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Background: Aquaporin 1 (AQP-1), a transmembrane water channel protein, has been

proven to involve in many diseases’ progression and prognosis. This research aims to

explore the prognostic value of AQP-1 in elderly cytogenetically normal acute myeloid

leukemia (CN-AML).

Methods: Complete clinical and expression data of 226 elderly patients (aged > 60)

with cytogenetically normal acute myeloid leukemia (CN-AML) were downloaded from

the databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus

(GEO). We have explored prognostic significance of AQP-1, investigated the underlying

mechanism, and developed a novel scoring system for the risk assessment of elderly

patients with AML based on AQP1 methylation.

Results: In the first and second independent group, AQP1 shows lower expression

in CN-AML than normal people, while high AQP1 expression and AQP1 promoter

hypomethylation were related to better overall survival (OS; P < 0.05). To understand the

underlying mechanisms, we investigated differentially expressed genes (DEGs), miRNA

and lncRNA associated with AQP1methylation. A three-gene prognostic signature based

on AQP1 methylation which was highly correlated with OS was established, and the

performance was validated by Permutation Test and Leave-one-out Cross Validation

method. Furthermore, an independent cohort was used to verify the prognostic value

of this model.

Conclusions: AQP1 methylation could serve as an independent prognostic biomarker

in elderly CN-AML, and may provide new insights for the diagnosis and treatment for

elderly CN-AML patients.
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INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous hematologic
malignancy characterized by invasion of the bonemarrow, blood,
and other tissues by myeloid progenitor cells with enhanced
proliferative capabilities. AML is more commonly diagnosed in
the elderly with a median age of around 67, and approximately
one third of the patients are 75 or older (1). The Surveillance,
Epidemiology, and End Results (SEER) Program of the National
Cancer Institute reported that in the United States, the incidence
of AML is 4.3 per 100,000 persons, while it increases to 12.2
per 100,000 among those aged 65–69 and 28.5 per 100,000
for those aged 80–84 (2). The current National Comprehensive
Cancer Network (NCCN) Guidelines for AML recommend
intensive induction therapy, followed by consolidation and a
possible allogeneic stem cell transplantation (alloSCT) after
which 85% of the patients aged between 18 and 60 could
achieve complete remissions (CR) (3, 4). Due to advanced age,
comorbidities, preexisting myelodysplasia and poor performance
status, the elderly patients are often intolerable to standard
treatments and more likely to undertake less intensive therapies
or supportive care, which often lead to inferior outcomes
(lower CR rate, shorter remissions and OS) (5). The most
common type of AML is the cytogenetically normal acute
myeloid leukemia (CN-AML), a group without microscopically
discernible chromosome aberrance, nevertheless, there could
still be some genetic mutations, dysregulated expression and
epigenetic alterations (6). Recurrent mutated genes in elderly
CN-AML patients include NPM1, CEBPA, FLT3-ITD, and WT1,
which are associated with different prognostic significance.
Advances in high-throughput technologies, such as microarray
and next-generation sequencing (NGS), have expanded our
understanding of the roles of genetic markers in AML, and were
used in refining risk stratification and treatment selection in
young and middle-aged patients (7). However, less such progress
was seen in elderly AML. High-throughput technologies could
help to identify underlying molecular mechanisms associated
with progression and prognosis of the disease, which might
lead to developments in targeted treatment and improve
patients’ outcomes.

DNA methylation, an important regulator of gene expression,
is the most studied epigenetic modification. DNA methylation
plays critical roles in diverse biological functions of cancer
progress including disease initiation, promotion, invasion,
metastases, and chemotherapy resistance (8). Abnormal DNA
methylation has been found to be a hallmark of AML (9), and
a suitable biomarker to predict prognosis (10).

