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This paper presents a new structure of product codes formed by combining two polar codes. The encoding performance of these
codes is verified by implementing an exhaustive search algorithm, which determines their minimum weight specifications.
Conducted analysis and simulations confirm that with the equal code length and rate, the newly proposed codes outperform the
conventional polar codes in high energy per bit-to-noise ratios (E,/N,<5dB). This is concluded from punctured and

nonpunctured product codes.

1. Introduction

Polar codes are promising forward error correction (FEC)
codes for the next generation of broadband networks includ-
ing the fifth generation of wireless networks (5G). These
codes are recognized as capacity-achieving codes under a
successive cancellation (SC) decoding technique, which were
initially constructed for the symmetric binary-input discrete
memoryless channel (BI-DMC) [1]. However, at a short code
length, their bit error rate (BER) performance is not as reli-
able as other known codes, such as low-density-parity-check
(LDPC) and turbo codes. This limits their reputation as a
good code for a wide range of applications. In order to over-
come this issue, short length codes are combined with other
codes to form a scheme of high-performance concatenated
codes [2].

A serially concatenated code was proposed based on an
inner polar code and an outer Reed-Solomon (RS-polar)
code [3]. It is shown that the block error rate performance
of the code is improved at the expense of increasing the
length and complexity of the RS code. Eslami and Pishro-
Nik showed that a high-performance concatenated code
can be formed by combining polar and LDPC codes [4]. In
[5], Tal and Vardy considered concatenation of a polar code
with an outer cyclic redundancy check (CRC) code. The CRC

code together with the usage of a list decoding algorithm con-
cludes a high-performance code formed by the short length
polar code. An alternative scheme of these codes is achieved,
when the CRC code is replaced by the parity-check code [6].
In this case, parity-check codes having low multiplicity in
their minimum weight are selected [7].

On the other hand, construction of a parallel concatenated
code formed by two polar codes was proposed in [8]. Based
on the same code length and rate, the designed code out-
performs the single one. More recent work demonstrates
a parallel construction of multiple polar codes having dif-
ferent rates [9]. Constructed code has high performance
at the expense of high complexity. Alternatively, a parallel
concatenated code was presented by combining a polar code
with a Recursive Systematic Convolutional (RSC) code [10].
Codes obtained by this method conclude a performance bet-
ter than other well-known codes (turbo codes and LDPC
codes), mainly at the error floor region due to utilizing a
modified interleaver, which is matched with specifications
of the constituent RSC code.

The main similarity between the above-mentioned codes
is the serial combination of a polar code with a nonpolar
code. On the other hand, a turbo product code is based on
multiple polar codes (polar-TPC) introduced in [11]. In this
work, nonpunctured constituent polar codes are used to
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form a product code, where SCL-Chase decoding algorithm
was proposed.

This paper presents a new scheme of serially
concatenated codes constituted by two systematic polar
codes linked by an interleaver. Codes are constructed on
the basis of the message, whose length is the product of the
length of constituent codes. This code can be also introduced
as a polar code, as every bit of the codeword is properly polar-
ized. Moreover, the puncturing structure of these codes will
be verified. Unlike a punctured single polar code, which
applies a relatively high number of punctured bits, punctured
product polar codes can be constructed by removing a low
number of bits applied in one of the constituent codes.
This feature will allow decoders to interactively exchange
their decoded information with each other and improve
the error correcting capability of the code. Conducted sim-
ulations confirm that with the same rate and code length,
punctured product polar codes have better performance
than single punctured polar codes. In addition, it is ana-
lysed that the proposed code decoded with BP decoding
has similar performance to codes decoded with the SCL-
Chase-based algorithm.

The rest of the paper is organized as follows. A brief
introduction of polar codes is given in Section 2. In
Section 3, the structure of product polar codes and their
comparison with single polar codes formed by the same
rate and length are explained. Puncturing technique of
the proposed code is presented in Section 4. Numerical
results are given in Section 5. Finally, Section 6 concludes
the paper.

