s, a) + p r(s, a, s') + max Q(s', a') 
a'eA., 

(2.3) 

which is free of transition probabilities. Equation (2.3) describes the model-free coun-

terpart of equation (2.1). Since the average reward value iteration can be numerically 

unstable [34], the numerically stable version of model-free Q-learning should be based on 

relative value iteration. We describe this in the next section. 

SMART Algorithm 

Most of the R L algorithms in the literature, including Q-learning, are based on the 

discounted reward optimality criterion. Moreover, these algorithms cannot automatically 

extend to the average reward criterion [41]. As we will show later in Section 4.2.5, the 

average reward criterion is more suitable for our scheduling problem. We use an algorithm 

called S M A R T (Semi-Markov Average Reward Technique) [38] [42] [40] that is designed 

for average reward RL. The convergence analysis of this algorithm is given in [42] and it 

has been successfully applied to different problems including production inventory [38], 

airline seat allocation [40], and QoS provisioning in wireless cellular networks [41]. The 

difference between Semi-MDP (SMDP) and M D P is that for SMDP, the time that it takes 

the system to transit from one state to the other is stochastic. M D P is a special case of 

SMDP when the state transition duration is fixed. Since in Section 4.2 we formulate the 

scheduling problem in the form of an MDP, we can use this algorithm with fixed state 
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transition duration. 

S M A R T is an R L version of relative value iteration algorithm [34] and subtracts the 

average reward in each update. The M D P version of the update procedure for S M A R T 

is as follows [38]: 

Q{s,a) <— (1 - p)Q(s,a) + p (r(s,a, s') - np + m&xQ(s',a')j 

= Q(s, a) + r(s, a, s') — rjp + max Q(s', a') —Q(s,a)^ 

(2.4) 

where n is the fixed state transition time, p is the average reward (see Section 4.3.3), and 

p is the learning rate. S M A R T is the base of our scheduler proposed in Chapter 4. 

2.6.2 Curse of Dimensionality 

Besides a lack of knowledge about the system model, the agent may also face a system 

with vast state and/or action space to interact with. In this section, we address the 

measures for tackling this challenge. 

State Aggregation and Features 

In the systems with large state space, it is sometimes possible to aggregate similar states 

with slight degradation in accuracy. For instance, consider a problem where a robot 

needs to learn how to find a moving object in a rectangular 2-D plane. The obvious 

choice of state space is the coordinates of the robot and the moving object. However, 

this state space has continuous variables and its size is not finite. To use aggregation in 
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� Robot 

X Target 

D imens ion 1 

Figure 2.9: This figure shows a 2-D plane, in which a robot tries to find a target. Robot 

and target are depicted in three different positions, which are all equivalent 

with respect to the value of features fx and / 2 . These different states can 

be aggregated. 

this problem, the 2-D plane can be divided to small rectangular tiles. The center of each 

tile can then represent the coordinates of the robot or the target when they are in that 

tile. Thus, all the points of the state space that lie inside a tile are aggregated to the 

center of the tile. 

Depending on the learning problem, there might exist some features in the states that 

can fully capture the important aspects of system that influence the learning process. For 

instance, consider the same problem as in the previous paragraph, where the state space 

is the coordinates of the robot and the moving object. Using the concepts of simple 

geometry, it can be verified that as far as the target finding problem is concerned, this 

state space only has two important features: / i , the distance between the robot and the 

target, and / 2 , the angle between the robot-target line and the horizontal line passing 

from the target (see Figure 2.9). Since all the points in the state space that yield the 

42 



Chapter 2. Background and Related Work 

same value for features ( / i , / 2 ) can be aggregated and represented by that value, features 

can be viewed as a form of aggregation. In general, the choice of suitable features is 

not a straightforward task, and it requires good understanding of the problem, intuition, 

and experimentation. For large discrete state spaces, state aggregation can reduce the 

memory requirement of look-up tables and make it feasible to use. However, as we will 

describe in the next section, memory requirement is not the only challenge in problems 

with large (or continuous) state spaces. Therefore, state aggregation, by itself, may not 

solve the curse of dimensionality. Note that in the case of Q-learning, where the agent 

deals with state-action pairs, aggregation should be used in the state-action space. 

Generalization and Function Approximation 

In Q-learning, the knowledge base includes a Q-value for each state-action pair. This is 

only practical for problems with small state and action spaces. One reason is that the 

memory requirement for the lookup table is 0(|5| � |v4|), which grows very large for many 

practical problems. In addition, the lookup table method cannot be directly applied to 

the problems with continuous state and/or action spaces. 

Besides memory requirement, another problem with large lookup tables is the amount 

of time required to fill them up accurately [36] because lookup tables use the gained 

experience inefficiently. For instance, lookup table does not take advantage of the fact 

that in a large smooth state space, we generally expect similar states to have similar 

optimal actions [35]. In many tasks, most encountered states have never been tried 
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exactly before. This is usually the case in complex problems or when the state or action 

spaces include continuous variables [36]. As a result, a more compact representation that 

allows transfer of experience between similar state-action pairs should be used. In other 

words, this compact form should generalize from previously experienced state-action pairs 

to the ones that have never been experienced. The kind of generalization that is required 

in Q-learning is often called function approximation, because it tries to generalize the 

Q-values that are experienced to approximate the entire Q-function. 

Generalization techniques that are successfully applied to R L include artificial neural 

network methods [43], fuzzy logic [44], cerebellar-based (CMACs) or tile coding [45] [46], 

and memory-based methods [47]. 

A class of function approximators called sparse coarse-coded function approximators 

nicely provides generalization with reasonable memory requirement [48]. This class is 

the most basic model of associative memory, where several memory locations are used to 

give the content associated with an input. This value would be similar for two different 

inputs, if they share many memory locations. In fact, generalization is the result of inputs 

sharing memory locations. Tile coding and memory-based techniques fall in this class. 

In memory-based techniques, each memory location (or prototype) corresponds to a 

group of state-action pairs that the agent has experienced before. In other words, each 

prototype covers a region of state-action space and is activated by any point in that 

region. Furthermore, each state-action pair can activate more than one prototype. The 

set of prototypes can be fixed (e.g., uniformly distributed in the state-action space), or 
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� Input point 

X Act ive prototypes 

x Inactive prototypes 

Dimension 1 

Figure 2.10: An example of memory-based function approximator. The input point is 

the point in the state-action space that its Q-value is desired. All the 

prototypes within the activation radius of the input are activated. The 

weighted sum of the values of the activated prototypes is the approximated 

value of the input. 

dynamically expand as the agent explores new regions of the state-action space. One 

method for dynamic expansion of prototypes is to add enough new prototypes in order 

to maintain a minimum density of prototypes along the explored trajectory. 

In the case of Q-learning, the prototypes are used to approximate the entire Q-

function. When the agent tries a new state-action pair, its Q-value is calculated as 

the weighted sum of the prototypes' values (i.e., contents of the memory locations) that 

are activated by this pair. In order to determine what prototypes are activated by an 

input, a similarity metric is required. For instance, in Figure 2.10, all the prototypes 

within an activation radius of an input are similar to and activated by it. In Chapter 4, 

we use a memory-based function approximator for our proposed scheduler. 
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2.7 Summary 

In this chapter, we first introduced different physical layers based on U W B transmission, 

which enable WPANs to support high-rate applications, such as video streaming. We 

also investigated the characteristics of video streams, as one of the major traffic types 

in future high-rate WPANs. It was noted that for video flows, which have inter-frame 

dependencies, it is more appropriate to use D F R as the performance metric for scheduling. 

In addition, we described the related work on scheduling at M A C layer, many of which 

were based on the impulse-based U W B and took advantage of concurrent transmission 

allowed by this type of physical layer. A few application-aware scheduling proposals, 

which use application layer information for scheduling video frames, were also mentioned. 