The aquaporin 1 (AQP-1) gene, located on chromosome
7p14, encodes a highly conserved transmembrane water
channel protein with a molecular weight of 28 kDa, and

Abbreviations: AML, acute myeloid leukemia; lncRNA, long non-coding
RNA; The Cancer Genome Atlas; OS, overall survival; miRNA, microRNA;
AUC, the area under Receiver Operating Characteristic curve; ROC, receiver
operating characteristic curve; LOO-CV, leave-one-out cross validation; DAVID,
the database for annotation, visualization and integrated discovery; GO, gene
ontology; PPI, the protein–protein interactions; KEGG, Kyoto Encyclopedia of
Genes and Genomes; mRNA, messenger RNA.

facilitates transcellular water transportation (11). AQP1 plays
an oncogenic role in many types of solid cancer, including
colorectal cancer, breast cancer, bladder cancer (12–14).
Functionally, AQP1 regulates cell proliferation, invasion,
metastasis and angiogenesis. AQP1 is strongly associated with
many important tumor signaling pathways that promote cell
proliferation and contribute to carcinogenesis, such as NF-κB
(15, 16), Notch (17), PI3K/Akt (18), and p38-MAPK pathways
(19). Furthermore, hypomethylation of AQP1 promoter
was common in adenoid cystic carcinoma, and was a newly
found biomarker related with prognosis and recurrence of
the disease (20). However, one recent study shows that AQP1
acts as a tumor suppressor gene and down-regulate Wnt
signaling by interacting with b-catenin, GSK3b, LRP6, and
Axin1 (21).

To date, the methylation pattern, expression and clinical
significance of AQP1 in elderly CN-AML patients haven’t been
explored. Therefore, here we explored prognostic significance
and mechanisms of AQP1, as well as AQP1 methylation-
associated genes in elderly CN-AML patients. The study aimed
to improve the understanding of AQP1 in the pathogenesis of
elderly AML, and provide potential diagnostic biomarkers for
clinical treatment.

METHODS

Patients and Datasets
43 elderly CN-AML patients (age > 60) only with RNA
sequencing data (IlluminaHiSeq_RNASeqV2), 39 elderly CN-
AML patients (age > 60) only with DNA methylation data
(Illumina Human Methylation 450K) profiles, 29 elderly
CN-AML patients (age > 60) with DNA methylation
data (Illumina Human Methylation 450K) profiles and
RNA sequencing including lncRNA and mRNA as well
as 20 elderly CN-AML patients (age > 60) with DNA
methylation data (Illumina Human Methylation 450K)
profiles and miRNA expression (IlluminaHiSeq_miRNASeq)
were gathered from the database of The Cancer Genome
Atlas (TCGA).

Five different GEP data sets from the Gene Expression
Omnibus (GEO) database were included: (1) GSE1159 including
5 healthy donors and 116 newly diagnosed CN-AML patients;
(2) GSE16432 including 34 elderly CN-AML patients(age > 60);
(3) GSE23312 including 28 elderly CN-AML patients(age > 60);
(4) GSE16432 including 31 patients with t(8,21); (5) GSE23312
including 34 patients with t(15,17); (6) GSE3224 including 47
patients with inv16; (7) GSE16432 including 13 patients with
+8; (8) GSE22778 including 44 patients with complex karyotype;
(9) GSE22778 including 148 younger CN-AML patients(age <

60); (10) GSE22778 including 42 elderly CN-AML patients(age>

60). The study was in complete compliance with the publication
instructions from TCGA and GEO. Because the data was
collected from GEO and TCGA, there’s no need for the approval
of ethics committees.

149 young patients with AML (age < 30) were collected from
target database.
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Data Processing
Samples were divided into AQP1 hypermethylation and AQP1
hypomethylation groups according to the median AQP1
methylated value of 8.667. The differentially expressed lncRNA,
mRNA and miRNA between the two groups were identified by
the edgeR package in R Bioconductor. The criteria in significant
differences was: |log2 fold change (FC)|>2 and adjusted P-value
(padj) ≤0.05. Next, DEGs based on AQP1 methylation were
put into univariate cox’s model and P < 0.05 was set as the
significance threshold. Univariate cox analysis was also applied
to test clinical information with the same cutoffs, including
gender, age at diagnosis, FAB classifications, molecular mutations
(NPMc, FLT3-ITD, IDH1), peripheral blasts and bone marrow
blasts. The relationship between differentially methylated sites
and the expression of AQP1 was computed via pairwise Pearson
correlation coefficients, and p < 0.05 with r < −0.3 was
considered as significantly correlated methylation site-gene pairs.

