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Abstract 

Structured-light (SL) techniques are noncontact approaches for measuring 3D complex objects in 

various applications including robotics, manufacturing and reverse engineering. An SL system is 

based on a triangulation configuration between the object of interest, a projector and one or more 

cameras.  The 3D surface profile of the object is obtained from the deformation of light patterns 

projected onto the object. The performance of SL systems is determined by the hardware 

components, their triangulation configuration and the patterns used. This thesis focuses on 

developing, implementing and evaluating SL systems for measuring small (0.5 – 100 mm) 

complex objects. The contributions of this thesis are: 1) a design methodology for determining the 

optimal triangulation configuration to reduce reconstruction errors, and to maximize unique pixel-

to-pixel correspondences and coverage of the measurement volume, 2) a design methodology for 

optimizing the pattern sequence to minimize random noise in 3D reconstruction, 3) design 

methodologies for SL system for micro-scale measurements using image focus fusion to increase 

the effective measurement volume, and 4) a novel calibration procedure for SL systems using 

robust regression models with the lowest predictive errors. Experiments are conducted with a 

variety of micro-scale objects to validate the effectiveness of the proposed methodologies for 

designing SL systems for micro-scale measurements. 
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Chapter 1  
Introduction 

This thesis presents the concept design, development and implementation of the design 

methodologies needed to develop and integrate sensory systems for measuring complex objects. 

In this chapter the motivation, research objective and challenges are described. 

1.1 Motivation 

In recent years, there has been significant interest in the use of accurate non-contact sensory 

systems for measuring a variety of different 3D objects [1-2]. Traditional contact-based 

technologies such as Coordinate Measurement Machines (CMMs) are being increasingly replaced 

by optical, non-contact methods, which can provide higher measurement speeds than CMMs [3]. 

Non-contact sensing systems have been used in a wide variety of application domains such as 

manufacturing [4], reverse engineering [5-6], product inspection [7-8], optics [9], biomedical [10], 

and robot navigation [11]. In these applications, non-contact 3D measurement techniques have 

played an important role in measuring objects made of brittle materials or deformable structures 

[12], with complex and discontinuous 3D surface profiles [7], in hostile environments [2], and/or 

providing fast 3D measurements for real-time applications [13]. Such non-contact techniques 

utilize various optical methods for 3D reconstruction, including time-of-flight [14], stereo vision 

[15], laser stripe scanning [16] and structured-light [17]. Among these methods, structured-light 

(SL) techniques have been emerging as a popular method for 3D measurements due to several 

advantages including: 1) providing full-field measurements of the  entire surface of an object in 

one acquisition without the need for scanning [1], 2) the ability to provide real-time and accurate 

measurements [18], and 3) the use of off-the-shelf hardware components [19]. 

SL sensing uses an active triangulation-based method that is widely used for visual inspection, 

object recognition, material characterization and recovering 3D shapes of objects [20]. In general, 

an SL system consists of one or more cameras and active light sources. These light sources, or 

projectors, illuminate the object of interest with a known light spot, line or pattern while the 

cameras capture the pattern deformation caused by the object surface profile. Due to their fast 

measurement speed, low cost, high-precision surface metrology capabilities, SL systems have been 

used for 3D off-line measurements of large complex objects [2, 4, 7]; and for off-line 
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measurements of flat MEMS objects [2, 18, 21]. In addition, the non-contact, non-destructive 

nature of SL systems makes them attractive for manufacturing inspection of objects. For example, 

in [2], 3D measurements obtained from various SL systems were reported for objects such as a 

thin-film sensor, a screw, a car door, among others, demonstrating the potential of SL technique 

for industrial applications. In [4], a pattern-based SL technique was used to obtain 3D profiles of 

large manufactured parts such as a car door and a windshield. In [7], accurate 3D surface profiles 

were obtained using black/white patterns for the accurate inspection of cylindrical specular 

industrial objects. In [18] and [22], discrete patterns were used to reconstruct the surface profile of 

MEMS parts such as micro-mirror array. Even though SL systems have been successfully 

implemented and applied to different applications, previous work has not presented yet  

theoretically sound guidelines or methodologies on how to design such systems in order to achieve 

the highest measurement accuracy for small complex objects.  

The accuracy of an SL system is influenced significantly by the characteristics of the projection 

and capturing hardware components, and by the triangulation configuration between these 

components and the measured object. In addition, the pattern design of the SL system determines 

the performance of the technique in terms of resolution, accuracy, and efficiency. Therefore, SL 

systems need to be designed in terms of the hardware triangulation configuration and the 

structured-light patterns themselves in order to achieve the target measurement specifications. 

1.1.1 SL System Configuration Design 

Different approaches have been proposed in order to increase the accuracy of SL systems beyond 

the current state of the art. In [4], an improving system accuracy was suggested by designing 

application-specific black/white patterns to compensate measurement errors caused by surface 

texture and ambient light for inspection of an automotive pillar/door assembly. In [23], the effects 

of system calibration on accuracy were considered, and a linearized irradiance model was 

introduced to compensate for the non-linearity of the controllable light source. Using this proposed 

model, it was shown that the accuracy of depth reconstruction could be improved significantly. In 

[24], the effects of hardware geometric configurations were investigated by developing a set of 

analytical relationships of measurement errors based on triangulation geometry of a simple 

idealized SL system, with a planar geometric configuration between hardware components and an 

object of interest. Based on a qualitative parametric study, they concluded that the relative distance 
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and orientation of the imaging and projection components influence system error, the working 

depth of field and the overall sensory system size. Previous work showed that the measurement 

accuracy of a SL system is mainly determined by the characteristics of the projection and capture 

hardware, and by the triangulation configuration between the camera, projector and the object. 

Hence, the hardware setup needs to be carefully designed to achieve the desired resolution, 

precision, and target object size. However, no methodology has been proposed in the literature for 

designing SL system configuration for measuring objects with a desired accuracy. 

1.1.2 Pattern Sequence Design for SL Systems 

Different structured-light patterns have been proposed in order to increase the accuracy of SL 

systems beyond the current state of the art. In [17], the influence of the structured-light patterns on 

the reconstruction errors was investigated by comparing the implementation of discrete and 

continuous SL techniques, using the same SL hardware set-up and triangulation configuration, on 

measuring a known complex object and a flat plane. The comparison results showed that the 

accuracy and the measurement time of an SL system are a result of numerous factors including the 

number and type of the patterns used, the surface characteristics of the measured object and the 

number of 3D reconstruction points that are obtained. However, no design methodology has been 

proposed for optimizing the patterns to reduce the measurement errors. 

1.1.3 Challenges in Designing a Novel SL System 

Potential target applications of this thesis work include the fields of manufacturing, reverse 

engineering and product inspection of innovative small complex devices in the size range of 0.5 – 

100 mm for biomedical, aerospace, optics and automotive applications. Since this size range 

encompasses commonly accepted definitions for micro, meso and macro scales, for simplicity in 

this thesis we will refer to these innovative devices as macro-scale objects and micro-scale objects, 

if their sizes are in the range of 10 – 100 mm and 0.10 – 10 mm, respectively. In order to measure 

complex [12], micro-scale objects, the size and the shape complexity of the objects impose certain 

requirements in the optical specifications of the SL system. In particular, the larger magnifications 

required to image 0.5 – 10 mm objects result in shallow depth of field for measuring the entire 

object in focus, while also making the system more sensitive to noise and vibrations. Hence, before 

an SL system can be used for reliable measurements of small complex objects, some technical 

challenges need to be addressed, regarding both the hardware and the software of the sensory 
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system: 1) determining the triangulation configuration of the hardware components, and 2) 

designing the light patterns to measure the target objects. 

In [23-24], it was discussed that the accuracy of an SL system is highly dependent on the 

triangulation configuration of the hardware components. However, the triangulation configuration 

also affects the effective measurement volume, i.e., the region in the scene where both the camera 

and the projector are in focus. While the size of measurement volume is maximized by reducing 

the angle between the optical axes of the camera and projector, this reduces the accuracy of the 

system and increases its sensitivity to noise, since it goes against the working principle of the 

sensor, i.e., estimating depth using a triangulation. The design challenge lies on optimizing the 

system configuration to meet the stated requirements for both accuracy and measurement volume, 

given any arbitrary set of hardware components and its optical specifications. 

In [17], both the accuracy and the speed of an SL system were defined to depend on the light 

patterns that are projected during measurement. In practice, this imposes restrictions in the number 

and type of patterns to be projected. The number of patterns that must be projected to measure an 

object is related to the measurement acquisition speed for a given frame rate. In addition, the type 

of patterns projected and the algorithms used to post-process them have also a significant effect on 

the computational requirements and, ultimately, on the accuracy and resolution of the sensor. 

Furthermore, for measuring small complex objects with surface discontinuities, the type of pattern 

and post-processing algorithms also affect the ability of the sensor to accurately resolve sharp 

object features, such as edges, holes and other discontinuities. From the design point of view, the 

challenge lies on designing a minimal set of light patterns that are able to measure complex objects 

with the required accuracy, and that can be post-processed with low computational cost. 

In order to develop accurate SL systems for measuring small complex objects, these challenges 

need to be addressed. Hence, this thesis will address these challenges by developing novel design 

methodologies for SL systems with high accuracy using off-the-shelf hardware components.  

1.2 Problem Statement and Thesis Objective 

Accurate 3D object reconstruction has become essential to provide feedback for control and 

manufacturing processes of small complex objects. Structured-light systems provide a non-

contact, compact approach to obtain high density and accurate measurements of objects at an 
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affordable cost. Recent hardware developments have made it possible to use the advantages of SL 

systems for real-time measurement of macro-scale complex objects [2, 4, 7] as well as simple 

objects at micro-scale [2, 18, 21]. However, current SL systems are not capable of obtaining the 

surface profile of small objects with a wide range of geometric surface complexities, such as 

propeller blades of a capsule endoscope [25], curvature of micro lenses [12], gears used in micro 

air vehicles [26]. Hence, the objective of this thesis is to develop an overall novel design 

methodology for the development of SL sensory systems, in both hardware and software, capable 

of providing 3D surface reconstruction of small (0.5 – 100 mm) objects with complex shapes. A 

detailed design methodology will be presented that uniquely provides a guide to determine the 

optimal design of the hardware and software of accurate SL systems. The proposed approach 

focuses on minimizing measurement errors in order to obtain accurate 3D reconstruction results. 

This is achieved by optimizing: 1) the SL system configuration of the hardware components, and 

2) the sequence of fringe patterns for the optimal SL system configuration. 

1.3 Proposed Methodology and Tasks 

This thesis presents the overarching design methodology needed for the development, 

implementation and evaluation of SL sensory systems that use phase-shifted patterns to provide 

accurate 3D surface profiles of small complex objects. In particular, the following contributions 

are made in each thesis chapter. 

1.3.1 Literature Review 

Chapter 2 presents an extensive review of the literature on the state of the art regarding the important 

research areas for designing and developing accurate SL systems: 1) the configuration design of SL 

systems, 2) the pattern sequence design for SL systems, and 3) the SL techniques proposed for 

measuring micro-scale objects. The latter will particularly provide a comprehensive overview of 

literature on the proposed SL systems for micro-scale measurements. This will help to summarize the 

different approaches implemented for measuring micro-scale objects and will also highlight the 

challenges that are still remaining to overcome. 

1.3.2 Design Methodology for SL System Configurations 

The contributions of Chapter 3 is the development of a novel design methodology for determining 

the optimal triangulation configurations for SL systems measuring complex objects, including both 
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the optical specifications and the geometric organization of the hardware components. The design 

methodology determines the optimal configuration of the hardware components based on the 

following multiple performance metrics: 1) minimizing the 3D reconstruction errors, 2) 

maximizing the pixel-to-pixel correspondence between the projector and camera, and 3) 

maximizing the dispersion of the measured 3D points within a required measurement volume. In 

addition, design constraints are defined in order to assess the feasibility of physically implementing 

an optimal SL configuration in terms of the hardware specifications. 