2. Basic Structure of Polar Codes

Let N=2" (n€Z,n>0) and K be the length and dimension
of a (N, K) polar code, respectively The rate of this code is
R=K/N. Let Gy G®1°g ) be the generator matrix of the
polar code with rate one and length N, where (-)*7 denotes

1
the gth Kronecker power and G, =

] as in [1]. It is
11

shown that as N approaches to infinity, under successive
cancellation (SC) decoding, a fraction of rows of Gy leads
to good channels suitable for carrying messages with
length K. Other channels are referred to as bad channels.
In order to measure how good a binary-input channel
W is, Arikan used the Bhattacharyya parameter of W,
which is defined as [1]

W)=Y VWx=0)W(yx=1), (1)

yey

where W(Y|X) is the channel transitional probability of
input alphabet X ={0,1} and output alphabet Y,x€ X,y
€Y. For binary erasure channel (BEC) with Z(W?)) =
0.5, the reliability of bit channels can be recursively deter-
mined by [1]
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where Z(W ()) 1<i<N, is the Bhattacharyya parameter

of channel W§\r)- The code construction rule (3) is
channel-independent [12]. This means, the same rule can
be used for constructing codes for any binary-input chan-
nel [12]. However, it shows that for the additive white
Gaussian noise (AWGN) channel, with zero mean and
variance N,/2, the code works better if equation (2) is ini-
tialized by [13-15]

Z(W(11>) = JOO

—00

(2)

VWx =T W(y[x=1)) = exp (‘53)
3)

where E. = RE,, and E,, is the energy spent per bits. In this
case, the coded bits (x) are modulated by binary phase
shift keying (BPSK) modulation. Hence, channels with
low Z(W) values are referred to as noiseless channels (or
good channels).

Let o/, be the set of good channels. Similarly, o,
denotes the frozen set, which specifies the set of bad channels
Let u=[u,u, --- uy] be a message vector of length N. In this
vector, there are K message bits (u,,) and N — K frozen bits

(ud; =0). The codeword vector is generated by x=uGy,

where Gy is a N X N generator matrix.

In systematic polar encoding, the codeword is split into
two parts [16]. This can be written as X = (X4Xg:), where
% is an arbitrary subset of {1, 2,---, N}. These parts are rec-
ognized as message and parity parts of the codeword, respec-
tively. In this case,

Xe=u, G, z+u_,. G, 4
2 = W, e, T U S 8> (4)
Xz =u, G ctu e G 5
B o 4 ssz%’ szfj 52{733" ()

where Gy is a P x @ generator matrix formed by taking
rows of & indices and columns of @ indices of Gy. In gen-
eral, frozen bits are set to the value of zero. Hence, L is a

zero vector and X can be calculated as

-1
Xgp =Xg (G‘Q[T%j) G'Q‘/]{%;c. (6)

2.1. Effect of the Minimum Weight on the Performance of
Polar Code. The minimum weight (d;,) of a systematic
polar code is determined based on the weights of its
rows, whose indices are elements of o/ ,. This is given

by [10, 17]

d,;, = min {Zw(b)}, (7)

bed ,
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where w(b) is the number of ones in the binary expan-
sion of b. In polar codes, the lowest expected parity
weight of the codeword is one [4]. This means that
dyn of the code is obtained from messages, whose
weights are not greater than d_; — 1. Based on this prop-
erty and using equation (7), Table 1 gives minimum
weight specifications of different polar codes. In this table,
N,  gives the multiplicity of the minimum weight deter-
mined by an exhaustive search algorithm, which con-
siders all possible messages with weight no greater than
di, — 1 of the code.

As a class of linear block codes, performance of polar
codes can be analysed by its Input-output weight enumerat-
ing function (IOWEF), which is given by [18]

AS(W,H) =) A,,W*H", (8)
w,h

where A, is the number of codewords with weight h
obtained from messages with weight w. Based on IOWEF,

the conditional weight enumerating function (CWEF) of
the code is defined by

1 0[A%(w, H)]

ASHy= L~ >/
w( ) (A)' aww

|w=o- ©)

This leads to expressing the upper bound of the probabil-
ity of error for the code decoded by a maximum likelihood
decoding technique as follows:

AG(H) o, (10)

> €

k
Py(e) < Z

where E,/N, is the signal-to-noise ratio per bit. The above
bound can also be represented as

Py(e) < ZDdHHdH | = R0 (11)
dp
where
wN .
D, - wj 12
L=y (12)
]+w:dn

Here, N, ; gives the number of codewords generated by
an input message with weight w, whose parity-check bits
have weight j. With a good approximation, the above proba-
bility is given by

1 RE,
Py(e) = EdZan erfc ( d, T()) (13)
1

TaBLE 1: Minimum weight specifications of polar codes with rates
1/2 and 1/4.