Signature Development
The risk score was computed on the basis of each gene’s
expression and their contribution on overall survival denoted by
the coefficient of β in a Cox multivariate model. The risk score=
β1G1 + β2G2 + β3G3+ . . . . . .βnGn (G: each gene’s expression
value). Next, patients were divided into high risk or low risk
group on the basis of median calculated scores. Kaplan-Meier
method was carried out to compare survival time between high
risk and low risk group with P < 0.05. Heat map and ROC curve
were applied to assess the prognostic efficacy of the model.

Permutation Test and Leave-One-Out
Cross Validation (LOO-CV)
Permutation Test

The label of each patient’s characteristics in our study included
survival status, overall survival time and a risk score computed
via 3-gene prognostic signature. With the risk score in line
with each individual, a stochastic system was established by
assigning labels to individuals randomly. The stochastic system
was examined for survival significance, and it failed to predict the
prognosis of patients if the model worked well. The area under
Receiver Operating Characteristic curve (AUC) was assumed to
be equal to 0.5. A thousand stochastic systems were created via
R Bioconductor. After all iterance, we consider P-value with a
cutoff at 0.05 as a criterion to evaluate the significance between
AUC of stochastic systems and the right label system. The 3-gene
signature was thought to have no effects on the outcome if the
P-value calculated was >0.05.

LOO-CV

Briefly, one observation was precluded each time and the rest was
applied to construct a model with 3 genes described above, while
a prediction was made for the excluded one. We have carried out
29 tests and the average AUC.

GO, Pathway Analysis, and PPI Network
Establishment
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis were conducted via

FIGURE 1 | Differential expression of AQP1 between CN-AML-BM cases (n =

116) and NBM samples (n = 5).

the Database for Annotation, Visualization and Integrated
Discovery (DAVID, http://david.abcc.ncifcrf.gov/), which
provides functional interpretation of various genes originated
from genomic researches. Protein–protein interaction (PPI)
network of DEGs was set up via Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING, http://string.embl.
de/), which offers systemic perspective of cellular processes.
“Co-expression value ≥0.7” was considered as the cut-off point.

RESULTS

Identification of Methylation Dependent
AQP1 Gene Related With Prognosis of
Elderly CN-AML
First, we evaluated the AQP1 expression in elderly CN-AML.
AQP1 expression was significantly downregulated in BM from
the primary cohort of 116 CN-AML patients compared with
normal bone marrow (BM) (p< 0.05, Figure 1, 116 CN-AML vs.
5 normal BM,GEONo: GSE1159).Moreover, we found that there
was no significant difference in the expression level of AQP1
between younger and elderly CN-AML patients (Figure S1, GEO
No: GSE22778). To investigate the prognostic value of AQP1 in
elderly CN-AML (age > 60), we divided the 34 elderly CN-AML
patients (age > 60) from GSE16432 into 2 groups according to
the median level of AQP1 expression. The results demonstrated
that high AQP1 expression group had significantly longer overall
survival (OS) (P = 0.02354, Figure 2A, 34 elderly CN-AML,
GEO No: GSE16432). The association between AQP1 expression
and prognostic significance was further validated by another
microarray dataset of TCGA (P = 0.04498, Figure 2B, 43 elderly
CN-AML with RNA sequencing, TCGA).
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FIGURE 2 | The prognostic value of AQP1 expression in 34 elderly CN-AML patients from GSE16432 (A) and in 43 elderly CN-AML patients from TCGA (B). The

prognostic value of AQP1 methylation in 39 elderly CN-AML patients with DNA methylation data from TCGA (C) and in 29 elderly CN-AML patients with DNA

methylation data and RNA sequencing data from TCGA (D).