1.3.3 Pattern Sequence Design Methodology for SL Systems 

The contribution of Chapter 4 is the development of a novel design methodology for determining 

the optimal pattern sequence for SL systems using sinusoidal phase-shifting techniques. The 

number of fringes used in the projected light patterns has a direct effect on the 3D reconstruction 

errors. The proposed methodology uniquely considers both the number of patterns that are needed 

in the pattern sequence as well as the number of fringes for each pattern in order to reduce the 

reconstruction errors caused by random noise in the captured patterns. 

1.3.4 Design Methodologies for Micro-Scale Measurements 

The contribution of Chapter 5 is the development of an SL technique for measuring micro-scale 

objects. Typically, microscope lenses have a shallow depth of field, thus making it difficult to 

measure small objects with complex surface profiles using large magnifications. The design 

methodologies for SL system measuring micro-scale are developed considering the image focus 

fusion of the images of the patterns, which effectively increasing the depth-of-field of the SL 

system. In addition, a novel calibration approach is proposed which provides calibration models 

that have the best predictive capabilities for a given calibration data set within the entire 

measurement volume. 

1.3.5 Implementation Experiments on SL System Configuration Design for 
Macro-Scale Measurements 

The contribution of Chapter 6 is the experimental verification of the design methodology presented 

in Chapter 3, which was used to determine a set of optimal system configurations for a given set 

of hardware components of an SL system. Experimental measurement performance of an optimal 

system configuration is compared with a non-optimal hardware configuration. 
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1.3.6 Implementation Experiments on Pattern Sequence Design for SL 
Systems for Macro-Scale Measurements 

The contribution of Chapter 7 is the implementation of the pattern sequence obtained by the design 

methodology presented in Chapter 4, which minimizes the noise in the reconstruction 

measurements. The pattern sequence is implemented on an SL system and its performance is 

compared to a commonly used approach. A variety of test objects are measured with the patterns 

of both approaches. 

1.3.7 Implementation Experiments on Design Methodologies for Micro-
Scale Measurements 

The contribution of Chapter 8 is the development and implementation of an SL system using the 

novel SL with image focus fusion technique presented in Chapter 5. The SL system is calibrated 

to measure micro-scale objects within a measurement volume of 0.5x0.5x0.5 mm3. Different small 

complex objects are measured to demonstrate the performance of the SL system when measuring 

micro-scale objects. 

1.3.8 Conclusions 

Finally, Chapter 9 presents concluding remarks on the developed SL sensory systems and 

experimental results, summarizing the contributions to the state of the art and describes future 

possible research directions. 
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Chapter 2  
Literature Review 

In order to provide accurate 3D surface reconstruction of small complex objects, a novel SL 

sensory system needs to be carefully designed in terms of its system configuration and pattern 

sequence. In Section 2.1, a brief description of SL sensory systems is provided, prior to a 

discussion in Section 2.2 on existing design guidelines for SL systems that have been presented in 

the literature for system configuration (Section 2.2.1) and pattern sequence (Section 2.2.2). Finally, 

Section 2.3 describes previous works on the design and implementation of SL systems for micro-

scale measurements. 

2.1 SL Sensory Systems 

An SL sensory system utilizes an active triangulation-based method consisting of a controllable 

light source such as a projector to illuminate an object of interest with a predefined light pattern, 

and at least one camera to capture the deformation of the pattern as a result of the surface profile 

of the object [27]. Namely, the 3D reconstruction of the surface profile of an object is obtained by 

the triangulation relationship between the projector, the camera and the measured object. A pattern 

coding strategy is used to project a texture pattern onto the surface of the object to unequivocally 

determine the projector-camera correspondence for each 3D point on the object’s surface [17]. 

Once this correspondence is established, the 3D surface profile is obtained by determining the 3D 

point for each projector-camera pair using the triangulation relationship of the SL hardware 

configuration. 

In general, SL techniques can be classified as discrete or continuous according to the nature of the 

coded patterns they use. Discrete SL techniques use patterns with profiles of distinct intensity or 

color levels, e.g. black/white Gray-code fringe patterns [19, 28], De Bruijn based colored patterns 

[29], and pseudorandom 2D M-arrays [30]. On the other hand, continuous SL techniques utilize 

patterns that present smooth variations in intensity or color throughout the pattern profile, e.g., 

grayscale patterns with sinusoidal [13, 31] or trapezoidal [32] profiles, or rainbow-colored patterns 

[33]. Furthermore, discrete and continuous SL techniques can be categorized depending on the 

way the pattern is encoded, i.e. multiplexing in time, frequency or spatial domains. Time 

multiplexing techniques encode information for a point in the pattern by a temporal sequence of 
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intensity/color projections [3, 32], while frequency multiplexing patterns use one or two periodic 

continuous patterns that are analyzed in the frequency domain [34-35], and spatial multiplexing 

techniques use only one pattern and decode each point in the pattern based on the intensity level 

or color of the surrounding points [29-30]. In general, continuous SL techniques are more robust 

to variations in ambient light and reflectivity, particularly time multiplexing implementations such 

as phase shifting, which can suppress the effect of the measured object’s albedo [17]. 

Based on the pattern coding strategy used, the projector-camera correspondence can be established 

by comparing the projected patterns with the captured deformed patterns. In order to obtain the 3D 

surface profile of a measured object, a geometric triangulation model between the projector, 

camera and measured object is required to transform the 2D information obtained from the 

captured deformed patterns into 3D points representing the object’s surface profile. Geometric 

triangulation models for determining this 3D reconstruction can either be based on optical 

geometry, which rely on modelling the properties of the lenses of the camera and projector [24, 

36], or on calibration matrices, which are empirically determined by measuring a set of known 

objects of interest [37]. Triangulation models based on optical geometry use orthogonal [38] or 

perspective [24, 39] projection, and require precise knowledge of optical parameters of the camera 

and projector, such as focal lengths, apertures, pixel sizes and resolutions. On the other hand, 

models based on calibration matrices rely on measuring a set of objects with known surface 

profiles, which are located at pre-defined positions within an SL system’s measurement volume 

[37]. Based on measurement data obtained from calibration, a polynomial regression model is 

defined for each camera pixel to determine the 3D coordinates of the measured point as a function 

of its corresponding projector pixel [40]. Although triangulation models based on calibration 

matrices can deal with optical non-linearities, they require the estimation of a large number of 

parameters obtained from accurate calibration experiments. Triangulation models based on optical 

geometry, on the other hand, only require the estimation of a small set of optical and geometrical 

parameters for the camera and projector. The latter models have the added advantage of explicitly 

determining the effects of the model parameters on the accuracy of the 3D reconstructed points, 

while in the calibration-based models these effects are coupled and expressed implicitly in the 

calibration matrices [40]. 
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2.2 Design of SL Sensory Systems 

Over the past few decades, the development of SL systems has focused on two important goals 

[41]: 1) reducing measurement time, and 2) decreasing reconstruction errors. These goals are 

achieved by investigating both the geometric triangulation model and the pattern coding strategy 

used for 3D reconstruction. 

2.2.1 Configuration Design of SL Systems 

In [38], the influence of triangulation configuration on the reconstruction errors of an SL system 

was estimated when considering the curvature of an object. An optical geometric-based model was 

used to assess the performance of different triangulation configurations, in which the projector was 

considered as a reverse camera with the same focal length and pixel size as the camera. Both the 

projector and the camera were assumed to be coplanar as well as having mirrored orientations with 

respect to the measured object, i.e., forming an isosceles triangulation with the object. The 

reconstruction errors were modelled to include the effects caused by the: 1) discrete nature of the 

camera sensor, 2) object feature location errors due to unfocused captured images, and 3) system 

modelling error introduced by the orthographic projection model for the camera and the projector, 

which corresponds to an infinite focal length. A single-variable parametric simulation study was 

conducted to examine the effect that a triangulation configuration, characterized only by the angle 

between the optical axes of the camera and projector, had on the reconstruction errors for surface 

curvature. Results of the study showed that triangulation configurations have a significant effect 

on reconstruction errors. The results also suggested that an optimal angle could be found between 

the optical axes of the camera and projector to either reduce the error due to surface orientation or 

surface curvature, but not both simultaneously.  

In [24], the reconstruction errors of an SL system were modelled and simulated using an optical 

geometric triangulation model. The model was represented as a function of the optical hardware 

specifications of the SL system and potential triangulation configurations between the camera, the 

projector and the measured object. The chosen configuration for the SL system was determined 

through a parametric sensitivity analysis based on a simplified planar triangulation model 

considering the projector and the camera with identical optics placed on an arbitrary isosceles 

triangle. Namely, a parametric study was conducted by varying each SL system parameter (e.g., 

orientation of the camera and projector) and observing its influence on the reconstruction errors, 
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while other system parameters (e.g., distance to target object, focal lengths) were held constant at 

arbitrary values. Results of the sensitivity analysis showed that the reconstruction errors were 

influenced by the relative distance between the camera and the projector and their orientation with 

respect to the measured object. The final selected triangulation configuration was the one that 

provided the smallest reconstruction errors based on the sensitivity analysis. 

To date, the design guidelines presented in the literature for determining the triangulation 

configuration of SL systems have been based on simplified geometric triangulation models [24, 

38]. These models use coplanar isosceles triangulation configurations for the hardware set-up and 

identical optics for the projector and camera, and therefore assume matching pixel size and 

resolution for these components. Furthermore, they do not consider the non-linear interactions 

between the system parameters due to the triangulation configuration. However, the majority of 

implemented SL sensory systems consist of projector and camera hardware components that do 

not have the same pixel size and/or resolution, and therefore require different optics [19, 24, 42-

44]. A 3D geometric triangulation model needs to be developed that explicitly considers the 

different optical specifications (e.g., focal lengths), pixel sizes and/or resolution for the projection 

and capturing hardware. These existing differences result in 3D triangulation configurations for 

which this hardware may no longer be coplanar. Therefore, there is a need for a design 

methodology that uses a general 3D triangulation model that does not assume identical optics for 

the camera and projector. 

2.2.2 Pattern Sequence Design for SL Systems 

Over the years, many SL techniques have been developed, differing mostly on the type of light 

pattern projected onto the object, e.g. discrete or continuous, and the coding strategy, e.g., 

multiplexing in spatial, time or frequency domain. The reader is referred to [17] for a recent review 

of SL techniques. In [17], the influence of pattern coding strategies on the aforementioned goals 

was investigated by comparing the implementation of three discrete and three continuous SL 

techniques, using the same SL hardware set-up and triangulation configuration, on measuring a 

known complex object and a flat plane. The techniques used were time, frequency or spatial –

based multiplexing, and were compared with respect to their measurement time and their 

reconstruction errors. The measurement time was observed to be correlated to the density of the 

3D reconstruction. In this regard, the spatial-based multiplexing discrete technique provided less 
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dense 3D reconstructions in the shortest measurement time, while the time-multiplexing 

continuous technique resulted in the densest 3D reconstructions with the longest measurement 

time. In terms of the reconstruction errors, the time multiplexing methods, either discrete or 

continuous, presented the most accurate 3D reconstructions but required the projection of many 

patterns, making them mainly suitable for static objects. Continuous patterns based on frequency 

multiplexing provided dense 3D reconstruction requiring at most two pattern projections making 

them appropriate for moving objects, however, they had the highest sensitivity to the surface 

characteristics (e.g. color, reflectivity) of the measured object and to the optical non-linearities 

(e.g. lens distortion) of the camera. It was also found that discrete and continuous spatial-

multiplexing techniques presented high sensitivity to an object’s color as well as background 

illumination, as the decoding of each pixel was also affected by localized intensity levels from 

neighboring pixels. Overall, the comparison that was presented showed that the accuracy and the 

measurement time of an SL system are a result of numerous factors including the number and type 

of the texture patterns used by the coding strategy, the surface characteristics of the measured 

object and the number of 3D reconstruction points that are obtained. More recent work presented 

in [45] has demonstrated that the direction of the projected patterns is an important factor that 

could affect measurement accuracy. In [45], the fringe angle of a multi-frequency phase-shifting 

approach was determined by comparing the phase differences of the top and bottom surfaces of an 

object. Results are shown for a step height block and a sculpture. 