However, the related work on this class of M A C schedulers is limited. Furthermore, the 

current proposals do not use the application layer information effectively. An introduction 

to MDP, challenges of solving large-scale MDPs, and R L were also presented. 

In Chapter 3, we propose a new technique for video schedulers to incorporate application-

layer information more efficiently. We show that this simple technique can significantly 

improve the scheduling performance measured in terms of DFR. 
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F rame Decodab i l i t y A w a r e ( F D A ) 

Techn ique 

In this chapter, we propose a method to improve video traffic schedulers in I E E E 802.15.3 

WPANs, called the frame decodability aware (FDA) technique [6]. We first state the 

motivations and assumptions, followed by the description of our F D A technique. We then 

present the simulation results for the impact of the F D A technique on several scheduling 

algorithms, namely F-SRPT [1], EDD+SRPT [2], and PAP [3] algorithms. 

3.1 Motivations and Assumptions 

Similar to some of the previous work described in Chapter 2, our proposed scheme uses 

information such as frame size, deadline, and type of the frame. However, one can also 

determine the decodability of the queued frames in the system at no extra signalling cost. 

To our knowledge, none of the previous work have explored this opportunity, which is 

readily available at the PNC, for improving scheduling performance under video traffic. 

This is the main motivation of our proposed F D A technique, which will be described in 

the next section. This technique has the following properties: 

47 



Chapter 3. Frame Decodability Aware (FDA) Technique 

� It provides a simple way of exploiting the information about video frame type, hi-

erarchical structure, and decoding dependencies in order to improve the scheduling 

performance. As in [3] and [49], we assume there is enough cross-layer interaction 

to provide the information about frame type at the M A C layer. 

� It is independent of the scheduling algorithm implementation, which is important 

from design point of view and allows more flexibility. 

For simplicity, we assume that the transmission deadline of video frames is constant, 

and is equal to the frame inter-arrival time. Thus, at any given time, the queue of each 

flow holds no more than one video frame. We also assume that the length of superframe 

is a constant. In general, since the size of a video frame is larger than the maximum size 

of the data frame passed from the upper layers, fragmentation is performed at the M A C 

layer. 

3.2 F D A Technique 

Let T denote the set of flows. In F D A , the P N C creates a scheduling eligibility table. 

The number of entries is equal to the number of flows F = \F\. The entry for flow i € F 

includes the following information: 

� The remaining amount of channel time k that should be allocated to flow i\ 

� The deadline di, no later than which lt should be allocated to flow i; 
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� The type of the video frame in the queue of flow i, which is denoted by j/*. 

The unit of li is in milliseconds and is locally determined by the D E V to which flow i 

belongs. It depends on the length of the video frame, as well as the A C K policy and 

channel rate used by the source and destination of the flow [5]. Since the length of 

superframe is constant, the unit of di is in terms of the number of superframes left until 

the deadline expires. The type of a video frame yi € {/, B, P}. 

The F D A technique determines the decodability of each frame based on the deadline 

and type information. For each flow i € !F, we define a binary variable Si. The value of 

5i is set to 0 if any I or P frame on which the current frame of flow i depends is directly 

lost; otherwise, Si is set to 1. According to the hierarchical structure of video encoding, a 

frame depends on its preceding I and P frames up to the most recent I frame. Therefore, 

when yi = I or P, Si indicates whether the frame of flow i is decodable, (i.e. neither 

directly nor indirectly lost). If Si is equal to 0, the subsequent frames up to the next / 

frame (i.e., beginning of the next GOP) are indirectly lost. However, when yi = B, Si 

only indicates that the frame of flow i is not indirectly lost. The entry of each flow also 

includes a variable e,, which shows whether or not the frame of flow i € T is eligible for 

being scheduled. 

The P N C updates the scheduling eligibility table at the beginning of each superframe 

before making the scheduling decisions. The pseudo-code of the table update for entry 

i is shown in Figure 3.1. The table is updated by the following procedures: If some 

channel time is allocated to flow i € J
7

 in the previous superframe, then ^ is reduced 
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For each flow i e F, the scheduling eligibility table maintains the following info: 

� k is the remaining amount of channel time that should be allocated to flow i. 

� di is the deadline of allocating li to flow i. 

� yi is the type of the video frame in the queue of flow i, yi € {/, P, B}. 

� 6i is set to 0 if any I or P frame, on which the current frame of flow i depends, is 

directly lost; and is equal to 1 otherwise. 

� a indicates whether the current frame in the queue of flow i is eligible for being 

scheduled. 

(A) At the beginning of each superframe, perform the following steps for each flow i € T\ 

k *— k — (time allocated to flow i in the previous superframe); 

di <- (di - 1); 

yi is not changed; 

if (di = 0) and (k > 0) then 

if (yi = I) or (yi = P), then Si <— 0; 

else Si is not changed. 

if the DEV corresponding to flow % has sent information about a new arrival in the 

previous superframe, then 

/. . mew. A. , jnew. ... , ..new. 

L

i
 li i u

i
 ai i til iii i 

where, l^ew, d™™ and yfew

 denote the required CTA, deadline and type of the new 

frame, respectively. This information is contained in the message sent to the PNC 

from the DEV. 

if y™» = / , then S{ <- 1; 

else 5i is not changed. 

if (k > 0) and (<k > 0) and (Si = 1), 

then set a = 1 (eligible for being scheduled); 

else set ei = 0 (ineligible for being scheduled). 

(B) After updating the scheduling eligibility table, feed all the eligible flows to the 

scheduler. 

Figure 3.1: Pseudo-code of the F D A technique. 
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by that amount. The value of /, becomes 0 when the channel time request of flow i is 

fully accommodated (i.e., when the queue of flow i becomes empty). In any case, di is 

reduced by one in order to indicate that one superframe has elapsed from the deadline. 

If di reaches 0 and the queue of flow i is not empty (k > 0), then the frame in that queue 

has expired and is no longer eligible for transmission. This would impact the decodability 

of the subsequent frames of flow i if yi is either I or P. In either case, we set <5» to 0 

in order to indicate that an I or P frame on which the upcoming frames of the current 

G O P depend is directly lost. Note that if the expired frame is of B type, then Si is not 

changed. The reason is that the decodability of subsequent frames is not affected by the 

loss of a B frame. 

In case of new frame arrivals, the P N C should also update the entries of the flows 

that have new frames according to the information sent from the corresponding DEVs. 

The parameters U, di and yi are set to the required C T A , deadline and type of the new 

frame arrived at flow i, respectively. If the new frame is of type I, then a new G O P 

has begun. The decodability status of the frames preceding the new I frame does not 

affect the decodability of the I frame and its subsequent frames. Therefore, when a new 

/ frame arrives for flow i, we set Si to 1 regardless of the previous value of Si. 

Finally, after updating the values of li, di, yi and Si, the F D A technique determines 

if the frame of flow i is eligible for being scheduled. The frame is marked as eligible (i.e., 

e» = 1) if the following three conditions are valid: (1) it is not completely transmitted 

(k > 0), (2) the frame has not expired (di > 0), and (3) the frame is not indirectly lost 
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(Si = 1). 

When the scheduling eligibility table has been updated by F D A , the scheduling algo-

rithm will be applied to the eligible frames. Note that the F D A technique is independent 

of the type of scheduling algorithm being invoked. It only gives the list of eligible frames 

to the scheduler. By using the F D A technique, the scheduler does not need to allocate 

channel time to those frames that are indirectly lost. As a result, some CTAs are freed 

up for scheduling other frames that are decodable at the receiver. In Section 3.3.2, we 

study the impact of the F D A technique on several scheduling algorithms. 