We further assessed and confirmed the direct correlation
between AQP1 methylation and expression in elderly CN-
AML from TCGA database (Figure S2). Next, we analyzed the
prognostic significance of AQP1methylation in elderly CN-AML
from TCGA database. AQP1 hypomethylation group had longer
OS than AQP1 hypermethylation group (P = 0.033, Figure 2C,
39 elderly CN-AML with DNA methylation data, TCGA), and
AQP1 hypomethylation and high expression was further verified
to have prognostic significance (P = 0.039, Figure 2D, 29 elderly
CN-AML with DNA methylation data and RNA sequencing,
TCGA). These data suggested that AQP1 hypomethylation was
a potential valid prognostic marker.

In order to further analyze the association between AQP1
methylation and clinical features in elderly CN-AML, we
compared the clinical and laboratory features between AQP1
hypermethylated and AQP1 hypomethylated groups using
8.667 as the median AQP1 methylated value (Figure S3, 39
elderly CN-AML with DNA methylation data, TCGA). AQP1
hypermethylation was correlated with higher peripheral blasts.
However, there was no significant association between AQP1
methylation status and gender, WBC at diagnosis, bone marrow
blasts, age at diagnosis, FAB classifications or platelets counts. In
addition, no links were found between AQP1 methylation level
and FLT3 or IDH1mutations, while AQP1 hypermethylation was
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more prevalent in patients carrying NPMc mutations compared
to non-carriers (Figure S3).

Identification and Validation of a
Three-Gene Prognostic Signature in Two
Datasets
Twenty-nine elderly CN-AML samples with DNA methylation
data and RNA sequencing from TCGA database were divided
into the hypermethylated and hypomethylated groups using
8.667 asmedianAQP1methylated value.We identified 358DEGs
(161 upregulated; 197 downregulated) between the groups. The
heat map and volcano plot for DEGs was shown in Figure S4.
The up-regulated genes included the following: (1) genes
involved in cancer initiation, promotion, migration, and invasion
(HMOX1, HOXB5, HOXB6, HOXB7, HOXB8, andHOXB9) (22,
23); (2) genes inducing angiogenesis and immune suppression
(HIF3A) (24); and (3) genes correlating with chemotherapy
resistance (CD24) (25). The down-regulated genes included the
following: (1) an energy metabolism activator—DUSP27 (26);
(2) a putative Hepatocarcinogenesis suppressor—CSMD3 (27);
and (3) a cell growth signaling pathway suppressor—KIF26A
(28). Subsequently, after leaching of DEGs’ association with OS
via cox’s univariate model, we identified 24 negatively related
and 25 positively related mRNAs (p < 0.05). Finally, 3 genes
(ROBO2, IL1R2, and SCNN1B) were identified as prognostic
genes by multivariate cox analysis. The risk score was computed
via 3 mRNAs’ status and their contribution on overall survival
denoted through the coefficient of β in cox’s multivariate analysis.
The risk score equaled to (0.2016 ∗ ROBO2’s status) + (0.1274 ∗

IL1R2’s status) – (0.5365 ∗ SCNN1B’s status). Next, patients were
divided into low- and high-risk groups according to the median
predictor score. Low-risk patients had significantly improved
overall survival (OS) compared with those in the high-risk group
(p < 0.05, Figure 3). The 3-year-AUC of receiver operating
characteristic curve (ROC) of this signature was 0.867 (Figure 3).
In addition, a heat map was constructed to assess the signature,
showing that the majority of deaths was in high risk group and
demonstrated worse overall survival (Figure 3). These results
suggested that the 3-mRNA signature may reliably predict the
prognosis in elderly CN-AML patients.