This thesis focuses on continuous time-multiplexing techniques, namely on sinusoidal phase-

shifting which has been widely used due to its robustness to both variations in object surface 

reflectivity and ambient lighting when compared to discrete fixed patterns [27]. This technique 

consists of projecting a sequence of continuous fringe patterns with phase-shifted sinusoidal 

intensity profiles in order to establish the projector-camera pixel correspondence. When multiple 

fringes are projected, the periodic nature of the phase obtained from the multi-fringe patterns does 

not provide a unique projector-camera pixel correspondence for 3D reconstruction. Therefore, in 

SL systems that use active phase unwrapping, a one-fringe pattern set is used to unwrap the phase 

obtained from a multi-fringe pattern set and to determine matching projector-camera pixel 

correspondences. The pixel phase values provided by the one-fringe patterns are used to determine 

the fringe order [46], i.e., the specific fringe number for a given pixel in the multi-fringe pattern. 

This information is used to establish unique projector-camera correspondences for multi-fringe 
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patterns in a process defined as phase unwrapping, which is discussed in detail in Section 4.1.2. 

The number of fringes used within the multi-fringe pattern has a significant effect on reducing the 

3D reconstruction errors. Namely, these 3D reconstruction errors result from inaccurate projector-

camera pixel correspondences caused by random noise in the phase values as well as fringe order 

errors during phase unwrapping [46-51]. Therefore, multiple active phase unwrapping steps can 

be used to further reduce these errors [47, 50]. 

Several methods have been proposed to compensate for phase unwrapping errors, either by 

determining the phase value of a pixel of interest by using phase values from neighboring pixels 

[46, 52-53] or by directly reducing the random noise in phase [49-51, 54]. With respect to the 

latter, the random noise in the unwrapped phase can be reduced by either: 1) increasing the number 

of phase-shifted patterns used [50-51, 54], 2) averaging repeated phase measurements [54], and/or 

3) increasing the number of phase unwrapping steps [49-50]. The first two approaches for reducing 

the random noise in phase require the acquisition and processing of a larger number of phase-

shifted pattern images of the target object, leading to longer computation times which are not 

compatible with measuring dynamic objects. In addition, these approaches are not robust to the 

fringe order errors that are caused by measuring discontinuous object surface profiles with multi-

fringe patterns [45-46]. In such cases, the signal-to-noise ratio can be low [46]. Alternatively, the 

third approach of increasing the number of phase unwrapping steps has shown to have the potential 

to reduce the random noise in phase, although the magnitude of this noise reduction is sensitive to 

the number of fringes of each multi-fringe pattern used at each phase unwrapping step [50, 53]. 

This thesis also focuses on increasing the number of phase unwrapping steps as a means to reduce 

the random noise in phase. As discussed above, when multiple phase unwrapping steps are used, 

the accuracy of the absolute phase values is related to the number of fringes used in each pattern 

and the number of unwrapping steps used during sequential active phase unwrapping. To date, 

approaches that have been reported in the literature for defining sinusoidal patterns for SL sensors 

using active phase unwrapping have either focused on reducing measurement noise by: 1) 

increasing the number of fringes [47, 49], or 2) determining the steps for sequential phase 

unwrapping [50-51]. 

In [47], a phase shifting technique using multi-fringe patterns was presented in order to 

simultaneously measure 3D surface profiles of various slow-moving objects with arbitrary height 
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changes. The proposed algorithm used sequential unwrapping with a set of multi-fringe patterns 

in which the number of fringes was increased by a factor of 2 at each unwrapping step, starting 

from a single fringe pattern. This phase unwrapping approach was verified by simultaneously 

measuring two sculptures and a human face in the same scene. Results demonstrated this technique 

is less sensitive to motion and provides lower noise levels than when only using a single fringe 

pattern. However, no criterion was presented regarding how to determine the number of phase 

unwrapping steps, or the rationale for increasing the number of fringes by a factor of 2 in each 

unwrapping step. 

In [49], the sequential unwrapping approach of [47] was further extended by applying a Gaussian 

filter to the relative phase values to remove noise before phase unwrapping. Six unwrapping steps 

were used, each increasing the number of fringes by a factor of 2. The filtered phase values were 

used for determining the fringe order for each pixel, which were then used to unwrap the raw 

(unfiltered) phase values from the patterns. Regions with erroneous phase values were identified 

and filled based on the phase values of adjacent pixels. Experiments measuring a human face 

demonstrated the ability of the proposed framework to reduce the random noise in the phase. 

In [50], the set of multi-fringe patterns was experimentally selected for reducing 3D reconstruction 

errors. Several arbitrary sequences of increasing numbers of fringes were empirically tested to 

reduce the standard deviation of the 3D measurements of various objects. Results found that there 

was an optimal sequence of multi-fringe patterns to minimize the error suggesting that a 

mathematical model would be needed to determine this optimal sequence. In [51], the same authors 

presented a procedure to determine the number of fringes for a single-step phase unwrapping using 

a mathematical model. Namely, stochastic analysis and analytical models were used to determine 

the descriptive statistics of the noise in phase values caused by the image intensity noise that was 

experimentally observed during measurements of an object of interest. The model considered the 

standard deviation of the relative phase as a function of the number of fringes and the random 

noise value in the relative phase for an object of interest.  In addition, a numerical approach based 

on a Monte Carlo statistical simulation was presented to create a plot of the standard deviation of 

the unwrapped phase values as a function of the number of fringes in the multi-fringe pattern. 

Based on the analytical and numerical models, guidelines were proposed to estimate the optimal 

number of fringes which corresponds to the minimum standard deviation of the unwrapped phase 
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values. If the optimal number of fringes obtained from the numerical and analytical models were 

not equal, the designer was left to choose which number of fringes to use. 

In summary, previous work has provided guidelines about how to select the number of fringes 

which minimizes 3D reconstruction errors when using a single step of active phase unwrapping, 

and has shown how multiple unwrapping steps based on patterns with an increasing number of 

fringes can reduce unwrapping errors caused by random noise in relative phase. However, there is 

an optimal number of fringes after which no further reduction in noise is achieved in multiple 

unwrapping steps. Hence, optimizing the selection of both the number of phase unwrapping steps 

and the number of fringes in each multi-fringe pattern will reduce measurement errors without 

unnecessarily increasing the number of pattern images that need to be captured of the target object. 

Therefore, there is a need to develop a formal methodology that considers selecting the number of 

fringes for each pattern of a multi-fringe pattern set when using sequential multi-step active phase 

unwrapping (i.e., using multiple phase unwrapping steps) to minimize the measurement errors 

caused by random noise in phase values. 

2.3 SL Systems for Micro-scale Measurements 

In this section, structured-light systems that have been developed for micro-scale measurements 

are presented, focusing on the general software and hardware components of such systems. Then 

the calibration approaches used in the literature for these systems are discussed. 

2.3.1 Development of Micro-scale Systems 

A comprehensive overview of the literature on the proposed SL systems for micro-scale measurements 

is presented in order to summarize the existing approaches. Each approach is discussed and the 

specifications of the system developed are presented. Finally, the limitations of existing approaches 

are highlighted. 

In [55], a system for 3D microscopy was presented. The system used a stereo-microscope in which 

one of the light paths was modified to use a collimated LED light source and a sinusoidal grating 

to project fringe patterns, while the other light path was used for a CCD camera for imaging. A 

stereoscopic angle of 12° was used as the triangulation angle necessary for obtaining 3D 

measurements. Four phase-shifted sinusoidal patterns with a wavelength of 1/6 mm were projected 

onto a field-of-view (FOV) of 5.8 x 5.8 mm, with 30 fringes. The phases were unwrapped with a 
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reliability-based approach, i.e., a path-dependent approach that unwraps the phase value of pixels 

in order of their reliability, which is estimated based on the differences in phase values with respect 

to neighboring pixels, local changes in intensity modulation, among other metrics. A second order 

polynomial regression model was used for mapping the unwrapped phase values to the depth of 

the scene with respect to a reference plane. As an illustration of the system’s capabilities, a coin (a 

United States one-cent coin) was measured. 

In [56], a microscope-based structured-light system was developed for 3D reconstruction of 

specular reflecting surfaces with very low surface roughness and low local slopes (smoothly 

varying surface profiles). The projected patterns consisted of an array of light dots generated by a 

matrix-shaped array of pinholes with a pinhole radius of 20 µm and a pinhole pitch of 120 µm, 

and a density of 35,000 dots/mm2 when projected onto the object surface. The CCD imaging sensor 

had a resolution of 1280 x 960 pixels and a pixel size of 3.5 µm. The surface profile of an object 

was measured by capturing a stack of images, scanning the object as it was moved to different 

positions along the optical axis (corresponding to the z coordinate in the world coordinate system) 

using precision stages. Based on the resulting stack of images with different focuses, which are 

indexed to the positions of the stages when the image was taken, the surface profile of the object 

was determined. To this end, at a given pixel, a Gaussian distribution function was fitted to the set 

of image intensity values obtained for different object positions. Then, the location of the object 

surface was determined as the location of the peak value of the fitted Gaussian distribution 

function, the rationale being that the presence of the reflective surface results in the highest image 

intensity captured during the measurement procedure. A similar procedure was used to estimate 

the image coordinates (�, �) of the pixel, in order to correct for the apparent lateral movements of 

objects between images taken at different focus levels. The repeatability of the system was tested 

by measuring a flat mirror, and determined to be 0.01 µm in (�, �) , and by 0.03 µm in �, based 

on 10 repeated measurements. The system was then used to measure a polished glass reflective 

sphere. Deviations between measured 3D points and the nominal sphere dimensions were found 

to have a mean of 2 µm and a standard deviation of 0.3 µm. 

In [57], a structured-light system for measuring micro-scale objects was presented. The system 

consisted of an LCD projector with a resolution of 832 x 624 pixels used to project a sequence of 

four phase-shifted sinusoidal intensity patterns through a long working distance (LWD) 

microscope lens, and a CCD camera also with a LWD microscope lens to capture pattern 
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deformation. Based on the images of the deformed patterns, the relative phase map is obtained and 

unwrapped using a reliability-based approach based solely on phase differences with respect to 

neighboring pixels. To recover, the surface profile of the measured object, the height at a given 

point on the object surface is directly proportional to the change in the unwrapped phase at that 

point caused by the presence of the object, with respect to a reference plane. The proposed system 

was used to obtain the surface profile of the inscriptions on a 1-cent Singapore coin, a micro-

resistor mounted on a printed circuit board, and the copper pad on a ball grid array electronic 

component. The measured objects had a maximum height profile (�-coordinate) of 50 µm, and 

were measured with a reported accuracy of 2.5% (i.e., 2 µm) with respect to measurements 

provided by a coordinate measuring machine, which relies on scanning the object surface 

measuring each point with a contact probe. A second generation design of this system was 

presented by the same authors in [18]. This new SL system was designed to have a compact 

footprint and measure out-of-plane displacements of micro-components with sub-micron 

resolution, but otherwise no further innovations were presented regarding the calibration or 

measurement methods or associated software. The new design mounted the LCD projector and 

CCD camera with LWD microscope lenses on a rigid fixture perpendicular to a three-axis stage 

where the measured object was placed, with the goal of addressing alignment and portability 

issues, and reducing the system footprint with respect to earlier version of the system [57]. The 

experiments measuring the profiles of a micro-mirror and a micro-electrode pad qualitatively 

showed that the system was able to measure object features with lengths of 0.1 mm, though the 

accuracy and repeatability of the measurements was not reported. 