Figure 3.2 shows an example of updating the scheduling eligibility table with 5 video 

flows in the piconet. At the beginning of superframe n (see Figure 3.2(a)), the frames 

of flows 3 and 4 expire. The flows 1, 2 and 5 are eligible for being scheduled. Suppose 

that in superframe n, 15 ms and 32 ms of channel time is allocated to flows 2 and 5, 

respectively. At the beginning of the next superframe n + 1 (see Figure 3.2(b)), the 

i h di Vi Si e* i U di Vi Si e» 

1 18 1 B 1 1 1 18 0 B 1 0 

2 23 1 P 1 1 2 8 0 P 0 0 

3 28 0 I 0 0 3 21 3 B 0 0 

4 14 0 B 0 0 4 37 3 I 1 1 

5 32 2 P 1 1 5 0 1 P 1 0 

(a) (b) 

Figure 3.2: An illustration of how the F D A technique updates the scheduling eligibility 

table. The table after being updated at the beginning of (a) superframe n, 

(b) superframe n + 1. 
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frame of flow 1 expires. Since this frame is of type B, it does not affect 5\. The frame 

of flow 2 also expires and is directly lost. Since this frame is of type P, 52 becomes 0. A 

new frame arrives for flow 3 with C T A requirement, deadline and type equal to 21 ms, 3 

and B, respectively. This frame is indirectly lost because its previous I frame is directly 

lost, as indicated by the value of S3. A new I frame arrives at flow 4. The value of 84 

will be set to 1. Finally, the queue of flow 5 becomes empty as its channel time request 

is completely granted in superframe n. The frame of flow 4 is the only frame eligible 

for being scheduled in superframe (n + 1). Although d3 > 0, the frame of flow 3 is not 

eligible for being scheduled because it is indirectly lost. By preventing the undecodable 

frames being scheduled, the F D A technique improves the utilization of the channel time. 

The implementation of F D A requires a signaling scheme to pass the required info 

from DEVs to the P N C . For example, F D A can use the signaling method proposed in 

[25] which is compatible with the 802.15.3 standard. It allocates one M C T A to each 

flow, at the end of the superframe. Compared to using C A P or allocating M C T A s at the 

beginning of C T A P , this scheme gives more recent information to the P N C and reduces 

the average response time of the system. It is important to note that F D A does not 

depend on (or affect) the implementation details of the scheduler. It merely modifies 

the input to the scheduler (see Figure 3.3). Thus, F D A technique can be used in any 

scheduler to provide information about the decodability of video frames. 
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Schedu l ing dec is ions T i m e a l loca t ion 

requests o f f l ows 

Scheduler F D A M o d u l e 

Schedu l ing e l i g ib i l i t y table 

Figure 3.3: Logical interaction between F D A module and the scheduler. 

3 . 3 Performance Evaluation 

In this section, we evaluate the performance of various scheduling algorithms with (and 

without) the use of the F D A technique. The scheduling algorithms that we studied are 

the F-SRPT [1], E D D + S R P T [2], and PAP [3] algorithms. 

3.3.1 Simulation M o d e l 

The implementation of our proposed F D A technique is done in M A T L A B . We use the 

real video trace of Jurassic Park movie with G O P pattern of (N=12, M=3) [50]. The 

frame rate is 30 frames per second. The average rate of each flow is 8 Mbps. We assume 

that the maximum tolerable delay for video frames is equal to the frame inter-arrival 

time, which is 1/30 s. The number of flows vary from 2 to 10. The M A C overheads such 

as headers and inter-frame spacings are set as specified in the I E E E 802.15.3 standard 

[5]. The channel data-rate is equal to 100 Mbps, the superframe size is 8 ms, and the 

simulation time is equal to 500 s. Table 3.1 summarizes the simulation parameters. 
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Table 3.1: Simulation Parameters 

Parameter Value 

Channel data rate 100 Mbps 

Superframe duration 8 ms 

Number of video flows 2 - 1 0 

Video GOP pattern (12, 3) 

Mean data rate of video flows 8 Mbps 

Frame inter-arrival time 1/30 s 

Maximum tolerable delay 1/30 s 

A C K policy Imm-ACK 

Max M A C fragment size 2048 bytes 

Simulation duration 500 s 

3.3.2 Simulation Results 

The start time of different flows in the system affects the burstiness of traffic load, and 

thus influences the overall performance. In order to show this fact, we assume that there 

is (f> seconds between the start times of successive flows. In other words, flow i starts 

at time i<j> [1]. Figure 3.4 compares the average decoding failure rate (DFR) and job 

failure rate (JFR) achieved by F-SRPT and E D D + S R P T scheduling algorithms when <j> 

varies from 0 to 30 ms, and the number of video flows is fixed to 9. In our simulation 

model, for small values of 4> the traffic peaks of each flow coincides with that of other 

flows. Therefore, the overall load becomes more bursty and both J F R and D F R increase 

significantly. Thus, we conclude that cf> can affect the performance. Another observation 
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- S -DFR of F -SRPT 

�e-DFR of EDD+SRPT 

- * - J F R of F - S R P T 

- ^ - J F R of EDD+SRPT 

10 15 20 
Time Separation [ms] 

25 30 

Figure 3.4: The effect of time separation 4> on failure rate (F = 9). 

in Figure 3.4 is the large gap between D F R and J F R for both schedulers. For most values 

of <f>, D F R is more than 3 times as much as JFR. This validates our claim in Chapter 2 

that for video flows, low J F R is not an accurate indicator of good QoS. 

As mentioned in Section 2.3.1, B frames are likely to be smaller that I and P frames, 

so they are favored by the SRPT scheduler. Similarly, P frames have a better chance 

to be scheduled, compared to I frames. In other words, SRPT functions in favor of less 

important frames. As a result, many of the completed jobs (i.e., scheduled frames) by 

SRPT are undecodable at the receiver, because they rely on other more important frames 

that were deprived of channel time in the presence of small B (or P) frames. Therefore, 

there exists a significant gap between D F R and JFR for SRPT. This gap is the sign of 

channel time wastage by scheduling undecodable frames. F-SRPT also has the similar 

drawback, because it is essentially the same as SRPT (see Figure 3.5). It only maintains 
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fairness among high and low rate flows. Using the F D A technique, F-SRPT scheduler 

does not waste channel time by scheduling undecodable frames. Since these frames are 

mainly of the less important types, this would free up some channel time for scheduling 

frames of more important types. In effect, none of the undecodable frames are scheduled, 

and any scheduled frame is decodable. Therefore, J F R and D F R are identical when F D A 

technique is used. 

As mentioned before, for small values of <f>, the traffic load is very bursty and D F R is 

thus high. However, since P N C is in charge of admitting new flows to the system, it can 

alleviate this issue to some extent. For instance, it can reduce the burstiness of traffic 

by delaying the initiation of a flow for a few milliseconds, which is negligible from user's 

point of view. Therefore, we focus on the cases when <f> is larger than superframe size, 

and present the performance evaluations averaged over 8 ms < cf> < 30 ms. Figure 3.6 

shows that dropping undecodable frames can reduce D F R of F-SRPT scheduler up to 

61%. Note that F D A technique improves the objective measure of video quality, despite 

causing J F R to increase. As explained before, we are not concerned about an increase of 

JFR, as long as D F R decreases. 