To confirm the robustness of the 3-gene prognostic signature,
we validated our model in another independent dataset of
28 elderly CN-AML patients (age > 60) from GEO database
(GSE23312) using the Kaplan-Meier and Cox analyses. The
results again showed that the patients in the high-risk group
presented a significant shorter survival compared to the low-risk
group (Figure 4).

We further analyzed prognostic significance of the model
in different European Leukemia Net (ELN) risk subgroups
to validate the prognostic value of this three-gene prognostic
signature. In the ELN Intermediate-I group, low-risk patients had
significantly improved overall survival (OS) compared with those
in the high-risk group (Figure S5). However, the model was not
tested within the ELN favorable or poor group due to limited
patient number with methylation data of the groups (n= 2 and n
= 7, respectively).

Comparison Between 3-mRNA Prognostic
Signature and Other Clinical Prognostic
Parameters, Permutation, and
Leave-One-Out Cross Validation
We correlated some clinical features with the risk score of the
3-mRNA signature. We found that the risk score was linked
to WBC at diagnosis, while it was independent of gender, age,
peripheral blasts, bone marrow blasts, platelets count, FLT3
mutation, IDH1 mutation, and NPMc mutation (Figure S6).
Cox’s univariate model was carried out to explore the relationship
between clinical parameters and prognosis. In our study, gender,
age at diagnosis, peripheral blasts, bone marrow blasts, platelets
count, FAB classifications and IDH1 Mutation could not predict
prognosis, while FLT3 mutation was significantly related to
survival (Table S1). After adjusting for FLT3 mutation in
multivariate analysis, the effect of the prognostic signature kept
independent (p = 0.003). Next, since the expression of various
genes differs with age, we further assessed the expression level of
each one of the three AQP1 DNA methylation-associated genes
in 3 different >60 age subgroups, including 60–65, 66–70, and
71–75 years old (Figure S7, GEO No: GSE22778). The results
shown that ROBO2 expression tends to increase with age. But
there was no significant difference in the expression level of
IL1R2 and SCNN1B in different age subgroups. In addition, we
further analyzed prognostic significance of 3-mRNA prognostic
signature in different>60 age subgroups (Figure S8). The results
shown that the three-gene prognostic signature based on three
AQP1 DNA methylation-associated genes could realize a robust
and specific risk stratification for elderly CN-AML patients in
different age subgroups. A limitation that should be noticed is
the sample size of patients is small when patients are divided into
different age subgroups.

Leave-one-out cross validation test (LOO-CV) and
permutation test are of great power in appraising the
performance of a model, and they are applied to check
whether the 3-mRNA signature was able to forecast prognosis of
elderly CN-AML patients. Permutation test demonstrated that
the AUC of stochastic systems was significant in the group we
studied (P = 0.0007, Figure S9). LOOCV implied an AUC of
0.834, which proves the 3-gene signature works well in predicting
the prognosis of elderly patients with CN-AML.

Specificity of the 3-mRNA Prognostic
Signature in Elderly CN-AML Patients
Furthermore, we investigated the specificity of the prognostic
model for elderly CN-AML patients (age> 60).We implemented
our model in four independent datasets from GEO database
(GSE16432, GSE23312, GSE3224, and GSE22778) and an
independent dataset from Target database via Kaplan-Meier
and Cox analyses, including 169 samples of 5 other commonly
seen AML subtypes, namely t(8,21), t(15,17), inv16, +8, complex
karyotype, as well as younger CN-AML patients (age < 60).
The results showed that the prognostic model could not predict
the outcome of the other 5 AML subtypes or younger CN-
AML patients (Figure 5 and Figure S10), suggesting that it may

Frontiers in Oncology | www.frontiersin.org 5 April 2020 | Volume 10 | Article 566

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yin et al. AQP1-Based Risk Assessment for CN-AML

FIGURE 3 | Kaplan-Meier for OS in low-risk and high-risk groups. AUC curve for the risk score, heat map for 6 mRNAs expression level and survival status in all 29

patients.

be used as predictive classifiers with high efficiency for elderly
CN-AML patients.