In [58], the same authors as in [18] presented a structured-light system for microscale 

measurements that used a novel two-step phase-shifting technique, as opposed to using three or 

more phase shifting steps. The rationale for their proposed method was to avoid the need for phase 

unwrapping so as to improve the potential measurement speed of the system. The structured-light 

system developed by the authors consisted of a CCD camera and an LCD projector both using 

LWD lenses. In their experiments, the two-step phase shifting technique was compared with the 

four-step phase-shifting method used in their previous work [18, 57], and with measurements 

obtained with a coordinate measurement machine. Results showed that the two-step phase-shifting 

produced measurements within 0.76% from those obtained with the four-step phase-shifting 

approach, and that the measurement errors of the two-step approach when measuring the profile 
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of a coin with a maximum height of 120 µm was approximately 8 µm. Although the proposed 

technique could potentially provide faster measurements of the surface profile of the object, the 

effect of using only two phase-shifted patterns on the resulting sensitivity to image noise, ambient 

illumination and surface albedo, was not documented. 

In [59], the development of a real-time SL system for microscopic profilometry based on phase-

shifting was presented. The proposed system was based on fitting a DMD projector and a CCD 

camera to a stereoscopic microscope. Four phase-shifted sinusoidal patterns with a period of 8 

pixels were used for measuring a field-of-view (FOV) of 10.67 x 8.01 mm on the object. The main 

contribution of this system was the overall measurement speed achieved to provide a 3D surface 

profile, which was the result of their particular hardware and software implementation, which 

leverages the graphics card GPU to parallelize both image acquisition and post-processing steps 

such as phase recovery, phase unwrapping, phase to height conversion, noise filtering and 

rendering. Overall, the system was able to render real-time images at a frame rate of approximately 

30 Hz. To determine the measurement accuracy when measuring static and dynamic objects, a flat 

glass plate and a latex membrane dynamically deformed by pushing it the tip of a pen were 

measured with the proposed system. Isometric errors of 17 µm were reported, most of which were 

due to the lateral resolution of the camera pixels (17 µm/pixel at the center of the volume). 

In [60], an SL system for 3D microscopy was developed combining a DMD projector, a CMOS 

camera and LWD microscope lenses with fixed focal lengths. The triangulation of the hardware 

configuration of the system was set with the fringe projection orthogonal to the reference plane 

and the camera at an angle that was determined using the Scheimpflug principle to maximize the 

in-focus measurement volume on both the camera and projector lenses. Namely, the camera 

CMOS sensor was tilted with respect to the optical axis of the lens, so that the reference plane, the 

CMOS plane and the principal plane of the camera lens intersect at a single point. This geometrical 

arrangement maximizes the depth-of-field (DOF) around the reference plane in which both the 

camera and the projector are in focus. The developed system was tested by measuring a 50-cent 

Chinese coin and a ceramic flat plate, both placed orthogonal to the projector and moved to four 

different depth positions, separated 100 µm apart, using a precision stage. The experimental results 

indicated that the obtainable measurement volume was 4 mm x 5 mm x 0.5 mm, with a standard 

deviation of 4 µm. Observed measurement errors in the range 1-9 µm were reported to be a result 
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of the positioning errors of the stage, i.e., to uncertainty about the actual position of the calibration 

object when generating the calibration data. 

2.4 Calibration of SL Systems 

System calibration is important to the development of high-accuracy SL systems. The accuracy of 

the 3D reconstruction depends on the accuracy with which model parameters can be estimated 

based on calibration data [60]. Calibration approaches that have been proposed in the literature for 

SL systems can be classified into two categories: 1) model-based approaches that rely on 

parameterized physical models of the system, with model parameters that are estimated based on 

calibration data [42, 60-62], and 2) empirical approaches that utilize statistically derived models 

to map the actual measured information (e.g., image coordinates) to the desired measurement 

variable (world coordinates of the object surface) [55, 63]. 

Though model-based and empirical calibration approaches have been proposed for SL systems to 

measure macro-scale objects [64], calibration for measuring micro-scale objects poses additional 

challenges. First, micro-scale measurements require special lenses whose optics typically deviate 

from pinhole models, thus requiring new calibration approaches [42]. Second, lenses used for 

micro-scale measurements have shallow depth of field, thus limiting the region of the scene inside 

which the target object is in focus. The shallow DOF poses a challenge for calibration approaches 

that rely on multiple images of a calibration object at different positions and poses inside the 

measurement volume. The challenge lies in that, because of the shallow DOF, only a limited set 

of independent measurements can be made of the calibration object, introducing collinearity and 

ill-conditioning problems in the model fitting algorithms that use this data to determine the 

calibration parameters. To deal with these challenges, several calibration approaches have been 

proposed in the literature for micro-scale measurements. In the remainder of this chapter, these 

approaches are discussed. 

2.4.1 Model-based Calibration 

SL-based 3D surface profiling in macro-scale applications has extensively used calibration 

approaches that estimate the intrinsic parameters of the camera and projector, as well as the 

extrinsic parameters of the SL system triangulation configuration (e.g., [42, 61]), based on pinhole 

optical models. However, micro-scale SL systems require special lenses, whose optics deviate 
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from these pinhole models [42]. Hence, alternative procedures have been presented for the 

calibration of micro-scale SL systems, as described below.  

In [62], a new calibration method was proposed for an SL 3D microscopic system that combines 

a projector using a LWD microscope lens, modelled with pinhole optics, and a camera with a 

telecentric lens, modelled as an orthographic projection of the scene with a constant magnification. 

The proposed calibration procedure required first to obtain the intrinsic parameters of the projector 

using the standard procedure of considering it as an inverse camera [42]. Namely, a flat calibration 

object with a grid of circle markers was imaged under different poses. For each pose, multi-fringe 

patterns with 9 phase-shifts were projected, plus single-fringe patterns to resolve discontinuities at 

fringe boundaries. After the camera-projector pixel-to-pixel correspondence was established using 

the captured phase values, the images were mapped to the projector to determine its intrinsic 

parameters. Using a precision micro-stage to place the calibration object at a known world 

coordinate frame, the coordinates of the target points of the calibration object were determined and 

used to estimate the extrinsic parameters of the projector with a Levenberg-Marquardt iterative 

procedure. Finally, with the calibrated projector, the camera extrinsic transformation was 

estimated. Defining the world coordinate system to be aligned with the projector coordinate 

system, the 3D coordinates of the calibration object markers were determined, and this information 

was used to find least-squares estimates of the world-to-camera transformation matrix, i.e., to 

estimate the calibration parameters for the camera. Calibration experiments performed with the 

developed system resulted in ±5 µm errors, with RMS errors of 1.8 µm and 1.2 µm for the camera 

and the projector, respectively. 

An alternative model-based calibration model was proposed in [60], consisting of a general 

imaging model that mapped each pixel in the camera CCD sensor or the projector DMD panel 

with a unique light ray. In this general imaging model, pixel-to-pixel correspondences obtained 

from absolute phase values served to identify homologous pixel pairs. Homologous pixel pairs 

were pairs of pixels that have the same phase values and thus corresponded to the same light ray, 

emitted from the projector and reflected by the object onto the camera. During calibration, a flat 

calibration object with markers was placed on a precision stage, so that the world coordinates of 

each marking were known. By moving the object while tracking the movement of the markers on 

both the world coordinate system and in pixel coordinates, the mapping of pixels to light rays was 

established for each pixel and stored in a look-up table. To calibrate this model, measurements of 
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the calibration object in at least 3 known poses, two of which cannot be parallel, were required. 

Based on these three sets of camera-projector correspondences, interpolation was used to measure 

other objects of arbitrary shape. Calibration errors were not reported, however measurement errors 

were. A ceramic flat plane placed in different positions inside the measurement volume resulted 

in mean and standard deviation of measurement errors in the range 1 – 5 µm and 2.3 – 3.7 µm, 

respectively. 

Model-based calibration approaches are based on physical modelling of the system optics. Though 

they have been widely, successfully used in macro-scale measurement applications, the special 

optics required for micro-scale measurements is not well represented with pinhole models. More 

importantly, model-based calibration approaches require multiple images of the calibration object 

with different positions and poses within the measurement volume to define a calibration data set 

with a large number of linearly independent samples. This makes model-based approaches 

unsuitable for SL systems for micro-scale measurements, in which the large optical magnifications 

that are used result in shallow depth of fields. For these reasons, the literature in micro-scale 

measurements with SL systems prefers empirical calibration models, described below. 

2.4.2 Empirical Calibration Models  

In contrast with calibration approaches based on modeling the optics of the projector and the 

camera, empirical calibration models rely on linear regression to create a mathematical model that 

maps the surface profile of an object, �(�, �), to the captured phase values at a given location (�, �) on the imaging sensor. These empirically based mathematical models are usually referred 

to as phase-to-height equations. As an advantage, empirical calibration approaches can be used 

regardless of the optics of the system, and are thus suitable for systems with pinhole lenses, 

telecentric lenses, or combinations thereof. Therefore, empirical calibration approaches are 

suitable for structured light systems for both macro- and micro-scale applications. 

To calibrate a structured-light 3D sensing system empirically, the direction of the �-coordinate 

(also known as depth, or range) is defined, typically aligned with the bisector of the angle between 

the optical axes of the camera and projector [63] or with the optical axis of the camera [55]. In 

[63], a flat calibration object is placed on precision micro-stages, and it is imaged in a sequence of 

positions as it is moved along the �-coordinate. Then, one of the positions of the calibration object 

(usually the farthest from the camera) is defined as the reference plane and assigned a �-coordinate 
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value of zero. For each pixel in the imaging sensor, a relationship can be established between the 

known position of the calibration plane measured with respect to the reference plane, and the 

change in phase value for that pixel with respect to the phase value the pixel had when the 

calibration plane was placed in the reference position. For instance, in [63] the phase-to-height 

relationship for a given pixel is defined as linear regression of the change in phase values between 

the reference position and the measured position. The regression coefficients are estimated for 

each pixel based on the calibration data, and stored in a Look-up Table (LUT). To verify the 

accuracy of the empirical calibration approach, the calibration plane was measured at additional 

locations (not used as part of the calibration data), resulting in errors of 5 – 7 µm with respect to 

the known position of the calibration plane as given by laser interferometry with nano-scale 

accuracy.  

More recently, in [55], a different phase-to-height relationship was presented which, although 

empirically determined, derived its functional form from the optical behavior of symmetric, co-

planar structured-light systems with ideal, identical optics for the camera and the projector. In such 

cases, it has been established that phase and height are inversely proportional to each other due to 

the perspective projection caused by pinhole optics. An empirical model was proposed as a linear 

regression of the reciprocal of height as a function of the reciprocal of phase, with a different set 

of regression coefficients for each pixel, stored in a LUT. Using this empirical calibration model, 

a measurement was taken of a flat plane in two positions separated by 13 µm (as indicated by the 

translation stages), resulting in an error of 0.082 µm (0.6%). However, it is difficult to assess the 

accuracy of the proposed calibration method based on a single data point, and without information 

about the position error of the stages used for the calibration. As an additional verification of 

accuracy, the equation of a plane was fitted to the measured points, and the standard deviation of 

the points with respect to the fitted plane was 0.529 µm. 