Using E D D along with SRPT, the E D D + S R P T scheduler gives higher priority to 

the frames with more stringent deadline. This approach reduces both JFR and DFR, 

compared to SRPT. The nature of SRPT, however, again causes a large gap between 

J F R and DFR. The F D A technique improves D F R of EDD+SRPT, basically in the 

same manner as described for SRPT. Figure 3.7 depicts the effect of <fi and shows that 
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Figure 3.5: Effect of F D A technique on F-SRPT scheduling algorithm versus time sep-

aration (j>. 
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Figure 3.6: Effect of F D A technique on F-SRPT scheduling algorithm versus the num-

ber of flows F. 
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-H-DFR 

-*- DFR with FDA 

JFR with FDA 

-+-JFR 

0 25 30 5 10 15 20 
Time Separation [ms] 

Figure 3.7: Effect of F D A technique on E D D + S R P T scheduling algorithm versus time 

separation <j>. 

F D A technique can significantly reduce DFR. Figure 3.8 depicts this improvement versus 

the number of video flows in the system, which is up 60% reduction in DFR. 

Unlike the previous two schedulers, PAP scheduler treats video frame types differently, 

and uses the information about the type of frames. It serves I frames with the highest 

priority, followed by P and B frames, respectively. These priorities are based on the 

importance of each frame type. The F D A technique has the least impact on the PAP 

scheduler, and does not affect D F R for <p > 5 ms (see Figure 3.9). Since PAP schedules 

I and P frames before B frames, most of the I and P frames are scheduled, and they 

have low rate of missing their deadline. As explained in Section 2.3.1, indirect loss is the 

result of expiry of I or P frames. Therefore, PAP scheduler results in a small number of 

undecodable frames, which reduces channel time wastage due to scheduling undecodable 
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Figure 3.8: Effect of F D A technique on E D D + S R P T scheduling algorithm versus num-
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Figure 3.9: Effect of F D A technique on PAP scheduling algorithm versus time separa-

tion <j>. 
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Figure 3.10: Comparison of F-SRPT, EDD+SRPT, and PAP schedulers when F D A is 

used. 

frames. Thus, as shown in Figure 3.9, the gap between D F R and J F R for PAP scheduler 

is less than the other two schemes. So there is little room for improving PAP, as the F D A 

technique uses the wasted channel time to reduce DFR. Figure 3.10 illustrates the D F R 

of the three studied scheduling algorithms with F D A technique. It shows that none of 

the schedulers is the best for all values of <j>. 

3.4 Summary 

In this chapter, we proposed an F D A technique to improve the performance of schedulers 

for video traffic. Our F D A technique can be applied to various types of schedulers 

and does not incur any extra signalling overhead between DEVs and the PNC, except 

for exchanging the information about frame type. We used both D F R and JFR as 
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performance metrics when evaluating video traffic schedulers, and emphasized that low 

D F R is a more appropriate indicator of the QoS given to video traffic. We analyzed the 

effect of F D A technique on F-SRPT, E D D + S R P T and PAP schedulers, and showed up 

to 61%, 60% reduction in DFR, for the first two schedulers. 

62 



C h a p t e r 4 

Schedu l ing A l g o r i t h m for V i d e o 

F lows 

4.1 Introduction and Motivations 

In Chapter 3, we proposed the F D A technique for performance improvement. In addition, 

it was emphasized that D F R is a suitable performance metric for scheduling algorithms, 

and reflects the user-perceived QoS. We also presented the performance of three schedul-

ing algorithms under the D F R metric. A natural question that may arise is that what 

is the best possible performance that we can obtain in terms of D F R metric. We shall 

address the answer to this question in this chapter. 

The mathematical techniques that we used in this chapter were summarized in Sec-

tions 2.5 and 2.6. The rest of this chapter is organized as follows. In Section 4.2, we 

describe the M D P formulation for our scheduling problem [7]. Algorithm implementa-

tion and simulation results are presented in Sections 4.3 and 4.4, respectively. Finally, 

summary is given in Section 4.5. 
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4.2 Problem Formulation 

In this section, we formulate the problem of finding the scheduling policy with minimum 

average D F R in the form of a Markov decision process (MDP) with average reward 

criterion [34]. We next relate the gain of the scheduling policy with the average D F R 

that it yields. As a result of the linear relationship between gain and average DFR, we 

can use reinforcement learning (RL) techniques [35] [36] that find optimal gain policy, in 

order to find the scheduling policy which minimizes the average DFR. 

4.2.1 Assumptions and System M o d e l 

We assume that the number of video flows, denoted by F, is fixed. For simplicity, it is 

assumed that the deadline of video frames is constant, and is equal to frame inter-arrival 

time 7. As a result, the queue of each flow holds no more than one frame at any time. 

We denote the GOP pattern of the i
th

 flow (i G T = {1, 2 , . . . , F}) by [Nu Mi), where Nt 

and Mi are the I-to-I and I-to-P frame distance, respectively. The G O P pattern of all 

flows is assumed to remain constant during the flows' lifetime. We model the scheduling 

problem for video flows as an MDP. The scheduler is the decision making agent. 

4.2.2 Decision Epochs 

The scheduler should make a decision at the beginning of each superframe, and decide to 

schedule which flows in that superframe. The superframe size 77 is assumed to be fixed 

and is less than 7. For simplicity, we show the decision epochs in terms of superframe 
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size. For example, the actual time of decision epoch n, which is the beginning of n 

superframe, is (n — l)n. Therefore, the set of decision epochs is {1,2,... , T}. 

4.2.3 States 

Let the function txj(x) give the amount of channel time that flow i requires to send x bits 

of data. The simplest form of this function is tx̂ (a;) = x/channeLdatajratej. However, 

depending on the acknowledgement policy, inter-frame spacing times, and maximum 

M A C fragment size, this function can have a different form. Moreover, assume that the 

maximum frame size of flow i is L™
ax

. We define the set of possible system states as 

follows: 

S 4 | s = (l,d,g,5) | V z 6 ^ : 0 < < t^ iL?"™), 

ek e {0,.. . ,D m a x}, gie{o,...,Ni- l}, 6t e {o, 1} j (4.1) 

where 

� 1 = [Zi Z2 � � � IF], a n

d h is the channel time required by the frame in the queue of 

flow i, in milliseconds. 

� d = [di d2 � � � dp], and d\ is the number of full superframes left until the arrival of 

the next frame. Since the maximum tolerable delay for video frames is the frame 

inter-arrival time, d\ can alternatively be interpreted as the deadline of the frame 

in the queue of flow i, in terms of superframe size. 
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� g — [5i 92 � � � 9F], and & is the offset of the frame in the queue of flow i, with 

respect to the beginning of the frame's GOP. For the first frame of the G O P Qi = 0, 

and for the last one gi = Ni — 1. 

� 8 = [5i 52 � � � 8p], and Si is set to 0 if any I or P frame, on which the current frame 

of flow i depends, is directly lost; and is equal to 1 otherwise (see Section 3.2). 

� jjmax A |^J ^ j g ^.jjg m a x i m u m frame deadline in units of superframe size 77, where 

[�J is the floor function. 

The scheduler incorporates the F D A technique, in order to determine the value of <5 based 

on 1, d and g. 

4.2.4 Actions 

Let A be the set all possible actions: 

A = | a = ( a i , a 2 , ��� aF, p)\p € ̂ n{0}; a* e {0,1}, Vi e T\ ap = 0 if p ^ o|. (4.2) 

where a» is equal to 1 if the scheduler allocates enough channel time to flow i so that it 

can fully transmit its frame. Otherwise, it is equal to 0. The parameter p is the flow that 

can only transmit parts of its frame during the channel time that the scheduler allocates 

to it. If no such flow exists, then p = 0. Here we assume that in each superframe, 

the scheduler allows at most one partial frame transmission, and the rest are full frame 

transmissions. The last conditional statement in equation (4.2) implies that the frame of 

flow p cannot be both fully and partially transmitted simultaneously. 
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At each decision epoch, i.e., the beginning of each superframe, the scheduler should 

choose an action depending on the current state. The chosen action must satisfy a few 

constraints. First, the channel time required to transmit scheduled frames should not be 

more than the superframe length n: 

F 

X > i � li) < V- (4-3) 

i= i 

Second, all the scheduled flows must be eligible: 

at < ei, Vi € T (4.4) 

dp > 1 and ep = 1 if p 0 (4.5) 

where is the eligibility of the flow i, defined in Section 3.2. Equation (4.4) implies that 

ai = 0, if ei = 0. In other words, the ineligible flows are never scheduled. Equation (4.5) 

implies that p should be eligible and have a deadline greater than 1. Partial transmission 

of a frame with deadline one is wasting channel time, since the frame will expire at 

the end of the superframe. After the scheduler makes its decision about which frames 

should get fully transmitted in a superframe, there may still remain some channel time 

in that superframe that is not enough for full transmission of any unscheduled frame. 