Polar code dinin (N dm.n) Polar code diin (N dmm)
(8, 4) 4(14) (8,2) 4(2)
(16, 8) 4(28) (16, 4) 8 (14)
(32, 16) 4(8) (32, 8) 8 (12)
(64, 32) 8 (662) (64, 16) 16 (364)
(128, 64) 8 (1724) (128, 32) 16
(256, 128) 8 (2330) (256, 64) 16
(512, 256) 8 (512, 128) 32
(1024, 512) 8 (1024, 256) 32
(2048, 1024) 16 (2048, 512) 64
(4096, 2048) 16 (4096, 1024) 64
(8192, 4096) 16 (8192, 2048) 64

Let P, (y,) =D, erfc(y\/dpyy,), where y,=RE,/N,.
The relative contribution of each weight to the overall BER
is given by

- Py ()
P, (y,)= —b1—. (14)
w05 P )

Example 1. The IOWEF of (8, 4) systematic polar code is
given by

ASr(W,H)=1+4WH" + 6W*H* + AW’ H* + W*H®.
(15)
The CWEF of this code is AS* (H) =1, AC
ASS (H) = 6H*, AS (H) = 4H*, AJ™ (H) = HS.
From (11) and (12), probability of error of the code

is  Py(e)=~ 3 erfc (, /4%) + 12 erfc (, /4%) + 2 erfc
( 4%) + 4 erfc ( SRTI':()”) =3.5erfc <1 /4RN—?> +0.5 erfc
(Vo).

Considering (12) and CWEF of the code, it is evi-
dent that the effect of codewords with weight 4 on the

performance of the code is much higher than that with
weight 8.

(H) = 4H*,

Figure 1 shows the relative contribution of the three
lowest weights of (16, 8) and (32, 16) polar codes. It is
clearly observed that by increasing (E,/N,)s, the minimum
weight has the highest effect on the performance of code.
Figure 2 shows the relative contribution of low weights
of (32, 8) and (64, 16) polar codes with R=1/4. The
weight distributions of these short length codes conclude
minimum weights with high multiplicities. Considering
the probability of error given in equation (10), the exis-
tence of either the minimum weight with a high multiplicity
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FIGURE 1: Relative contribution of different weights to the BER performance of (16, 8) and (32, 16) polar codes.
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FIGURE 2: Relative contribution of different weights to the BER performance of (32, 8) and (64, 16) polar codes.

or a low minimum weight relative to the length of the code-
word will deteriorate performance of the polar code. As
shown in the figures, this is more sensible at the medium to
high (E,/N)s.

3. Structure of Product Polar Codes (PPCS)

Product codes are represented as one of the most well-
known codes, whose high error-correcting capability is
guaranteed due to their high minimum weight. Figure 3(a)

shows the basic structure of product codes. In this code,
every message with length K =K, x K, is converted to K,
blocks with length K,. The (N,,K,) outer code encodes
every block and generates K, codewords with length Nj.
Codewords obtained from the first encoder are transposed
to construct N, blocks of length K,, which are considered
as the message for the (N,, K,) (inner) code. Finally, code-
words obtained from the second encoding are multiplexed
to form a codeword with length N=N, xN, for the
concatenated code. The minimum weight of product codes
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FIGURE 3: (a) Two-dimensional codeword structure of product polar codes. (b) The encoding structure of product polar codes.

is calculated by d, ;1 X doiny [19], where d ;. and d,,.,
are minimum weights of the (N, K;) and (N,,K,) con-
stituent codes, respectively.

The product code can be viewed as a serially
concatenated code, which is formed by (N, * K,, K * K)
outer and (N, * N,, N, * K,) inner codes. This structure is
shown in Figure 3(b). Indeed, the (N ,K;) outer code
encodes K, blocks of messages with length K, -K, * N,
codewords obtained from this encoding which are inter-
leaved to form N; messages with length K,. Finally, every
K, bit message is encoded by the (N,, K,) code to conclude
a codeword with a length of N, * N, [20].