Though empirical calibration approaches using look-up tables can be used regardless of the optics 

of the system, their main disadvantage, besides their memory storage requirements, is that each 

pixel-specific regression model is fitted to a small data set containing only information about the 

height of the surface that is observed at that camera pixel. For instance, if during the calibration 

procedure the calibration object is imaged at 10 different locations in the �-coordinate, the LUT 

approach would require fitting one regression model for each pixel based on (at most) 10 data 

points. Because of the small number of data samples used to fit the regression model, the resulting 
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model coefficients are sensitive to noise in the calibration data, and result in a larger predictive 

variance, i.e., wider confidence intervals for the model predictions. 
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Chapter 3  
Design Methodology for SL System Configurations 

In this chapter, a novel generic design methodology is proposed for determining optimal 

triangulation configurations of SL sensory systems for 3D reconstruction of complex objects. The 

performance of SL systems is determined by the emitting (i.e., projector) and capturing (i.e., 

camera) hardware components and the triangulation configuration between them and an object of 

interest. The optimal configurations of the hardware components are determined with respect to a 

set of performance metrics: 1) minimizing the 3D reconstruction errors, 2) maximizing the pixel-

to-pixel correspondence between the projector and camera, and 3) maximizing the dispersion of 

the measured 3D points within a measurement volume; while satisfying design constraints based 

on hardware and user-defined specifications. The proposed methodology utilizes a 3D geometric 

triangulation model based on ray-tracing geometry and pinhole models for the projector and 

camera. In Section 3.1 a description of the models for estimating the 3D reconstruction errors of 

SL systems is provided. Section 3.2 presents the proposed novel methodology for designing an SL 

system with each step discussed in detail. 

3.1 SL system models 

SL system models are utilized as key elements in the proposed design methodology in order to 

estimate 3D reconstruction errors. The models include: 1) pinhole models used for the camera and 

the projector, 2) an optical geometric model for the triangulation relationships of an SL system 

configuration, 3) a backward ray-tracing model for establishing the pixel-to-pixel correspondence 

from the projection panel to the imaging sensor, and 4) a 3D reconstruction model. These SL 

system models will be used within the design methodology to optimize the triangulation 

configuration of the hardware components in order to achieve user-defined performance metrics. 

3.1.1 Camera and projector models 

The camera is modelled using the pinhole model, which defines the geometric mapping between 

3D object points and their  2D corresponding projections onto the image plane of the camera [65]. 

The camera lens is modelled as a single point, referred to as nodal point, through which the light 

rays enter the camera. The lens behavior is considered to be ideal, i.e., neglecting lens distortion 

effects [66]. Optical models that include distortion effects can also be used if they are available 
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prior to implementation of the design methodology. However, since prior experimental tests are 

needed to determine the appropriate distortion model [67-69] and the SL hardware configuration 

design precedes the system calibration stage, the methodology incorporates ideal lens behavior. 

The light rays are assumed to travel in straight lines from the measured object’s surface, passing 

through the nodal point to the image plane of the camera, where an inverted image of the measured 

object is formed, Figure 1. The image plane where the inverted image is formed is placed one focal 

length behind the nodal point. A common approach used with the pinhole model is to place a 

virtual image plane in front of the nodal point [65]. The non-inverted images formed at the virtual 

image plane are equivalent to the inverted images from the image plane. 

 
Figure 1. Pinhole model. 

Figure 1 illustrates the pinhole model with its virtual image plane for a camera. The camera 

coordinate system is placed at the nodal point of the camera, �, where its �-axis, �	, is aligned 

with the optical axis of the camera lens and intersects the virtual image plane at point, 
	, referred 

to as the principal point. The �	 and �	 coordinate axes are parallel to the horizontal and vertical 

directions of the imaging sensor of the camera, respectively. The image coordinate system is 

defined by convention to be at the top left of the virtual image plane, and has the axes u and v 

parallel to �	 and �	. 

Using the pinhole model, a 3D point, �, on the object’s surface has corresponding image 

coordinates � and . The mapping from 3D world coordinates to 2D image coordinates can be 
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obtained from the pinhole model geometry and rigid body transformations. Therefore, the 

coordinates of any 3D point ��, � = 1, ⋯ , �, of homogeneous coordinates (��, ��, �� , 1)� are related 

to its projection on the image plane, point ��, of homogenous image coordinates ��� , �,, 1��
, by 

the following relationship [66]: 

� ��1� = � �� 	 ! 	0#×% 1 & '���1(, (1) 

which is defined up to the scale factor �. This scale factor provides the unique representation for 

the mapping of the world to the image homogeneous coordinates. Namely, this scale factor is used 

since objects of different sizes may result in the same image if they are located at different 

distances from the image plane [65]. � represents the intrinsic parameters of the camera, and � 	 

is the rotation matrix and ! 	 is the translation vector from the world coordinate system to the 

camera coordinate system, respectively. � 	 and ! 	 are referred to as the extrinsic parameters 

of the camera since they characterize the camera’s orientation and position with respect to the 

world coordinate system. 

The intrinsic parameters include the optical characteristics and the internal geometry information 

of the camera [70]. Namely, the focal length of the camera ()	), the horizontal and vertical pixel 

sizes (*+, *,), and the image coordinates (�-, -) of the principal point 
	. These parameters 

determine the transformation from the camera coordinates to the image coordinates defined by the 

matrix �:  

� = .*+)	 0 �-0 *,)	 -0 0 1    0000. (2) 

With respect to the modeling of the projector, the projector itself is considered as an inverse camera 

where the light rays travel from the image plane of the projection panel to the target object. 

Therefore, the projector has its own intrinsic and extrinsic parameters based on the camera pinhole 

model. 
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3.1.2 SL configuration model 

The geometric triangulation model of an SL system requires defining the relative position and 

orientation of the system hardware components, i.e., projector and camera, with respect to the 

object of interest. Figure 2(a) shows the triangulation of an SL system, using pinhole models for 

the camera (�) and the projector (1). The focal lengths of the optics are )	  and )2 for the camera 

and projector, respectively. 

In order to describe an SL configuration, a design coordinate frame (�3,�3,�3) is defined with its 

origin coinciding with the projector’s nodal point 1. This design coordinate frame provides a fixed 

reference coordinate system to describe the positions of the hardware components and the 

reference plane. In the design coordinate system, the orientation of the projector is determined by 

the intrinsic rotation matrix: 

�45 = �(62)�(72)�(0), (3) 

where 68 and 78 are Euler angles measured with respect to the design reference frame. The YXZ 

notation corresponds to the three elemental rotations of the projector that occur in sequence, i.e., 

the projector is rotated about its �-axis by 62, then about its new �-axis by 72, and finally about 

its new �-axis by 0 degrees. These two parameters represent two degrees of freedom for the 

projector’s orientation in the triangulation model. Note that the third Euler angle is set at zero, to 

ensure the horizontal directions remain parallel for the projector and camera. 
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(a) 

 
(b) 

Figure 2. (a) SL triangulation configuration, and (b) ray-tracing. 

The camera position with respect to the projector is set by the separation of the nodal points of the 

camera and the projector, i.e., 9 (width), : (height), ; (length) in the �, � and � directions of the 
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design coordinate system, respectively. The 3D vector, 1�<<<<<=, corresponds to an additional three 

degrees of freedom for the model. In order to obtain the last degree of freedom for the model, the 

triangulation configuration needs to be defined in a manner that allows the optical axes of the 

projector and camera to intersect at a common point located on a reference plane placed at a given 

distance (�>?@). The distance �>?@ represents this last degree of freedom. This configuration allows 

the measurement volume, i.e., the intersection of the fields of view and depths of field of the 

camera and the projector, to be centered on the imaging sensor and the projection panel. Moreover, 

the intersection of the optical axes determines the location of the origin of the reference world 

coordinate system, 
 , and defines the camera orientation (6	, 7	).  

In summary, the configuration model has six degrees of freedom: 1) the two orientation degrees 

of freedom of the projector (62, 72), 2) the 3 degrees of freedom that define the relative position 

of the camera with respect to the projector (9, :, ;), and 3) the one degree of freedom �-position 

of the reference plane (�>?@). In general, any arbitrary hardware configuration can be generated 

based on the triangulation formed by the intersection of the optical axes of the camera and the 

projector with a given reference plane. In the design methodology, these degrees of freedom will 

be used as design variables to optimize an SL system triangulation configuration.  

3.1.3 Pixel-to-pixel correspondence 

In order to determine the pixel-to-pixel correspondence between the projector and camera, the 

design methodology utilizes a unique backward ray-tracing model to define which discrete 

projector pixel emits the light rays captured by a camera pixel of interest; this is in contrast to the 

traditional approach of only considering a continuous plane for the camera sensor and the projector 

panel as is done in [42, 71-72]. In our backward ray-tracing model, the emitted light rays from the 

projector are traced backwards starting from the camera, point �, to a 3D point � on the surface of 

the object and then to the projector, point 1, Figure 2(b). These rays intersect the imaging sensor 

at point � and the projection panel at point A, respectively. The mapping between the projector’s 

and camera’s image coordinates is defined to be:  

[�2 , 2]′ = E��, �>?@, 9, :, ;, 62 , 72, �	 , 	 , )	 , )2 , F	 , F2 , G+,	 , G,,	 , G+,2 , G,,2�, (4) 

where the projector’s image coordinates (�2 , 2) of point � on the measured object are related to: 

1) the set of the aforementioned design variables defining the hardware system configuration 
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(�>?@ , 9, :, ;, 62 , 72); 2) the image coordinates of the corresponding camera pixel (�	 , 	); and 3) 

the optical specifications of the camera and projector hardware such as the focal length ()	 , )2), 
the sizes of square pixels (F	 , F2), and the vertical (G,,	 , G,,2) and horizontal (G+,	 , G+,2) 

resolutions of the camera’s sensor and the projector’s panel. E is the mapping function from the 

imaging sensor to the projection panel using the backward ray-tracing model. Collectively, the 

variables and parameters on the right hand side of Eq. (4) unequivocally define the geometry of 

the ray-tracing procedure used to establish the pixel-to-pixel correspondence. 

The ray-tracing model is implemented as an iterative algorithm consisting of a step-by-step 

procedure that includes casting an individual camera ray through point �, determining its 

intersection with the object’s surface (point T), tracing it back to the projection panel (point A), 

and determining its corresponding projector pixel. Point R on the imaging plane, expressed as  �<=HIJIKL in the camera coordinate frame (�	�	�M), is transformed to the design reference frame by 

the following relationship: 

�<= = ��4MN�O#�<=HIJIKL, (5) 

where �4M = �(6P)�(7P)�(0) is the intrinsic rotation matrix of the camera, and 6	 and 7	 are 

Euler angles measured with respect to the design reference frame. The 3D point on the object 

surface, point � with respect to the origin of the design reference frame, is determined to be the 

intersection of the light ray with the object’s surface: 

�<= = ���<=Q, �=, �<=�, (6) 

where � determines the intersection of an object’s surface with normal vector �<=Q and a ray from �= 

and passing through �<=, and �= = (9, :, ;) corresponds to the position of the camera’s nodal point 

with respect to the origin of the design reference frame. The corresponding point A on the 

projection panel, with respect to the origin of the design coordinate system, is determined by the 

intersection of a ray starting from �<= to the nodal point of the projector 1<= as:  

A<= = ��32��O# RSTU<=VWVXVYZO2<=WVXVYZ[ ⋅ ]<=VWVXVYZ�<=WVXVYZ  ⋅ ]<=VWVXVYZ ^ �<=HVJVKZ + 1<=HVJVKZ`, (7) 
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where the subscript �2�2�5 denotes the projector coordinate frame; 
<=2HVJVKZ = (0,0, )2) 

corresponds to the principal point of the projector’s pinhole model; 1<=HVJVKZ = (0,0,0) is the 

position of the projector’s nodal point; �<=2HVJVKZ = (0,0, )2)  is the normal vector of the projection 

plane; and  �<=HVJVKZ = �32� �<= corresponds to point � in the projector coordinate frame. 