This remaining time is given by: 

F 

partial = r]_J2(ai-li). 
i=l 

The fact that l P
a r t t a l is not enough for full transmission of any eligible frame that is not 

scheduled, can be formally expressed as the following constraint: 

h > l^™
1

, V i € ei = 1, a i = 0. (4.6) 
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The idle channel time is allocated to the flow p. If no such flow exists, then p is set to 0. 

Consequently, the set of possible actions in state s G S, denoted by As, is the largest 

subset of A, whose members satisfy all the constraints (4.3)-(4.6). These constraints 

guarantee that the scheduler accommodates as many eligible frames as possible. Note 

that As is stationary and only depends on the system states. 

4.2.5 Reward Function and G a i n 

As mentioned in Section 2.3.1, because of the hierarchical structure and interdependency 

of video frames, some frames may get indirectly lost. The reward function that we choose 

should account for this fact. We give a reward of one unit when a frame is scheduled. 

On the other hand, if the deadline of a frame expires, the scheduler receives a penalty 

(negative reward) of W units, where W is the number of frames that depend on the 

expired frame. Table 2.2 shows the number of dependencies between G O P frames of a 

(N,M) video flow. 

Let Q ( S ) be the state-dependent penalty (or cost) function for flow i: 

Ci{s) 

(Ni + {Mi - 1)) � a � U{di=1}, if yi{gi) = I, 

ei-U{di=i], \iyi(gi) = B, 

(Ni-l-iJl- l)Mi) � &i � U{di=1}, if yi(gi) = P, 
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where the function yi(g) : {0,..., Ni — 1} — > { / , B, P} maps g to frame types as follows: 

I, itg = 0, 

Vi(9) = { B, if g mod Mt > 1, 

P, if g mod Mi — 0 and p ^ 0. 

Furthermore, U{.y is the indicator function and is equal to 1 if its argument is true, and 

is 0 otherwise. The product ej(n) x U{di(n)=i} indicates if the flow i has an urgent eligible 

frame. Hence, the scheduler should receive Cj(s(n)) units of penalty if it does not schedule 

the frame of flow i in the current superframe. 

As a result, we can express the state- and action-dependent reward that the scheduler 

receives at superframe n by: 

F 

r(s(n),a(n)) = ^ 
i=l 

Oi(n) - Cj(s(n))(l - Oi(n)) (4.7) 

In order to show the merits of the reward function in equation (4.7), we study the 

policy gain that it yields. The gain of policy n under the average reward criteria is the 

average accumulated reward. In our formulation, the policy gain is given by: 

P* = ^X>(s(n),a(n)) 
n=l 

E L i a

i(
n

) ~ E L i Cj(s(n))(l - Oi(n)) 
(4.8) 

The total number of frames for each flow is total-frames = . t

 t o t a l

;
t i

' ° e — = 2 l . Further-

mter_arnval_time 7 

more, the terms En=i a

i(
n

)
 a n

d En=i c

i (
s

(
n

) ) ( l
— a

» (
n

) )
 m

 equation (4.8) are in fact the 

total number of scheduled frames and the total number of undecodable frames for each 
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flow, respectively. In addition, these two terms sum up to the total number of frames for 

flow i. Consequently, equation (4.8) can be rewritten as: 

ij ^—\ / ioiai_sciieuuieu — LUiai_uiiuecuuauie \ 
7 ^ V totalJrames / 

t=i 

n ^ - v / 2 x totaLundecodable \ 

7 ^ V total-frames / 

F 

^ ( 1 - 2 D F R * ) 
7 

where DFR^ is the decoding failure rate of flow i under the policy n. Let DFR7" = 

F 2Ji=i F>FR" denote the average DFR under the policy n. Using equation (4.9), we 

have 

1 7 

DFR = - - rr-=p*. (4.10) 

Equation (4.10) shows that in our formulation, the average DFR is a linear function of 

gain. Therefore, we conclude that: 

arg max p* = arg min DFR . (4-11) 

7t 7t 

Hence, an optimal (maximum) gain policy yields the optimal (minimum) average DFR, 

which is what we aim to find. 

4.2.6 State Transitions 

Assume that at superframe n, the system is in state s(n) and chooses the action a(n). 

In this section, we determine the system state at superframe n + 1, s(n + 1). This state 
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depends on s(n), a(n) and new frame arrivals. We determine the state transitions per 

flow, i.e., we show how the state variables related to each flow change. The whole system 

state is updated by performing the same procedure for all the flows: 

When di(n) > 1, no new video frame will arrive for flow i. So, the remaining time 

until the next arrival is reduced by one superframe. If the flow is scheduled, its length will 

become 0. And if it is partially transmitted, its length will reduce by l P
a r t i a l

. Otherwise, 

the length remains unchanged. The frame offset within G O P also does not change. The 

value of 5i changes only when an I or P frame of flow i expires, or when a new G O P 

starts, which is indicated by arrival of a new I frame for flow i. None of these happens 

when di(n) > 1. Hence, if di(n) > 1, then the state deterministically changes as follows: 

di(n + 1) = di(n) — 1 

k(n + l) = h(n)(l - Oi(n)) - l^^U^y 

5i(n + l) = &(n) 

6i(n + l) = Si{n). 

When di(n) = 0, it means that the frame in the queue of flow i has expired, if it has 

not already been sent, i.e., if k(n) ^ 0. It also means that a new frame will arrive for 

flow i, within superframe n. We denote the deadline and channel time requirement of the 

newly arrived frame for flow i within superframe n by d?ew(n) and l™ew(n), respectively. 
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Thus, when di(n) = 0 the state changes with probability pzohi(l
1lew(n)) as follows: 

di(n + l) = <%ew{n) 

k(n+l) = lTw{n) 

gi(n + 1) = (gi(n) + 1) mod Nt 

1, if yi(gi(n + 1)) = I, 

0, if yi(gi{n)) = I,P and k(n) ^ 0, 

<5,(n), . otherwise, 

where prob i(Z"ei"(n)) is the probability of the channel time request of flow i be lfew(n). 

This probability is simply related to the frame size distribution probability of flow i. 

5i(n + l) = { 

4.3 Algorithm Implementation 

In this section, we discuss how to find the optimal gain policy defined by the M D P 

given in the previous section. Our formulation has modeling and dimensionality issues, 

so DP cannot be used. First, we do not have the knowledge of the state transition 

probabilities, because the scheduler does not know the frame size distribution of the 

video flows beforehand. We use the S M A R T algorithm [38] to overcome the curse of 

modeling. Second, in the state space defined in equation (4.1) we have one continuous 

variable, i.e. the frame length. Even if we quantize this variable to several levels, the 

state space would still be huge. For instance, suppose that Dmax = 4 and Ni = 12 for 

all i £ and we quantize k's to 8 levels. Thus, \S\ = (8 x 5 x 12 x 2 ) F w 1000F. 