The behaviour of the product code allows us to analyse
its performance by utilizing the uniform interleaver with
length N,K,, which maps information with length € into
N, K,

all distinct <
L

) permutations of it with equal prob-

1
ability of (N 1K,

4
ducted by the uniform interleaver represents the average
performance of the code. Indeed, for each value of the
signal-to-noise ratio, there will always be an interleaver,
which provides better performance for the code compared
to the uniform interleaver. In this case, the CWEF of the
product code is expressed by [18]

> as seen in [18]. The analysis con-

N,K, CI:Z C:\Il
ACPR H _ Z Awl .AE (H)
) ( )_ N.K > (16)
£=0 1°%2

K 1
where Asfez and Agc"N (H) are the number of codewords with
weight £ obtained to form messages with weight w of the
outer code and CWEF of the inner code, respectively. As

AG (L, H) = [AS (L, H)™" from (9), we have
N
e 10 [A%(L, H)| :
Ay (H)= lﬁiaﬁ li=o| - (17)

Let f(L, H) = A%(L, H). Based on the Leibnitz theorem,
the above equation is given by

o 1 (&8 a4 F N, H)d'f(L H
Ay (H):E{Z< ) faLH( ) fgL,- ) |10
S li=0 \ 0

1ot ™ I(L, H)
il oLt

(L. H)

3 (L, H)
(N >
+f oL

ol UL HY O f(L H
+Z< ) AR LA(C >}|L_0_

7 (18)

(L, H)

The third term is expressed as

E‘Zl v fMN (L, H) 'f (L, H)
=\ oLt o (I 19)

In product polar codes with the R=1/4 constituent by
two half rate polar codes, the minimum weight obtained
from messages with weight of d_, is 2d,,, [4]. Hence, the
lowest order of H obtained from the third term will be 2
d - By contrast, for the first and second terms, the expected
lowest order of H is d,;, as they are only formed by one
derivative. Therefore, for different (E,/N,)s, the third term
will not be as effective as the first and second terms on the
performance of the code. This will be more evident, when
the value of E,/N,, increases. Continuing the Leibnitz theo-
rem for the first and second terms, CWEF of the inner code
is approximately given by

ch

AL (1) %{f“(u m I LH)

oLt
I H)M}h_o.

(L H)
(20)

+(N1_1)le oLt



ForL:O,fN"l(L, H) =1. Hence,

A ()= 4 [(Nn %} o= NAZ(H). (1)

K>
Similarly, Agfe =K 2A5,Oe- Therefore, CWEEF of the product
code is finalised as follows:

NZ N, K,Agy, - Ag'(H)

=0 N,K, . (22)
()

As shown in Section 1.1, codewords with the minimum
weight have the most effect on the performance of the code
at the medium to high signal-to-noise ratios. Therefore,
equation (24) can be approximately given by

AG(H) =

C

G, i
Nl KZA‘U’dm'm ) Admin (H)

N,K, ' (23)
( dmin )

As the lowest order of H obtained from AS" (H)is2d
more simplified CWEF of the product code is given by

AG(H)

n

min>

Co G 2d .
NleAwrdmm 'Admm)demH "

N, K, ' (24)
< dmin )

On the other hand, the CWEF of a single polar code

with rate R" and minimum weight of d. . is approximately
given by

AG(H) =

AGy (H) = A%, Hifm, (25)
where Ai‘;, is number of codewords with the weight of

'd . generated from messages with weight w.

Based on R'=R and d!. =(d_.)>, Table 2 shows
conditions for different product codes with R =1/4, which
satisfy A" (H) < ASSP (H). Considering (10), this inequality
concludes that the product polar code can produce a lower
upper bound of probability of error than that obtained from

. s c,
the single polar code. Conditions are formed by A, -

Adc;m,z 4= IOAZS;’, , which assumes that the multiplicity of

the minimum weight obtained from the product code is
much greater than that generated by the single code. It is
observed that the expected lower probability of error for the
product code is guaranteed by (E,/N,)s that are applicable
in communication systems.

In particular cases, multiplicity of minimum weight
of the product code can be similar or even smaller than
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the multiplicity of the minimum weight of the single
code. This will provide a better condition for the prod-
uct code to outperform the single code at the error floor
region.

Figure 4 shows the probability of error for the (64, 16)
code. In these graphs, only the minimum weight specifica-
tions of the code are considered in (13). Based on the
exhaustive search algorithm, multiplicity of 196 for the
minimum weight of the (64, 16) product code is obtained.
From Table 1, it is observed that codes have the same
minimum weight but the product code generates lower
multiplicity for the minimum weight. This consequently
provides a better error correcting compared to the single
polar code. Again, the improvement should be mainly
observed at the medium to high (E,/N,)s, where the prac-
tical behaviour of codes is matched with the calculated
P,(e)s [18].