Functional Enrichment Analysis and PPI
Network of DEGs
To evaluate the functional significance of the DEGs associated
with AQP1 methylation in elderly CN-AML patients (age
> 60), the 358 DEGs were further analyzed by Gene
Ontology (GO) enrichment analysis andKEGGpathway analysis,
where upregulated and downregulated genes were analyzed,
respectively. The most enriched GO terms by upregulated
transcripts included “plasma membrane,” “integral component
of membrane,” “extracellular region,” “cell adhesion,” and those
by downregulated transcripts included “integral component of

membrane,” “plasma membrane,” “calcium ion binding,” and
“signal transduction” (Figure S11). KEGG pathway analysis
showed 12 pathways associated with upregulated transcripts and
the most enriched network was “Neuroactive ligand-receptor
interaction.” Pathway analysis also showed 8 pathways related
with downregulated transcripts and “Pathways in cancer” was
the most enriched network (Figure S11). Of all these pathways,
“ECM-receptor interaction” and “Tyrosine metabolism” have
been reported to be important causes of tumor metastasis and
invasion (29, 30).

In addition, the protein–protein interaction (PPI) network
was made up of 99 nodes and 144 edges (Figure S12A).
Furthermore, 12 hub genes were recognized in the network when
the cut-off criterion was set to be “Degrees≥5” (Figure S12B).
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FIGURE 4 | Kaplan-Meier survival analysis of the three-gene prognostic

signature in validation data sets (GSE23312).

Among them, CXCL10 gene has been reported to promote cell
growth, metastasis and decrease cell apoptosis in chronicmyeloid
leukemia (31); The high C5AR1 expression is related to shorter
overall survival and increased bone metastasis in lung tumors
(32); FPR1 gene plays a key role in themechanism of cellular drug
resistance in acute lymphoblastic leukemia (33); LHCGR gene
expression is correlated with adrenocortical tumorigenesis (34).
The discovery of these genes may provide us with an opportunity
to treat elderly CN-AML patients using gene targeting agents.

Association Between Genome-Wide
lncRNA, microRNA Profiles, and AQP1
Methylation
To further assess the mechanism of AQP1 methylation in
elderly CN-AML, we derived AQP1 methylation-associated
lncRNA and microRNA expression profiles by microarray
analysis. We analyzed 29 elderly CN-AML samples with DNA
methylation data and RNA sequencing from TCGA database
and identified 41 up-regulated and 33 down-regulated lncRNAs
which were significantly related with AQP1 methylation (P <

0.05), the heat map and volcano plot for different lncRNAs
were shown in Figure S13. The up-regulated lncRNAs included
lncRNAs involved in chemotherapy resistance (MIR100HG and
MGC32805) (35, 36) and tumorigenesis promoters (AC011632.1
and LINC00355) (37, 38), while down-regulated genes included
MAGI2-AS3, an inhibiting factor of breast cancer cell growth via
the Fas/FasL signaling pathway (39). Kaplan-Meier method was
carried out to explore their association with prognosis. 6 lncRNAs
(AC099552.2, GNA14-AS1, KC6, LINC00355, LINC01482, and
LINC02139) were found significantly associated with OS of

elderly CN-AML patients, and all of them were negatively related
to OS (p < 0.05, Figure S14).

Furthermore, 20 elderly CN-AML samples with DNA
methylation data and miRNA expression from TCGA database
were analyzed. Six up-regulated and 2 down-regulated miRNAs
which were significantly related with AQP1 methylation (P <

0.05) were identified. The heat map and volcano plot for different
miRNAs were shown in Figure S15. The down-regulated MiR-
577 have been reported previously to have important tumor-
suppressive properties. MiR-577 targets tumor-promoting gene
WNT2B which mediates Wnt/β-catenin pathway to suppresses
cell proliferation and epithelial-mesenchymal transition in non-
small cell lung cancer (40). Some of the up-regulated miRNAs
serve as potential oncogenes in carcinogenesis (hsa-mir-452)
(41), and some promote tumor cell proliferation and inducing
immune escape (hsa-mir-224) (42).