Furthermore, it is easy to verify that \A\ — F � 2F. According to equation (2.4), S M A R T 
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learns the Q-function Q : S x A - » R , which has impractical memory requirement and 

convergence rate given the size its domain. We solve the problem in two phases. In 

Section 4.3.1, we describe a compact representation of the state-action space, which is a 

mapping from S x A to a smaller set f 2 . Then, in Section 4.3.2, a memory-based function 

approximator is used to map fi to the set of real numbers R. 

4.3.1 Features and State Space Representation 

We use an aggregation scheme [36], which gives a more compact representation of the 

state-action space. This scheme is useful when we have knowledge of an initial part of 

the environment's dynamics but not necessarily of the full dynamics. For instance, in 

our formulation, the effect of chosen action on the system state can be deterministically 

simulated by the scheduler. On the other hand, the new frame arrivals cannot be deter-

ministically simulated. Using this scheme, we obtain a more efficient learning method by 

breaking the environment's dynamics into the immediate effect of the action, which is 

deterministic and perfectly known, and the arrival process of new frames with unknown 

size distribution [36]. We refer to the system state after the effect of the taken action as 

afterstate [36]. The actual system state in the next superframe is the afterstate updated 

according to the new frame arrivals. 

In order to explain how afterstates can cause aggregation within the state-action 

space, consider the case when at superframe n the scheduler can accommodate all the 

eligible frames in the system (i.e., when the system is under-loaded). Examples of this 
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case are: 

� Flow 1 has a frame with li = 2, d\ — 2, g\ = 0, and 6i = 1. The rest of the flows 

have no frame and their queues are empty; 

� Flow 2 has a frame with l2 = 1, d2 = 3, g2 = 5, and 52 — 1. The rest of the flows 

have no frame and their queues are empty; 

� Flows 1 and 3 have a frame with li = 0.5, di = 2, gi — 3, #i = 1, l3 = 2.5, c/3 = 1, 

g3 = 7, and £3 = 1. The rest of the flows have no frame and their queues are empty. 

In any of the above examples, the scheduler's action is that all the eligible frames be 

transmitted in superframe n. The effect of this action is that the system will become 

empty. Thus, the afterstate (i.e. the system state after the effect of the action) corre-

sponds to an empty system. As a result, all of the state-action pairs, which correspond 

to an under-loaded system becoming empty, have the same afterstate and can be ag-

gregated. Similarly, any afterstate represents all the state-action pairs that result in 

that afterstate. Using afterstates is in fact a mapping from S x A to S. Reference [51] 

successfully applies this idea to admission control problem in cellular networks. 

The state space of our M D P has binary variables in S, continuous variables in 1, and 

integer variables in d and g. Even after using afterstates, the scheduler should learn the 

Q-function over S, which is still very large. Therefore, we need to specify the important 

features in each afterstate, which most affect the scheduling decision. As mentioned 

before, there is no systematic way of choosing the features. We approach this task by 
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studying the behavior of the SRPT, E D D and PAP schedulers. All of these schedulers 

can be viewed as single-stage decision making process, where the scheduler chooses an 

action merely based on its immediate effect, i.e., based on the resulting afterstate. SRPT 

uses information about length. Since it minimizes the number of pending frames in the 

system, it chooses an action that yield an afterstate with minimum number of frames. 

In other words, the only feature of the afterstate that is important for SRPT is the 

number of frames in the system. Similarly, E D D + S R P T uses the number of frames in 

the system, but groups them according to their deadlines. It chooses an action that leads 

to the afterstate with the minimum number of frames in the group with the smallest 

deadline. If this value is the same for the afterstates of two actions or more, the size 

of the group with second smallest deadline is used, and so on. Therefore, the features 

that E D D + S R P T used are the number of frames in each deadline group. PAP, which 

is an application-aware scheduler, further partitions the frames in the system according 

to their type. In other words, SRPT, EDD+SRPT, and PAP schedulers mainly focus 

on the information about length, deadline, and type, respectively. With the addition 

of F D A technique, they can take advantage of decodability as well. Since the optimal 

scheduler should focus on all the information, it is reasonable to assume that it uses all 

the features used by those schedulers. In light of these similarities, the following features 

are chosen: 

* Fy^ non.urgent {i | k > 0, yi{gi) = y, Si = 1, di > 1} is the number of all the 

frames of type y in the system that have a deadline greater that 1. 
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* Fy, urgent {i\k> 0, yi(gi) = y, 5i = 1, = 1} is the number of all the frames 

of type y in the system that have a deadline equal to 1. 

. i 

is the Py, lost {i | k > 0, yi(gi) = y, di = 0} U {i \ k > 0, yi(gi) = y, Si = 0} 

number of all the frames of type y in the system that are either expired or indirectly 

lost. 

The parameter y can be substituted with I, P, and B. Thus, in total we represent 

each afterstate using 9 (i.e., 3x3) features. A vector whose elements are the features is 

referred to as a feature vector. Since in our formulation every feature can vary from 0 to 

F, the set of all feature vectors is fl — {0, 1, ..., F}9. 

So far in this section, we have performed two aggregation steps. The first one is 

the use of afterstates, which is a function from S x A to S. The second aggregation 

is feature extraction, which is a function from S to fi. Using the procedures described 

in this subsection, we can define the function / : S x A —> £1, where x — /(s, a) is the 

feature vector of the afterstate resulted by taking action a in state s. In the rest of this 

section, we describe how we can perform generalization (i.e., function approximation) 

over the set of feature vectors ft. 

4.3.2 Function Approximation: Kanerva Coding 

As the dimension of the state space grows, the complexity of many function approxima-

tors, such as tile coding, increases exponentially with it. However, the complexity of the 

target function can be unrelated to the size and dimensionality of the state space, and 
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need not grow exponentially with it [36]. For instance, we might have a 100-dimensional 

state space where only one of the dimensions happens to affect the target function. Kan-

erva coding is a memory-based function approximator that allows us to deal with the 

complexity of a reasonable approximation of the target function, and not the dimen-

sionality of the state space [36]. It was originally presented in the context of sparse 

distributed memory [52]. Like other memory-based techniques, it has nice memory re-

quirement and generalization properties, and also allows dynamic memory allocation. 

The strength of Kanerva coding increases with the number of its memory locations (i.e., 

prototypes), which can be set independent of the dimensionality of the state space. The 

more the number of prototypes, the more the complexity of the target function that it 

can approximate. Kanerva coding is successfully applied in the context of R L in [53] and 

[54]. 

In our scheduling problem, we use Kanerva coding to approximate the function 

Q: fi —� R, which gives the value of a feature vector. The prototypes of Kanerva coding 

are feature vectors in Q. The value of any feature vector in f2 is then approximated 

using the values of those prototypes. In order to do so, a similarity metric should be 

defined. We define the distance of two feature vectors x,z e fi as the number of unequal 

features in the two vectors, i.e., dist(x,z) = Y^fiiU{Xj^Zj} [54]. Furthermore, we define 

the similarity of two feature vectors x and z as follows [55]: 

A(x,z)= { 
l - ^ ^ l , dist(x,z)</3 

0, otherwise 
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where 3 is the activation radius. In other words, two feature vectors have no similarity if 

they have more than 3 different features. Let be the /eth prototype in Kanerva coding. 

To calculate the value of a feature vector x, we first determine the set of prototypes that 

are activated by x, which are similar to it. We denote this set by Hx and formally define 

it as Hx = {k | Afe > 0}, where A*, = A(x, h )̂ is the similarity between x and hfc. Let 

be the value corresponding to h^. Then the value of x is given by 

Q(x) = ^ . (4.12) 

Thus, the function Q(-) is a linear combination of the value of prototypes. We now give 

the update procedure that should be used in place of equation (2.4). Using the standard 

gradient descent algorithm [36] for linear approximation, the update equation becomes 

[55]: 

Wi<—Wi + p-, � | [r(s, a) - Vp + max Q(/(s', a'))] - Q(/(s, a)) j, Vz G Hx. (4.13) 

Since in our formulation, the immediate reward does not depend on s', we have used 

r(s, a) instead of r(s, a, s'). 