3.1. Reliability of Bit Channels for Product Polar Codes. The
codeword obtained from the product polar encoding can be
expressed as a N| x N, matrix. This matrix can also be repre-
sented by two K; xN; and (N,—-K,)x N, submatrices,
which denote the codeword of the outer code and parity
bits of the inner code, respectively. The reliability of bits
for the first and second submatrices is directly deter-
mined from equation (2). In every row of the first sub-
matrix, computation is initialized by the value given in
equation (3). Therefore, bits positioned at the same col-
umn will have the same reliability value. The reliability
of bits at the inner code is determined on the basis of
reliability of interleaved bits obtained from the first sub-
matrix. Indeed, reliabilities calculated from K, rows of
the first submatrix are considered as the initialized values
for determining the reliability of bits positioned at the
second submatrix.

Table 3 shows the reliability of bit channels for the (16, 4)
product polar code constituted by two (4, 2) polar codes,
which are recursively calculated by equation (2). In this case,
channels are considered as binary AWGN and followed the
polar code construction method proposed in [13-15] with
E,/N,=0dB. In the first encoding, reliability of bits posi-
tioned at the first two rows is obtained. This is accomplished
when a<i<n,(K,=2%N,=2",n,={1,2,3,---},a=n, —
1) is applied for equation (2). In this case, Z(W;{?,l)s, 1<
j < K,, are channel reliabilities of bits placed in one column
of the first submatrix. Then, from these calculated values,
those reliabilities positioned at one column of the matrix

are applied as Z(WJZJ), 1<j' <2, to determine reliabilities
of parity bits for codewords of the (N,,K,) polar code.
All of the reliabilities relevant to the inner code are

expressed as Z(W) ), 1 <j' <4 in equation (2).

This table also gives the reliabilities of bit channels for the
single (16, 4) polar code. Similar to the single code, the prod-
uct code effectively polarizes the channel as either good or
bad channels. Such recognition allows us to construct polar
codes with arbitrary lengths and R >1/4 originated from
the main product polar code when a number of codeword
bits are punctured.
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TaBLE 2: Minimum weight specifications of polar codes with rates 1/2 and 1/4.

Product code N, K, din X = (2’1?2) Exponential form of (10 * (1/X)) Agm (H) < Agsp (H) if
(8, ) (8,4) 32 4 35960 g 81876 E, /N, <3.75dB
b N0
8, (16,8) 64 4 635376 g 11059 E,/N, <5.38dB
IZE]
(16,8) x (16, 8) 128 4 1.0668 x 107 138802 E,/N, < 6.50 dB
(32, 16) (32,16) 512 4 2.8299 x 10° g7 194609 E,IN, < 8.20dB
64,32) x (64,32 2048 8 7.5714 x 10*! ~48.0761 E, /N, <5.28dB
b4V 0
10°
1071 4
1072 3
1073 3
o
1074 3
107 3
1076 3
10’7 T T

E,/N,(dB)

(64,16) single polar code
—— (64,16) product polar code

FIGURE 4: Probability of error for (64, 16) polar code.

TaBLE 3: Reliability of bits for (16, 4) polar codes.

First encoding

Product polar code

Second encoding

(16, 4) single polar code

0.84 0.25
0.84 0.25

0.018
0.018

0.9745
0.7062
0.9745
0.7062

0.4410 0.5911
0.0637 0.1300
0.4410 0.5911
0.0637 0.1300

0.0363
0.0003
0.0363
0.0003

0.9994 0.6875
0.9137 0.1233
0.9497 0.1945
0.4987 0.0041

0.8328
0.2430
0.3493
0.0169

0.0713

0.0007

0.0013
1.12e - 07

4. A Puncturing Technique for Product
Polar Codes

A (N, K) polar code is punctured by removing a number of

tively. In product polar codes, puncturing can be conducted

on one of its constituent codes. The rate of these codes
formed by two constituent (N, K;) and (N,,K,) codes is

rows and columns from the generator matrix. Let X be the
number of punctured bits. The codeword length and rate of
the newly designed code are N — X and K/(N — X), respec-

determined by

K, xK,
P (Ny-9)N,

(26)
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FIGURE 5: Structure of interactive iterative decoding of product codes.

where ¢ is the number of bits removed from the (N, K})
code.