Identification of CpG Sites of AQP1
Associated With AQP1 DNA-Methylation
and Prognosis of Elderly CN-AML
Recent advances have facilitated the screening of CpG sites
at a genomic level by whole genome screening technologies,
giving a more thorough view of the methylation landscape
(43). As one gene contains multiple CpGs, Pearson correlation
coefficients were calculated to identify actual CpG sites
of AQP1 whose expression levels were affected by DNA
methylation. The results showed that 8 CpG sites of AQP1
(cg00516678, cg00622010, cg07135629, cg09676669, cg10132917,
cg11827925, cg18307978, and cg20176648) were regulated by
DNAmethylation. Subsequently, these 8 CpG sites of AQP1 were
added to cox’s univariate model to identify CpG sites of AQP1
related with OS. We found that cg09676669 related with OS
and DNA methylation, thus acting as a potential diagnosis and
prognosis biomarker (Figure 6).

DISCUSSION

Elderly patients with CN-AML make up the largest group of
all primary AML. However, other than clinical trials, therapy
options provided for elderly AML especially elderly CN-AML
patients still remain limited (44, 45). On the basis of patient-
specific (46) and AML-related prognosis factors (47), AML
patients are divided to take intensive chemotherapy (IC), low-
intensity therapy (LIT), and best supportive care (BSC) (48).
Although scoring systems have been proposed to rationalize
medical decisions, there are still large variations in clinical
practice (48) and high heterogeneity in patients’ prognosis, which
underlines paucity of evidence supporting medical decisions.
It is urgent to identify molecular mechanisms associated with
progression and prognosis of the disease to help us better
understand the pathogenesis of elderly CN-AML and improve
patients’ outcome. The previous study has shown that ITPR2 (49)
and ATP1B1 (50), which are responsible for Ca2+, K+ and Na+
transport, are predictive of poor outcomes in CN-AML. AQP1, a
transmembrane water channel protein, has shown promising and
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FIGURE 5 | Kaplan-Meier survival analysis of the three-gene prognostic signature in four independent datasets from GEO database (GSE16432, GSE23312,

GSE3224, and GSE22778), including 148 samples of younger CN-AML patients (age < 60) and 169 samples of the other 5 common AML subtypes, namely t(8,21),

t(15,17), inv16, +8 and complex karyotype. (A) Dataset GSE16432- t(8,21), (B) dataset GSE23312- t(15,17), (C) Dataset GSE3224- inv16, (D) dataset GSE16432- +8,

(E) dataset GSE22778- complex karyotype, (F) dataset GSE22778- younger CN-AML patients (age < 60).

independent prognostic values in solid tumor (51), while its effect
on the clinical outcomes in elderly CN-AML was not clear.

We found that AQP1 expression was down-regulated in
the bone marrow of CN-AML compared with normal BM.
Furthermore, the high expression and hypomethylation of
AQP1 was associated with longer OS in elderly CN-AML. To
further understand the function of AQP1 methylation in the
pathogenesis and prognosis of elderly CN-AML, we conducted
a multi-omics analysis exploring AQP1 DNA methylation-
associated mRNAs, miRNAs, lncRNAs, methylation loci, and
cell signaling pathways. These alterations of transcriptomes
may have mediated the mechanisms underlying the correlation
between AQP1 methylation and the prognosis of elderly
CN-AML. While there are no novel drugs targeting AQP1
DNA methylation-related genes, there are demethylation drugs

such as DNA methyltransferase inhibitors [5-azacytidine (52)
and 5-aza-2′-deoxycytidine (53)], second-generation DNMT
inhibitors [Zebularine (54) and Guadecitabine (55)], and lysine
demethylase inhibitors (56), and drugs that affect the expression
level of AQP1 like Ziziphora clinopodioides which upregulates
aquaporin 1 (57). It is worth noting that drugs affecting AQP1
expression are not currently used for cancer treatment.