The distribution of prototypes in the state space is crucial for the approximation 

accuracy. In our problem, it is not efficient to cover the whole state space, because the 

scheduler does not necessarily explore all of it. Instead, we use a dynamic prototype 

addition method, which covers the vicinity of the trajectory that the scheduler explores 

within the state space. We follow the approach given in [55]. The dynamic addition 

algorithm starts with an empty set of prototypes, and builds up over time. If the set is too 
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sparse around an encountered feature vector, enough prototypes are added. Furthermore, 

the prototypes should not be too close (similar) to each other. Therefore, the following 

condition is imposed on the similarity of prototypes: 

for any pair of memory locations hj and hj. K is the minimum number of prototypes 

that we aim to be activated for a feature vector. In other words, we want to have at 

least K prototypes in a sphere of radius B centered at any encountered feature vector. 

As a result, K and B determine the minimum density of prototypes along the scheduler's 

trajectory in the state space. The more the density, the more prototypes we have, and 

the more accurate the approximation will be. The dynamic prototype addition algorithm 

has the following rules: 

Rule 1: If fewer than K prototypes are activated by the input feature vector x, add x 

to the set of prototypes, if its addition does not violate the condition (4.14). 

Rule 2: If after applying Rule 1, the number of active prototypes (i.e., |#x|) is K0 < K, 

then (K — K0) prototypes are randomly added within the neighborhood of x. The neigh-

borhood of x is the set of all feature vectors that are similar to it, i.e., {z | A(x, z) > 0}. 

Condition (4.14) is enforced when adding new prototypes. The value of a newly added 

prototype is set to the value of the function Q evaluated at that prototype according to 

equation (4.12). 

For discussion on how random selection of prototypes can give good approximation, 

(4.14) 
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see [56]. Successful application of this algorithm to R L tasks can be found in [53]. 

4.3.3 RL Scheduler 

Since we use average reward optimality criterion, S M A R T [38] is a suitable model-free 

learning algorithm to find the optimal gain policy. Using SMART, we determine the 

scheduling policy that achieves the minimum average DFR. We call this scheduler as the 

RL scheduler. The pseudo-code of the RL scheduler is given in Figure 4.1. 

At superframe n = 0, i.e., when the R L scheduler begins operating, cumulative reward 

CR and average reward p are both set to 0. The cumulative time CT is the duration 

over which C R is accumulated. We approximate the Q-value of actions with Kanerva 

coding. The set of prototypes of Kanerva coding is also empty at the beginning. Af-

ter initialization, the RL scheduler makes scheduling decisions at the beginning of each 

superframe based on the following procedure. It first determines the exploration proba-

bility and the learning rate based on Darken-Chang-Moody (DCM) search-then-converge 

procedure [57]. Using D C M method, the exploration probability and learning rate at su-

perframe n, i.e., qn and pn, are given by q0/[l + ( ^ ) ] and p0/[l + ij^)], respectively. 

The parameters qo, qr, p,Q, and pr are constants. Afterwards, with probability 1 — qn, 

the R L scheduler chooses the greedy action; with probability qn, a random exploratory 

action (i.e., any action other than the greedy one) is chosen. In Step 3, the RL scheduler 

executes the chosen action and calculates the immediate reward (see equation (4.7)) and 

the next system state s'. In step 4, the scheduler updates the set of prototypes according 
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Initialize the superframe number n = 0, cumulative reward CR = 0, cumulative time 

CT = 0, and the average reward p = 0. In addition, the set of prototypes is initialized as 

the empty set. The Superframe size is rj. Suppose that the system starts in state s. 

while n < MAX.STEPS do 

1. Calculate exploration probability qn and learning rate \xn using the DCM method. 

2. With probability 1 — qn, choose the greedy action a € As that maximizes Q(/(s,a)); 

otherwise, choose a random exploratory action from the set {As \ a}. 

3. Execute the chosen action. Let the system state at the next superframe be s', and 

the immediate received reward be r(s,a). 

4. Apply Rule 1 and Rule 2 of Section 4.3.2 to the feature vector x = /(s,a). 

5. Update the weight of the prototypes according to: 

Wi <- Wi + Hn^ ^ . {[r(s,a) - r?p +maxQ(/(s', a'))] - Q(/(s,a))l, Vi € Hx 

6. if a greedy action was chosen in Step 2, then 

Update CT <-CT + m 

Update CR<-CR + r(s, a) and p «- CR/CT; 

else go to Step (2). 

7. Go to the next superframe, i.e., update n <— n + 1 and s <— s'. 

Figure 4.1: Pseudo-code of the RL scheduler. 

to Rule 1 and Rule 2 of Section 4.3.2. The weights of the prototypes are updated in Step 

5. This update is the same as equation (4.13). In step 6, the cumulative reward and 

average reward are updated only if a greedy action was chosen. Finally, in step 7, the 

scheduler goes to the next superframe and repeat the same procedure again. Figure 4.2 

illustrates the structure of our proposed R L scheduler. 
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Figure 4.2: Structure of the R L scheduler. 

4 . 4 Simulation Results 

In Section 4.2, we presented an M D P formulation for finding the scheduling policy with 

minimum average DFR. In Section 4.3, we described a few simplification and approx-

imation steps to make the problem solvable by RL techniques in practical time. As a 

result, we cannot make any rigorous claim on the optimality of the final solution given by 

the S M A R T algorithm. Nevertheless, we show through simulation that the final policy, 

hereafter referred to as the R L scheduler, has a significantly lower D F R than F-SRPT, 

EDD+SRPT, and PAP schedulers. In addition, we show that the R L scheduler is near-

optimal in one special case. The simulator was implemented using M A T L A B . 

In our simulations, the first iteration (or simulation run) corresponds to a 500 s 

long scenario with F video flows and with start time separation <f>. In the subsequent 

iterations, the scheduler performs in the same scenario, but this time it can do a better 

job based on its experiences from the previous iterations. With superframe size n = 

8 ms, each iteration would consist of 8 ^ - 3 = 62,500 superframes. The parameters 
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qo and po of the S M A R T algorithm, depend on how fast the scheduler can learn the 

optimal policy. The more the value of these parameters, the longer the scheduler should 

search and explore to find the optimal policy. In simulations, we set qo = fio = 0.1 

and qr — pr = 10
1 0

, as it gives the RL scheduler enough time to explore and find the 

optimal policy without too many iterations. We end the simulation when the learning 

rate \in and the exploration probability qn fall below 0.005. Hence, there is no need to 

explicitly set MAX_STEPS in Figure 4.1. Like the parameters of D C M , the parameters 

of dynamic prototype addition for Kanerva coding can be found with experimentation. 

We found that 8 — 3 and K = 8 provides a sufficient prototype density for a reasonable 

approximation of the value-function corresponding to the feature vectors. The rest of the 

simulation parameters are the same as in Chapter 3 and are summarized in Table 3.1. 

As mentioned in the previous chapter, the start time separation of the flows in the 

system can greatly affect the average DFR. The special case of interest is when cf> — 

0, i.e., when all the flows in the system start at the same time. As a result, at the 

beginning of every superframe, all the frames in the system have the same deadline 

and type. Therefore, the deadline and type information is of no use for the scheduler. 