In order to have R, equal to the rate of the (N — X, K) sin-
gle polar code (N=N;xN,, K=K, xK,), the following
condition should be satisfied:

(27)

This means a lower number of bits punctured from one
of the constituent codes are required in comparison with
the number of punctured bits applied for the single code.

Based on the two-dimensional structure of the codeword,
¢ rows or columns representing the most unreliable bits of a
constituent code will be removed. The structure of punctured
codewords for the (64, 16) product code is given by

X Caz Cuz Cagy X Cue Cuz Cug
X Caz Cpz Cagy X Cae Cazy Cpg
X Cap Cpz Cony X Cae Cor Cpg
X Cuz Cuz Cugy X Cue) Cuz Cug
X Cszy Csz Coy * Cog Can Cow |
X Cea Ciz Cony X Cee) Cern Cuos
X Coa Cps Cay * Cue Cup Cop
X Caa Cuz Cuay X Cee Cer Cuag
(28)

where C; ), (i,j) € {& ,}, and o/ , = {4,6,7,8} are message
bits and the rest are parity bits. In this matrix,“x” denotes
position of punctured bits. This code is constructed by two
(8, 4) polar codes. For a punctured code formed based on a
low value of ¢, it is possible to do the puncturing by selecting
bits that are not adjacent to each other [21]. In this code, the
first and fifth bits of the (8, 4) code have the lowest reliabil-
ities. Hence, the information positioned at the mentioned
columns (first and fifth columns) of the matrix is punctured.
In this case, at every decoding step of the outer code, there
would be at least one valid (nonpunctured) information,
which assists the decoder to recover the original codeword.
On the other hand, based on transposing the received
information, at the second decoder, some adjacent informa-
tion is recognized as punctured information. However, as
shown in Figure 5, due to interactive iterative decoding of
the product code, in every iteration, decoded information
obtained from two decoders is exchanged with each other.
This allows both decoders to effectively recover the original

information transmitted over the noisy channel. Regardless
the error floor effect, existence of a good error correcting per-
formance is expected from the medium to high (E,/N,)s,
where the first decoder has a better chance to correctly
decode the received information.

By contrast, in a single polar code formed by a high num-
ber of punctured bits, it is possible to puncture adjacent bits
or those having high reliability. This is mainly evident for
codes with X > K/2 [21]. Moreover, as interactive iterative
decoding is not conducted for a single polar code, it is
expected that with the same rate and length, punctured prod-
uct polar codes outperform punctured single polar codes.

4.1. Puncturing Effect on the Channel Reliability for SPC and
PPC. The reliability of the bit channel can effect error perfor-
mance of the punctured code. Puncturing a bit ultimately
deletes its bit-channel reliability. This consequently reduces
the overall bit-channel reliability (Z,,) of the code and mit-
igates decoding performance. The overall reliability of a polar
code is defined by

Zo = Zz(wﬁ).

ieN

(29)

As mentioned above, the Z_,, value is reduced, when bits
are punctured. Therefore, it is essential to keep Z,,, as high
as possible to have a good performance for the punctured
code. Let { be the overall reliability of nonpunctured bits of
a punctured code, which is given by

(= Zgm— Y, z(w%”),

jed,

(30)

where Z (Wg\p) is the bit-channel reliability value of the j-th
bit of the codeword and &/, represents the set of indices

applied for punctured codeword bits. Obviously, for &/, =0,

the code is considered as a nonpunctured one. From (29)
and (30), the below inequality can be observed
(<Zgm- (31)

Therefore, if { is tightly upper bounded, punctured bits
have less effect on the code performance. This requires care-
ful selection of puncturing bits so that the calculated (
remains close to Z . of the code.

As mentioned before, in product polar codes, a lower of
number of bits are punctured from their constituent codes
compared to a single punctured code. Hence, less effect of
punctured bits on the performance of product code com-
pared to the single code is expected. Table 4 confirms this
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TasLE 4: Comparison of { for different codes. The channel reliability is calculated for binary AWGN channel with SNR = 0 dB.
N Product code Single code
Zsum c Zsum C
48 23.5443 10.0989 23.5443 8.0056
192 94.1771 40.3955 94.1771 30.5400
768 376.7085 161.5818 376.7085 120.8185
3072 1.5068 x 10° 646.3274 1.5068 x 10° 482.8405
12288 6.0273 x 10° 2.5853 x 10° 6.0273 x 10° 1.9313 x 10°
10° 3
107! 'E
¢
107273
~
=
= 4
& 1073
Q’_] 4
= E
104y
10° 7
1076 T T T T T T T T
2 2.5 3 35 4 4.5 5 55 6 6.5
E,/N, (dB)