It’s worth noting that most studies show that AQP1 gene
acts as an oncogene in various solid cancers to promote cancer
development (12–14), whereas only a few studies report AQP1 as
a tumor suppressor that inhibits tumor growth (21, 58). Recently,
Marietta Tan et al. also showed that AQP1 was epigenetically
downregulated by promoter methylation and was associated
with improved prognosis in salivary gland adenoid cystic
carcinoma (20). While we show that AQP1 gene acts as a tumor
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FIGURE 6 | The correlation between CpG site of AQP1-cg09676669 and AQP1 methylation level (A), and the correlation between CpG site of AQP1-cg09676669

and the overall survival of elderly CN-AML patients (B).

suppressor gene whose high expression and hypomethylation
were associated with good prognosis in elderly CN-AML patients
(age > 60 years). These data indicate that AQP1 may perform
different functions in tumorigenesis. Therefore, more studies are
needed to explore the specific roles and mechanisms of AQP1 in
different types of cancer.

The most important feature of this study was the
establishment of a three-gene prognostic signature based
on three AQP1 DNA methylation-associated genes, which
may realize a robust and specific risk stratification for elderly
CN-AML patients. This prognostic model had 3 features.
Firstly, this model had high sensitivity, and could accurately
predict the prognosis of patients. The prognostic value of the
3-mRNA signature was validated by Permutation test and
LOO-CV which are of great power to assess the performance
of a model. The highest AUC value (0.867) of 3-year ROC of
this model also indicated that it provided the best prognostic
function. Secondly, this model is suitable for different patient
groups. The universality of this model’s prognostic value was
supported by an independent cohort (GSE23312). Thirdly,
this model is highly practical in that with three genes in the
signature, their expression levels could be measured by relatively
inexpensive PCR-based technology to achieve prospective risk
stratification of individual patients. Moreover, the specificity of
the three-gene prognostic signature to elderly CN-AML suggests

that the underlying molecular mechanisms and pathogenesis
may differ between young and elderly AML and different
leukemia subtypes. More research is needed to explore the
underlying mechanisms.

Importantly, we identified an AQP1-specific methylated site
cg09676669 as a potential diagnostic and prognosis biomarker
for elderly CN-AML patients. Therefore, by examining the
methylation level of the site cg09676669 in the peripheral blood
or bone marrow through Bisulfite sequencing PCR (BSP), we can
preliminarily predict the prognosis of elderly CN-AML patients.

It should be noticed that NPM1 mutation was reported to be
associated with better prognosis, especially in normal karyotype
AML (59). However, the impact of NPM1 mutations on overall
survival in de novo AML is controversial. A recent study showed
that NPM1 mutations may promote the expression of HOXA5,
HOXB5, HOXA10, PBX3, and MEIS1 in AML cells, which was
correlated with a worse prognosis in AML (60). These results
were consistent with previous findings showing that the gene
expression profile of NPM1c mutated AML cells is characterized
by upregulated genes involved in stem cell maintenance (61).
In our study, NPM1 mutation was associated with AQP1
hypermethylation, which predicts worse outcome. It is worth
noticing that the many patients with missing or unknown
mutation information in the TCGA database we used may have
complicated our analysis of the effects of NPM1 mutation.
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CONCLUSION

Taken together, we demonstrate that AQP1 hypomethylation and
high expression have prognostic significance for elderly CN-
AML patients (age > 60). Moreover, our genome-wide analysis
of abnormal gene, lncRNA, signaling and miRNA expression
associated with AQP1 methylation may help understand the
role of AQP1 in elderly CN-AML and develop new therapeutic
strategies. Importantly, we developed a three-gene panel based on
genes associated with AQP1 DNA methylation to predict cancer
risk and the prognosis of elderly CN-AML patients.
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