The scheduler has as much as one inter-arrival time to schedule the frames that arrive 

together. Obviously, the optimal scheduler in this case must leave the least possible 

number of frames behind at the end of this period. As mentioned earlier in Section 2.4.2, 

SRPT scheduler has this property, and is the optimal scheduler for <fi — 0. Consequently, 

we know exactly the optimal policy for = 0, and can compare our R L scheduler 
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0.6j—1 1 1 1 1 1 1 r 

Number of Video Flows 

Figure 4 .3 : Comparison of R L scheduler and optimal scheduler for <f> = 0. RL scheduler 

is nearly optimal in this case. 

with the optimal scheduler. Figure 4.3 shows that RL scheduler is nearly optimal for 

all the simulated values of F and achieves the minimum DFR. For <f> = 0, we do not 

expect any improvement beyond the performance of the optimal scheduler. However, 

for other values of <f>, we cannot pursue the same approach, as the optimal scheduling 

policy is not known. Instead, we compare the performance of the R L schedulers with 

the other three schedulers (F-SRPT, EDD+SRPT, PAP). Similar to the approach in 

Chapter 3, the subsequent results given for average D F R are the mean of the results for 

8 ms < <f> < 30 ms. 

Figure 4.4 shows this effect on F-SRPT, EDD+SRPT, and PAP schedulers with FDA. 

As one can see, for some values of 4> PAP has the smallest average DFR, while for some 

other values E D D + S R P T has the smallest average DFR. On the other hand, the R L 

84 



Chapter 4. Scheduling Algorithm for Video Flows 

0.2 

rr 0.15 
LL 
Q 
CD 
CO 
CO 
L _ 

CD 

< 0.1 h 

0.05 

I 1 1 

-£-PAP with FDA 

- B - F - S R P T with FDA 

-e-EDD+SRPT with FDA 

-«-RL 

1 1 1 

10 25 30 15 20 

Time Separation [ms] 

F i g u r e 4.4: Effect of time separation on average D F R for F = 9. The RL scheduler has 

the smallest average D F R for 0 > 8 ms. 

scheduler performs better than the other three for all values of (f>, and is less sensitive to 

<t>. 

Figure 4.5 illustrates the average D F R for all four schedulers, including the RL sched-

uler. Similar to previous results, the R L scheduler has the smallest average D F R for 

all values of F. It has up to 42%, 49%, and 53% less average D F R when compared to 

EDD+SRPT, PAP, and F-SRPT schedulers, respectively. 

Table 4.4 shows that reduction of the average D F R can also be translated to system 

capacity enhancement. Suppose that the acceptable user perceived quality is equivalent 

to the average D F R being less than 5%. Thus, the capacity of the system can be defined 

as the number of video flows that can be admitted to the system, while the average D F R is 

less than the maximum allowable value of 5%. Using this definition, the system capacity 
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Figure 4.5: Comparison of R L scheduler and other schedulers. 
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is 7 flows for the conventional schedulers, as opposed to 8 flows for the R L scheduler. 

Consequently, in this example, the RL scheduler increases the system capacity by 14.3%. 

As mentioned in Section 4.2.5, the policy gain and D F R have a linear relationship. 

We can verify the validity of equation (4.10) as follows. First, the estimated average 

Number of Flows F 6 7 8 9 10 

Minimum Average D F R (%) 1.5 4.0 7.2 10.7 14.4 

R L Average D F R (%) 0.9 2.3 4.4 7.2 10.5 

Absolute Reduction (%) 0.6 1.7 2.8 3.4 3.9 

Relative Reduction (%) 42 42 38 32 27 

Table 4.1: Quantitative comparison among R L scheduler and conventional schedulers. 

The minimum average D F R given by F-SRPT, EDD+SRPT, and PAP is 

used for comparison. 
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Figure 4.6: Comparison of the exact and the estimated average D F R (F = 9). 

D F R is calculated by substituting the policy gain p in equation (4.10). R L schedulers 

calculates the value of p as part of its algorithm. Second, the exact average D F R is 

measured by counting the number of scheduled frames. Figure 4.6 compares these two 

values. As one can see, D F R in equation (4.10) under-estimates the exact average DFR, 

because the gain is only updated when the scheduler takes a greedy action. However, 

both greedy and exploratory actions affect the exact average DFR. Over time, with more 

iterations, as the R L scheduler learns the optimal policy and the exploration probability 

decays, the exact and estimated average D F R converge together. This result verifies the 

fact that the optimal gain policy yields the minimum average DFR. 

87 



Chapter 4. Scheduling Algorithm for Video Flows 

4.5 Summary 

In this chapter, we presented an M D P framework for finding the optimal scheduling 

algorithm with respect to average DFR. However, due to curse of modeling and curse of 

dimensionality, we appealed toward RL techniques. A model-free RL algorithm, called 

SMART, was used to overcome the modeling issue. We further used afterstates and 

features to reduce the dimensions of the state space and represent it in a more compact 

and suitable form. Moreover, Kanerva coding along with a dynamic prototype addition 

algorithm was used to the approximate the value-function of feature vectors. The final 

policy, i.e., the RL scheduler, yields a lower D F R and higher system capacity compared 

to its conventional counterparts. 
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Conclusions and Future Work 

In this thesis, we examined the problem of scheduling video flows in high-rate WPANs. 

Our aim was to improve QoS measured by low DFR, since we have shown that D F R 

is more appropriate than JFR. Our contributions in this thesis can be summarized as 

follows: 

� We proposed a simple and efficient F D A technique for using the information about 

frame type at the M A C layer. Using the F D A technique, the scheduler can de-

termine whether the receiver of a video frame has all the required information to 

decode that frame. This technique minimizes the channel time wastage caused by 

scheduling undecodable frames, and consequently, improves the QoS. 

� The F D A technique is independent of the scheduler and can be used along with dif-

ferent scheduling algorithms. Simulation results showed that when F D A technique 

is applied to the F-SRPT [1] and E D D + S R P T [2] schedulers, there are up to 61% 

and 60% reduction in DFR, respectively. 

� We formulated the scheduling of video flows in high-rate WPANs as an M D P prob-

lem. This model incorporates the decodability information extracted by the F D A 
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technique. It also takes into account the number and pattern of video flows, and 

their hierarchical structure. The solution to this M D P problem is the optimal 

scheduling policy that minimizes the average DFR. 

� Using compact state space representation and function approximation, we simplified 

the M D P problem in order to solve it with RL. Our proposed RL scheduler is the 

solution given by an RL technique called SMART. Simulation results showed that 

the RL scheduler reduces the average D F R by 42%, 49%, and 53% when compared 

to E D D + S R P T [2], PAP [3], and F-SRPT [1] schedulers, respectively. 

5.1 Future Work 

Given that most of the current work in the literature related to scheduling in WPANs 

are either based on impulsed U W B or do not use application layer information, our work 

can pave the way for many future works. Due to deadlock in the standardization process 

of the physical layer for high-rate WPANs in I E E E 802.15 Task Group 3a (TG3a), the 

supporters of each scheme have developed their own standards for M A C . More specifically, 

the standard that is envisioned to be dominantly used for M A C in high-rate WPANs is 

ECMA-368 [58], which is partly similar to the I E E E 802.15.3 standard for M A C . Yet, 

because of some major differences, extending our work in the context of ECMA-368 M A C 

is a potential future work. 

With the variety of applications that a high-rate W P A N should be able to support, 
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it will serve different classes of traffic with different QoS requirements. We focused on 

the video traffic class in this thesis. Therefore, integrating the F D A technique and/or 

the RL scheduler with a more versatile scheduler that can handle and recognize different 

traffic types can be a possible extension to our work. 

Moreover, the issue of fairness among the scheduled video flows is also a critical point, 

which is not considered in our work. A possible future work is to account for fairness by 

formulating the problem as an M D P with constraints that enforce the fairness criteria. 

Using fuzzy logic for function approximation can also be of interest. 
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