-O- FER: (64, 16) SPC BP
-P- FER: (64, 16) product
FER: (64, 16) SPC SCL-CRC

-©- BER: (64, 16) SPC BP
~- BER: (64, 16) product

BER: (64 16) SPC SCL-CRC

FIGURE 6: Performance of (64, 16) codes decoded by different algorithms.

subject for the number of punctured product polar and single
codes formed by the equal code length and rate.

5. Numerical Results

The bit error rate (BER) and frame error rate (FER) perfor-
mances of different product and single polar codes trans-
mitted over the AWGN channel are verified. Codes are
modulated by BPSK and decoded by the soft-in soft-out
belief propagation method mentioned in [16]. For product
codes, four iterations are considered for the interactive
decoding between two constituent decoders. For single sys-
tematic polar codes, decoding is accomplished by 60 itera-
tions. A successive cancellation list with cyclic redundancy
check (SCL-CRC) decoding is performed with the list size
of either L=4 or L=8. Moreover, m-bit CRC code is
applied. This means m bits added to the message bits.

Figure 6 shows the performance of (64, 16) codes. It is
observed that the product code has a similar BER perfor-
mance to the single code with SCL-CRC (L =8 and m =4)
decoding. Constituent half rate codes are decoded by 30 iter-
ations. In addition, at E,/N, = 4.5 dB, this code shows a per-
formance better than the single polar code. The product code
provides significantly better performance than SPC with BP
decoding.

Figure 7 shows the performance of two product codes
and their performance with BCH-polar [22] and RS-polar
[23] codes. Constituents of both product codes are based on
non-half rate polar codes. It shows that the (256, 42) product
code with rate R = 1/6 has close FER performance with BCH-
based polar code. In addition, the (512, 171) product code is
constituted by (32, 19) and (16, 9) polar codes. At E,/N, =
4.0dB, this code has 2.0 dB and 0.85 dB gain in BER perfor-
mance compared to RS-polar and LDPC-polar codes,
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FIGURE 7: Performance of product polar codes and their comparison with BCH-polar, RS-polar, and LDPC-polar codes.
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respectively. Similarly, the (1984, 946) product code consti-
tuted by the (62, 43) and (32, 22) polar codes has close per-
formance to the single (2048, 1024) polar code decoded by
SCL-CRC decoding with L =4 and m = 4. All product codes
apply 30 iterations in their BP decoding.

Figure 8 shows the performance of the (800, 256) product
and (768, 256) single polar codes. In this case, the product
code is constructed by two (32, 16) polar codes, which are
decoded by BP decoding, including 90 iterations. Due to
interactive iterative decoding applied in the product code,
one decoder can properly recover punctured information
from a block of information and deliver them to the second
decoder for the next step of decoding. It is observed that
the product code provides similar performance to decoding
based SPC, while outperforming the single polar code
decoded by BP decoding.

Figure 9 shows the BER and FER performances of the
(3196, 1024) product and (3072, 1024) single polar codes.
Again, 90 iterations were considered for BP decoding of
constituent codes. It is observed that the product code has a
better BER performance compared to the single code. It also
has similar FER performance with the single code decoded by
the SCL-CRC technique with L =4 and m = 4.

Furthermore, BER performance of the (256%, 239%)
product polar code and polar-TPC proposed in [11] are
analysed in Figure 10. Codes are modulated by quadrature
phase shift keying (QPSK). Sixty (60) iterations are applied
for BP decoding of the product polar code. It is concluded
that the product code decoded by ten and twenty interactive
iterations has similar performance to polar-TPC decoded by
the SCL-Chase algorithm with the list size of L =8 and
L =32, respectively.

6. Conclusions and Future Work

The paper presented a product coding scheme of polar codes
formed by two different rates of polar codes. The conducted
analysis and simulation results confirmed that the con-
structed product codes outperform the conventional polar
codes. This is mainly evident in the medium to high signal-
to-noise ratios, which is applicable for both nonpunctured
and punctured codes. In the future work, a modification of
the structure of punctured product polar codes will be
followed aimed at improving their performance.
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