Since the projector panel and the imaging sensor are discretized into pixels, each projector pixel 

illuminates a certain sub-area on the object’s surface, which is in turn captured by certain camera 

pixels. Therefore, the pixel-to-pixel correspondence between the projector and camera requires the 

estimation of this sub-area on the object’s surface in order to determine which camera pixels 

capture it. In our work, the pixel-to-pixel correspondence is determined by: 1) sampling each 

camera pixel and by tracing backwards the light rays to determine the projector pixel from which 

each light ray was emitted, and 2) establishing the unique pixel-to-pixel correspondence for the 

camera pixel capturing the majority of the light rays from the same projector pixel. First, each 

camera pixel is divided into a 3x3 uniform grid and each grid cell within the pixel has a 

corresponding light ray defined as: 

��	,a, 	,a� = (b − 1 + 0.25 ∙ h, � − 1 + 0.25 ∙ �) F	, (8) 

where 1 ≤ * ≤ 9 corresponds to the index of the light ray; 1 ≤ b ≤ G+,	 and  1 ≤ � ≤ G,,	 are the 

column and row of the camera pixel, respectively; and h = );kkl m ano,Ip and  � = );kkl m anq,Ip. 

Then, each ray is traced back to the projector’s panel to determine the intersection point E and its 

corresponding projector’s image coordinates �2 and 2 in order to determine the projector pixel 

each ray corresponds to. A camera pixel with at least 5 of its 9 sampled rays corresponding to the 

same projector pixel is said to have a unique pixel-to-pixel correspondence with that projector 

pixel. 

3.1.4 3D reconstruction model 

Once the pixel-to-pixel correspondence is established, the relationship between a 3D point on the 

object’s surface and its projector-camera pixel correspondence can be expressed for the projector 

and camera using the pinhole model represented in Eq. (1):  
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�2 ��2,�2,�1 � = r2 s� ,�� ,�� ,�1 t, and (9) 

 

�	 ��	,�	,�1 � = r	 s� ,�� ,�� ,�1 t, (10) 

where �2 and �	   are scale factors for the projector and camera, respectively; � represents the pixel 

under consideration; and  r2 = �2 �� 2 ! 20#×% 1 & and r	 = �	 �� 	 ! 	0#×% 1 & are the 

transformation matrices for the projector and camera, which are defined based on the geometry of 

the SL system configuration under consideration. 

Utilizing Eq. (9) and (10), we can obtain the set of linear equations needed to estimate the world 

coordinates of a 3D point on the surface of an object given its projector-camera correspondence:  

S��2,�h%#,2 − h##,2� ��2,�h%u,2 − h#u,2� ��2,�h%%,2 − h#%,2��2,�h%#,2 − h##,2� �2,�h%u,2 − h#u,2� �2,�h%%,2 − h#%,2�^ '� ,�� ,�� ,�( =
S�h#v,2 − �2,�h%v,2��h#v,2 − 2,�h%v,2�^, and 

 

 

 

(11) 

 

S��	,�h%#,	 − h##,	� ��	,�h%u,	 − h#u,	� ��	,�h%%,	 − h#%,	��	,�h%#,	 − h##,	� �	,�h%u,	 − h#u,	� �	,�h%%,	 − h#%,	�^ '� ,�� ,�� ,�( =
S�h#v,	 − �	,�h%v,	��h#v,	 − 	,�h%v,	�^, 

(12) 

where � denotes the i-th pixel; h�w represents the ij-element of the transformation matrix for the 

projector (1) or the camera (�). Determining the projector’s image coordinates ��2,� , 2,�� depends 
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on the number of axes used for encoding the patterns used in the pattern coding strategy [73]. For 

patterns encoded in both axes (e.g., 2D M-arrays) of the projection area, both projector’s image 

coordinates (�2,� and 2,�) are determined, and the world coordinates of a 3D point (� ,�, � ,�, � ,�) are determined by solving the overdetermined system of equations, Eq. (11) and Eq. (12), 

using the least squares approach. When a single pattern axis (e.g., discrete and continuous time-

shifting patterns) is used only  �2,� or 2,� is determined, and the world coordinates (� ,�, � ,�, � ,�) are determined by solving Eq. (12) and the appropriate equation in Eq. (11). 

Figure 3 illustrates the 3D reconstruction process, for which only one pixel of the camera and one 

pixel of the projector are depicted. The world coordinates of a 3D surface point �′ are obtained for 

patterns encoded in both axes by the least square solution of two non-intersecting rays form the 

camera and the projector pixels, Figure 3(a), or for patterns encoded in a single axis by intersecting 

the centered ray form the camera pixel with a vertical plane going through the center of the 

projector pixel, Figure 3(b). The reconstruction error is determined by obtaining the root mean 

square (RMS) of the error vector ( �x − �): 

yz{Q = |(�′H − �H)u + ��′J − �J�u + (�′K − �K)u, (13) 

where � corresponds to the actual world coordinates of a 3D surface point. 
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(a) 

 
(b) 

Figure 3. Model of 3D reconstruction errors of point T' (red dot) corresponding to (a) 

two non-intersecting rays, and (b) one ray intersecting with a plane. 

3.2 Design Methodology 

In this section, the generic model-based design methodology that optimizes the triangulation 

configuration of the hardware components of SL systems is presented. The design methodology 

encompasses the following steps, Figure 4: 1) design problem definition, including identification 
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of the design variables and performance metrics; 2) identification of design constraints; 3) 

simulation of system performance; and 4) optimization of the SL system configuration. 

 
Figure 4. Proposed design methodology for SL systems. 

3.2.1 Design problem definition 

The first step in the design methodology is to define the design problem which is to determine an 

optimal SL system triangulation configuration with a given set of hardware components. To 

formulate this design problem, the design variables and performance metrics need to be first 

identified. The models presented in Section 3.1 establish a relationship between the expected 

reconstruction errors, and the geometric and optical characteristics of an SL system. In the 

proposed methodology, the six degrees of freedom of the SL configuration model are considered 

to be the design variables of the system. 
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In order to estimate the overall performance of an SL configuration for a given set of hardware 

components, the number of axes (G}) used to encode the patterns in the pattern coding strategy 

(i.e., 1D or 2D, as discussed in Section 3.1.4) needs to be provided by the user, so that the 

reconstruction errors can be estimated using the appropriate model. In addition, a user-defined 

target size of the measurement region, hereafter called measurement volume, is specified by the 

user to contain the object(s) of interest to be measured. The distribution of the estimated 

reconstruction errors across the measurement volume is used to assess the performance of the SL 

system. Based on these reconstruction errors, the following performance metrics are defined: 1) 

the mean ~̂?��� = #n� ∑ yz{Q�n���# , and 2) the standard deviation ��?��� =
| #n�O# ∑ �yz{Q� − ~̂z{Q�un���# , of the RMS reconstruction errors for pixels with unique pixel-to-

pixel correspondence; 3) the portion (�) of the projected pattern covering the measurement 

volume; 4) the number of 3D points (G�) obtained from unique pixel-to-pixel correspondences 

between the camera and projector; and 5) the average distance from the 3D points to their nearest 

neighboring 3D points, referred to herein as dispersion (�n�). To reduce the dimensionality of the 

optimization problem, the five performance metrics discussed above are combined into three 

design objectives, namely: 1) minimize the mean and standard deviation of the reconstruction 

errors (~̂?��� ∙ ��?���); 2) maximize the portion of the projected pattern covering the measurement 

volume as well as the number of 3D points with unique projector-camera correspondence (� ∙ G�); 

and 3) maximize the dispersion (�n�) of the 3D points within the measurement volume so that they 

are distributed within the measurement volume, in order to better estimate the error distribution 

inside that volume. 

3.2.2 Identification of design constraints 

The second step in the proposed methodology is the identification of a set of design constraints 

(�) which consider practical limitations imposed on the design variables. In particular, we have 

included six constraints that are used to determine whether a particular triangulation configuration 

is feasible to implement given a set of hardware components. The design constraints consider the 

hardware specifications for the projector and camera optics as well as the overall footprint of the 

SL system. These required constraints correspond to: 1) determining that both the camera and the 

projector are in front of the reference plane, 2) verifying that the measurement volume is in the in-



37 

 

focus region for the projection and capturing of the pattern, 3) evaluating whether the positions of 

the camera and the projector will cause physical interference with each other, or block the 

projection and capturing of patterns. 

The camera and projector are required to be placed in front of the reference plane. The camera and 

the projector positions with respect to the reference plane are determined by evaluating the relative 

position of their nodal points (� and 1) with respect to this plane, which is defined by its normal 

vector �<= = [0,0, −1]′ and the origin of the world coordinate system 
 . This constraint can be 

expressed using the dot product as: 

�(1) = �                −1,             �) [(� − 
 ) ∙ �<=] > 0 ∧ [(1 − 
 ) ∙ �<=] > 01,                                                       k!:yl9��y  . (14) 

In Eq. (15), the result is negative for triangulations where the camera and the projector are placed 

in front of the reference plane. 

The reference plane needs to be placed within the range of the working distance of the optics so 

that the triangulation configuration can be implemented with the specified optics. Namely, the 

distances from the origin of the world coordinate system to the nodal points of the projector and 

the camera should be within the ranges of the working distances of the projector’s and camera’s 

optics; �2,��], �2,�}H, �	,��] and �	,�}H correspond to the minimum and maximum working 

distances, respectively. These conditions are defined by the following design constraint: 

�(2) = �             −1,          �) R    �‖1 − 
 ‖ > �2,��]�  ∧  �‖1 − 
 ‖ < �2,�}H�∧  �‖� − 
 ‖ > �	,��]�  ∧  �‖� − 
 ‖ < �	,�}H�1,                                                                           k!:yl9��y , (15) 

Thirdly, the user-defined measurement volume (�) needs to be completely inside the in-focus 

volumes for both the projector (�@2) and the camera (�@	), which are defined by their fields of 

view and near and far depths of field, respectively. Both necessary conditions guarantee that the 

projected pattern will be in-focus for the entire measurement volume, and that the camera will 

capture a focused image of the pattern. This requirement can be defined in the following constraint: 

�(3) = �                    −1,        �) � ⊆ �@2  ∧  � ⊆ �@	 1,        k!:yl9��y . (16) 



38 

 

Constraints evaluating physical interference are introduced to ensure that the projector and camera 

do not physically interfere with each other by blocking the projection and capturing of patterns 

and that the hardware components are placed in distinct 3D locations from each other. For 

determining physical obstruction of the pattern projection, it is determined whether the volume of 

the camera (�	) is inside the volume defined by the field of view of the projector, referred to as 

projector’s viewing frustum (ℱ2): 

�(4) = �   −1,                 �)  �	  ⨅ ℱ2 = ∅        1,                k!:yl9��y             . (17) 

Similarly, the volume of the projector (�2) and the camera’s viewing frustum (ℱ	) are used in Eq. 

(18) for determining physical obstruction for pattern capturing: 

�(5) = �   −1,                 �)  �2 ⨅ ℱ	 = ∅        1,                k!:yl9��y             . (18) 

Lastly, a constraint evaluates whether there is physical interference between the projector and the 

camera due to their 3D locations: 

�(6) = �       −1,                 �) �2 ⨅ �	 = ∅ 1,                 k!:yl9��y . (19) 

3.2.3 Simulation of an SL system 

The third step in the design methodology is to simulate the SL system in order to estimate the 

performance metrics of the system for a given triangulation configuration. This estimation process 

can be repeated to consider a number of feasible hardware configurations, from which an optimal 

triangulation configuration can be determined for a particular SL system. The measured object is 

modelled as a flat plane moved along the z-direction to estimate the system performance 

throughout the measurement volume. 

3.2.4 Optimization of system configuration 

The last step for the methodology is the optimization of the design. The goal of this step is to 

determine the optimal hardware configurations based on the set of aforementioned performance 

metrics. The overall SL hardware configuration optimization problem is defined as: 
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min+<<= �~̂?��� ∙ ��?��� , −� ∙ G�, −�n�  �, 

(20) subject to �(�<=) ≤  0 , 

where �<= = (�>?@, 9, ;, :, 68, 78) is the vector of (geometric) design variables. 

The minimization of Eq. (20) is performed subject to satisfying the design constraints defined in 

Section 3.2.2. This optimization problem can be characterized as a non-linear, highly constrained 

optimization problem. Due to the multi-objective nature of the optimization problem, there is not 

only one single optimal triangulation configuration, but a set of configurations, called the Pareto 

Set [74]. The Pareto set exists due to the trade-off between the multiple design objectives. Several 

algorithms have been proposed in the literature for multi-objective optimization problems [74]. 

However, discontinuous, non-linear, constrained optimization problems such as the SL system 

design problem discussed herein remain a challenge for these methods [75], which typically 

require the availability of the gradient and Hessian of the objective functions. Therefore, this work 

uses the derivative-free Direct Multi-Search (DMS) algorithm [75] to solve our multi-objective 

optimization problem due to its ability to handle such non-linear, discontinuous, constrained, 

multi-objective optimization problems. 

In order to select from the Pareto set a single triangulation configuration to be physically 

implemented and calibrated with the given hardware components, the goal is to first reduce the 

Pareto set. A k-means clustering approach [76] is used to group together optimal triangulation 

configurations in the Pareto Set that have similar values for the design variables. The number of 

clusters for the configurations is determined by using the normalized dispersion (�u) and Davis-

Bouldin (§3¨) quality metrics [77-78]. The final number of clusters is selected when the change in �u is less than 1% and the change in §3¨ score is less than 5%. This clustering of optimal SL 

system configurations allows only for distinct configurations with respect to the design variables 

to be considered.  

3.3 Summary 

In this chapter, a novel design methodology for determining optimal triangulation configurations 

for SL sensory systems has been presented. The proposed methodology optimizes the triangulation 
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configurations between the projector, the camera and a measured object, for a given set of 

performance metrics, while satisfying design constraints based on hardware and user-defined 

specifications. Due to its generality, the design methodology can be used to design an optimal SL 

system for any given set of hardware components to measure objects within a target measurement 

volume. The design methodology allows for the optimization of 3D triangulation configurations 

regardless of the specific pattern coding strategy that is to be implemented. 
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Chapter 4  
Design Methodology for Optimizing SL Pattern Sequences 

In this chapter, the detailed procedure of the design methodology for phase unwrapping of multi-

fringe sinusoidal phase-shifted patterns is presented in order to determine the optimal sequence of 

fringe patterns that reduce measurement errors. The pattern sequence methodology considers a 

multi-variable model to determine the random noise in the absolute phase of a measured 3D object 

as a function of the number of fringes, the random noise in the relative phase and the random noise 

in absolute phase used in each unwrapping step. The proposed methodology is novel in that it is 

able to determine both the overall number of unwrapping steps required and the number of fringes 

in each pattern at each step in order to minimize the resulting random noise in 3D measurements. 

4.1 Sinusoidal Phase-Shifting SL Technique 

Our research considers SL sensory systems using a phase-shifting technique with sinusoidal 

patterns in order to obtain 3D reconstruction of objects. This section presents an overview of the 

steps used in the sinusoidal phase-shifting technique in order to obtain 3D reconstruction prior to 

a detailed discussion on the pattern sequence methodology. 

4.1.1 Sinusoidal Phase-Shifting Techniques 

Sinusoidal phase-shifting techniques utilize a sequence of phase-shifted patterns with a sinusoidal 

intensity profile in order to determine the projector-camera pixel correspondence. The intensity 

profile of the sinusoidal pattern is designed based on one frequency, which is phase-shifted by a 

factor of 2π/GQ for generating every projection of the sequence, where GQ corresponds to the total 

number of projections. The intensity profile §�2of a projected pattern is given by [51]: 

§�2(�2 , �2) = §x(�2 , �2) + §xx(�2 , �2) cos T©2(�2 , �2) − uª8«n� [, (21) 

where 1 is the projection pattern; ¬� = 0,1, … , GQ − 1 represents the �th shifted pattern; §’ is the 

average intensity; §′′ is the intensity modulation; ©2(�2 , �2) is the relative phase value between 0 

and 2¯ at the (�2 , �2) projection coordinates; and 2¯¬�/GQ represents equally distributed phase-

shifts to cover the entire period. Figure 5(a) shows a pattern with 5 fringes projected onto a 

propeller where each fringe corresponds to a sinusoidal intensity profile in gray scale. 
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The captured intensity profile §�	 for a shifted pattern can be expressed for each pixel as [51]: 

§�	(�P , �P) = 6(�P , �P) ±§x(�P , �P) + §xx(�P , �P) cos T©P(�P , �P) − uª8«n� [², (22) 

where 6(�P , �P) is the effect of the surface reflectivity of the object and ©P(�P , �P) is the relative 

phase value at the (�P , �P) camera coordinate. For simplicity, the relative phase ©P(�P , �P) will 

be denoted as ©P(�, �) hereafter. Hence, all further references to pixel coordinates (�, �) represent 

coordinates in the camera coordinate frame. 

  

(a) (b) 

Figure 5. (a) Pattern with 5 fringes projected onto the blades of a propeller, and (b) 

relative phase map with discontinuities at fringe boundaries highlighted in orange. 

Based on the captured patterns, a relationship exists to determine the relative phase value of each 

pixel. For sinusoidal intensity profiles using three phase-shifted patterns (GQ = 3), as is used in 

our thesis, the relative phase of each camera pixel is given by: 

©P(�, �) =  ³l´!³� � √%∙¶·I̧(H,J)O·¹I(H,J)ºu∙·»I(H,J)O·I̧(H,J)O·¹I(H,J)¼, (23) 

where §#	 , §u	, §%	 correspond to the intensity of the three phase-shifted patterns, respectively. Figure 

5(b) presents the relative phase map, consisting of varying shades of gray for different phase 

values, obtained by Eq. (23) for the pattern of 5 fringes shown in Figure 5(a). Given that the relative 

phase is based on intensity profiles, the random noise in intensity can introduce random noise in 

the relative phase obtained from captured patterns [49]. This random noise is a result of the random 

perturbations of ambient light and/or of the projected light pattern, camera quantization noise, 

among other noise sources [51]. 
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4.1.2 Active Phase Unwrapping 

The relative phase map obtained from the three phase-shifted patterns is periodic, with phase jumps 

(discontinuities in relative phase) at the boundaries between fringes as highlighted in Figure 5(b). 

This results in potentially multiple pixels in different regions of the phase map image having the 

same phase value. In order to identify the unique correspondence for each projector-camera pixel 

pair, active phase unwrapping algorithms are used to remove the phase discontinuities between 

fringes by adding integral multiples of 2¯ to the relative phase [31, 43, 47]. The resulting 

unwrapped phase values are known as absolute phase values. 

To remove the discontinuities in relative phases, a commonly used active phase unwrapping 

approach can be implemented which utilizes the absolute phase from a single fringe pattern to 

determine the fringe number of each pixel in the phase map image [43, 49]. Since a single fringe 

pattern covers the entire field of view of an object of interest with only one fringe, it does not 

introduce phase discontinuities and can provide non-periodic information to unwrap the multi-

fringe pattern (e.g., the five fringes in Figure 5). Given a set of phase-shifted captured patterns 

with �@ fringes, and a set of phase-shifted patterns with one fringe, the absolute unwrapped phase 

of a pixel is obtained by [49]: 

Φ]¾	 (�, �) = 2π �k��� S]¾∙ÀI̧(H,J)OÁÂ¾I (H,J)uª ^ + ©]¾	 (�, �), (24) 

where ©]¾	  corresponds to the relative phase of the multi-fringe pattern with �@ fringes, and Φ#	 is 

the absolute phase of the single fringe pattern. Note that the absolute phase Φ]¾	 (�, �) obtained 

from Eq. (24) at any given pixel (�, �) depends only on the phase values of the aforementioned 

fringe patterns at that pixel, without requiring information from neighboring pixels, i.e., the 3D 

reconstruction at a given pixel is independent of its neighbors. This is an important feature of active 

phase unwrapping that significantly reduces the processing time required for 3D reconstruction. 

The absolute phase from the multi-fringe pattern determines the pixel position for each camera 

pixel with respect to the projector, which in turn defines the projector-camera correspondence 

required to obtain the 3D reconstruction of an object of interest. However, due to the triangulation 

configuration used between the projector, camera and the object of interest, the projector and 
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camera pixels may not have a perfect one-to-one correspondence. This means that the phase value 

for each camera pixel could be a function of the phase values of multiple projector pixels, since 

one projector pixel could be captured by more than one camera pixel (resulting in repeated 

measurements of the same phase value) and/or one camera pixel may (partially) capture multiple 

projector pixels. This source of intensity noise also contributes to the phase unwrapping errors.  

Due to the importance of accurately unwrapping relative phase values in order to obtain high-

precision 3D reconstruction, sequential approaches for active phase unwrapping have been 

proposed [47, 50]. In this context, the phase unwrapping achieved through Eq. (24) is referred to 

as an active phase unwrapping step. Sequential active phase unwrapping can use multiple phase 

unwrapping steps, i.e., in succession using the resulting absolute phase from a previous 

unwrapping step to unwrap the relative phase values from a pattern with a larger number of fringes, 

where the number of unwrapping steps are more than one [47]. The absolute phase obtained from 

such sequential phase unwrapping is known to reduce the random noise in 3D reconstruction [50]. 

4.1.3 3D Reconstruction 

The 3D reconstruction model of the SL sensory system defines the relationship between a 3D point 

on the surface of an object and its projector-camera pixel correspondence. In this work, as 

discussed in Chapter 3, the 3D reconstruction model is determined based on Eqs. (9) and (10), 

which relates the parameters for the triangulation configuration of the hardware and the pinhole 

models used for the projector and the camera. 

4.2 Pattern Sequence Methodology 

A novel, generic methodology is developed to determine the set of multi-fringe patterns required 

for an SL system in order to accurately measure the 3D surface profiles of objects when sequential 

active phase unwrapping is used. The set of patterns encompasses a temporal sequence of patterns 

of multiple fringes with sinusoidal intensity profiles. The number of fringes used in each pattern 

in the set is selected within the methodology such that the random noise in the absolute phase is 

subsequently reduced during each phase unwrapping step. This in turn reduces the 3D 

measurement errors that are a direct result of this noise. The proposed three-step methodology is 

presented in Figure 6. The first step is to determine the set of fringes that can be projected with a 

given sensor hardware resolution. Then, the second step estimates the random noise in relative 
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phase for the sensor hardware set-up. Lastly, the third step identifies the set of multi-fringe patterns 

which reduce the random noise in the absolute phase of a measured 3D object. The following 

subsections describe in detail each step of the methodology. 

 
Figure 6. Proposed design methodology for SL pattern sequence. 

4.2.1 Step 1: Determine the Set of Fringes 

The first step of the methodology consists of determining the set of fringes to be investigated for 

defining the optimal sequence of the multi-fringe patterns. This set is defined by the required 

pattern coding resolution of the SL system. For a given projection area of � pixels consisting of r by G pixels, the coding pattern resolution is the number of pixels along the coding axes (vertical 

and/or horizontal) in which the pattern is varying. For time-multiplexed phase-shifted patterns, the 

sinusoidal intensity profile is encoded along only one coding axis, typically the horizontal axis, in 

which both the camera and the projector have the highest resolution. Without loss of generality, 

let us assume that the camera sensor has a resolution that is equal to or greater than that of the 

projector, let G be the number of pixels of the projector in the axis of the highest resolution (i.e., 

the horizontal direction). Hence, the number of fringes, �@, within the multi-fringe pattern set to 

be projected is defined based on the projection resolution, i.e., number of pixels (G). The largest 

number of fringes to be considered corresponds to a discretized sinusoidal pattern with at least 5 

pixels per fringe along the horizontal axis to avoid spatial aliasing of the peaks and troughs of the 

sinusoidal intensity profile. Furthermore, in order to apply sequential phase unwrapping, the multi-

fringe patterns in the set are required to encode the entire G pixels along the coding axis, i.e., the 

number of fringes of the multi-fringe patterns must be an exact divisor of the G pixels. Hence, the 
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set of fringes to be evaluated is defined as Ä] = Å�@Æ where �@ corresponds to the number of 

fringes that satisfy the following conditions: 1) �@  Ç È1,2, … , G/5É, and 2) G hk� �@ = 0. 

4.2.2 Step 2: Estimate the Random Noise in Relative Phase 

The second step of the methodology focuses on estimating the random noise that is present in the 

relative phase values. Since relative phase is determined based on intensity values, the random 

perturbations in intensity will result in random noise in relative phase [49, 51]. Hence, the effect 

of the intensity noise on the relative phase needs to be investigated for the set Ä]. 
The relative phase values of the fringe patterns are obtained for the corresponding patterns via Eq. 

(23). The statistical properties of the random noise in relative phase can be estimated from the 

distribution of phase values from repeated measurements. This random noise is considered to be a 

zero-mean Gaussian random variable [51]. Its standard deviation ��ÁÂ¾I , which is used as a 

quantitative measure of the noise level, can be estimated as the average of the standard deviations 

of the phase values across all pixels [51]. 

In [51], it was shown that ��ÁÂ¾I  is proportional to the random noise in intensity and inversely 

proportional to the intensity modulation and the number of shifted patterns, while being 

independent of the number of fringes. Hence, the relative phase from a single fringe pattern is used 

to estimate ��ÁÂ¾I  by taking repeated measurements of a flat plane placed at the center of the 

measurement volume of the SL system. The estimated random noise of the relative phase is 

obtained by: 

��ÁÂ¾I = | #nÊO# ∑ TΦ#	,� − ~̂ÀI̧[unÊ��# ,  (25) 

where ~̂ÀI̧ = #nÊ ∑ Φ#	,�nÊ��# , and Φ#	,�
 corresponds to the measured phase values obtained from Eq. 

(23) for a single fringe pattern (�@ = 1). G� = � ∙ G� is the total number of phase values 

measured, which is obtained by measuring � number of pixels of the projected pattern in G� 

measurement repetitions. 
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4.2.3 Step 3: Identify the Set of Patterns 

The third step of the methodology consists of identifying the set of patterns needed to minimize 

the effect of the random noise in relative phase on the resulting absolute phase in order to reduce 

the random noise in the 3D measurements. The goal is to achieve an unwrapping approach that is 

both robust to random noise in phase and efficient with respect to unnecessarily increasing the 

number of required pattern images of the target object. Hence, the active phase unwrapping 

procedure is simulated, in order to analyze the effect of ��ÁÂ¾I  on the resulting absolute phase. 

Namely, the simulation is used to determine: 1) the influence of the numbers of fringes of the 

multi-fringe patterns on the random noise in the resulting absolute phase during sequential phase 

unwrapping, and 2) the pattern sequence that decreases the noise effect on the resulting absolute 

phase. In order to model sequential active phase unwrapping, the absolute phase from the previous 

unwrapping step (* − 1) is used as the reference phase Φ>?@	,aO#(�, �) for the current step *: 

Φ]¾	,a(�, �)   = 2π �k��� S]¾∙ ÀËÌ¾I,ÍÎ¸(H,J)OÁÂ¾I (H,J)uª ^ + ©]¾	 (�, �),  (26) 

where Φ]¾	,a
 is the absolute phase at the current phase unwrapping step resulting from the relative 

phase ©]¾	  of a pattern with �@ fringes. The effect of the random noise introduced during phase 

unwrapping is simulated for the set of fringes by: 1) adding random noise to the ideal phase values, 

i.e., phase values used for generating the patterns with single and multiple fringes; 2) determining 

the absolute phase using active phase unwrapping for the set of multi-fringe patterns; and 3) 

determining the standard deviation of the resulting absolute phase when varying the random noise 

level. 

In order to simulate the phase values from the captured patterns, first the ideal (noise-free) relative 

phase values are simulated assuming a one-to-one projector-camera pixel correspondence. Hence, 

the ideal relative phase values for a multi-fringe pattern are determined by: 

©]¾2 = �w �ÏÐ 8¾�O#8¾O# 2¯,  (27) 
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where b = 1, … , G is the pixel number, and ¬@ = G/�@ corresponds to the number of pixels per 

fringe. The ideal reference absolute phase for any * step Φ>?@2  is simulated using the absolute phase 

of a single fringe pattern: 

Φ>?@2 = wO#nO# 2¯. (28) 

Then, the relative and reference phase values captured by the camera, i.e., ©Ñ]¾	  and ΦÒ >?@	 , are 

generated by adding white random noise to the ideal phase values in Eqs. (27) and (28). This 

corresponds to adding a Gaussian variable for the noise (9]) with zero mean and standard 

deviation (��ÁÂ¾I ), i.e., 9]~G m0, ��ÁÂ¾I up: 

©Ñ]¾	 = ©]¾2 + 9],  (29) 

ΦÒ >?@	 = Φ>?@2 + 9].  (30) 

As a result of noise in the reference and relative phase values, the absolute phase ΦÒ ]¾	  is also a 

random variable, which can be considered Gaussian [51]. Its standard deviation is estimated by 

Monte Carlo simulation, namely, randomly generating a predefined number (G�) of realizations of 

the random variable of the absolute phase ΦÒ ]¾	  and comparing them with the ideal absolute phase 

values Φ]¾2  to estimate the standard deviation of the differences. To consider the effect of 

uncertainty in the noise level that can be caused by for example, varying ambient illumination, 

object albedo and object geometry, the simulation process is repeated for varying noise levels of �ÁÂ¾I , within a range defined as 0 < �ÁÂ¾I < � ��ÁI̧ , for � > 1. This proposed approach ensures 

that the selected patterns are simultaneously optimal for a range of noise levels. 

The simulated distribution of the absolute phase values characterizes how the random noise in the 

relative phases results in random noise in the absolute phase during active phase unwrapping, i.e., 

the effect of �ÁÂ¾I  and �ÀËÌ¾I  on �ÀÂ¾I . A simulation study of the trend behavior of Eq. (26) with 

varying levels of input noise suggests that there is a monotonic increase in the resulting noise in 

absolute phase as the noise level increases in the relative and reference phase values. For low noise 
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levels of �ÁÂ¾I  and �ÀËÌ¾I  the rate at which the noise level increases in the relative and reference 

phases propagates to the absolute phase is an inverse function of the number of fringes as defined 

in Eq. (26). However, this trend is no longer valid after a certain noise level after which the random 

noise in relative phase is amplified by the number of fringes. This noise level depends on the noise 

level of the reference phase, the noise level of the relative phase, the number of fringe of the multi-

fringe patterns, and the number of pixels used for the pattern discretization. This characterization 

suggests that the number of fringes should be increased to reduce the noise in the unwrapped phase 

values, but also suggests that it cannot be increased indiscriminately without causing an increase 

in the noise levels. These conflicting trends indicate the existence of an optimum, i.e., a specific 

number of fringes for which the noise level is minimized within the input noise range considered. 

Based on this characterization, it is proposed a criterion for selecting the number of fringes that 

minimizes the noise level as that which minimizes the norm of the gradient of the random noise of 

the absolute phase: 

arg min]@ ∬ Ø∇�ÀÂ¾I Øu ��ÀËÌ¾I  ��ÁÂ¾I ,  (31) 

where Ø∇�ÀÂ¾I Øu
 corresponds to the L2-norm of the gradient of �ÀÂ¾I . The L2-norm of the gradient 

is integrated over the range of noise levels. 

As previously described, in sequential active unwrapping the unwrapped absolute phase values are 

used as the reference phase for the next unwrapping step, i.e., Φ>?@,�Ú?8u	 = Φ>?@,�Ú?8#	 . To 

determine the number of fringes required for this next step of unwrapping, the same approach as 

described above is utilized by using the obtained absolute phase from the previous step as the 

reference phase. Namely, Eq. (31) is used for simulating the unwrapping process but with a 

reduced variance of the noise in reference phase, i.e., with �ÀÂ¾,�ÛÌÜ»I = �ÀÂ¾,�ÛÌÜ¸I . In other words, 

although the noise in the relative phase remains unchanged because it is the result of image 

intensity noise, the noise in the reference phase used for the simulations is lower as it has been 

reduced by the previous active unwrapping step. Sequential phase unwrapping is repeated until the 

improvements in reducing the random noise in the absolute phase is less than 1%, i.e., 
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ÝÞßÂ¾,�ÛÌÜÍI  O ÞßÂ¾,�ÛÌÜÍÎ¸I
ÞßÂ¾,�ÛÌÜÍÎ¸I Ý ≤ 0.01.  (32) 

4.3 Summary 

In this chapter, a novel pattern sequence methodology for SL sensory systems is presented in order 

to effectively determine the optimal set of multi-fringe patterns needed to obtain accurate 3D 

reconstruction of objects. This methodology simultaneously determines the number of patterns 

needed as well as the number of fringes within these patterns in order to minimize measurement 

errors. The novelty of the proposed design methodology is that: (1) determines the optimal pattern 

sequence and the optimal number of fringes for each pattern in the sequence, and (2) obtains the 

highest measurement accuracy by minimizing 3D reconstructions errors. 
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Chapter 5  
Design Methodologies for Micro-Scale Measurements 

In Chapters 3 and 4, design methodologies for the hardware configuration and pattern sequences 

for SL systems were presented. These methodologies, formulated for SL systems for macro-scale 

measurements, cannot directly be applied to micro-scale measurement systems. In this chapter, the 

design methodologies for SL systems for micro-scale measurements consider the shallow depth of 

field of the microscope lenses used when optimizing the system configuration and the pattern 

sequence. A sinusoidal phase-shifting technique is used with an image focus fusion approach to 

generate in-focus images within a larger measurement volume than would otherwise be possible 

using microscope lenses. Furthermore, a novel calibration approach is proposed for this system, 

which leverages robust regression methods and model selection metrics to obtain a calibration 

model with minimum prediction errors for a given calibration data set, which can be utilized to 

determine 3D points over the entire measurement volume. 

5.1 Structured-Light with Image Focus Fusion 

In order to measure small objects in the micro-scale (0.5 – 10 mm), SL sensory systems with 

microscope lenses are used to reduce the size of the fringe patterns projected onto the micro-scale 

part, and also to magnify the pattern deformation captured by the camera sensor [18, 56, 59]. The 

limited depth-of-field (DOF) of the microscope lenses used by the camera and projector limits the 

measurement volume to a very shallow region, Figure 7(a), where the captured deformed patterns 

are in-focus [79], thus severely restricting the type and overall size of the objects that can be 

measured. To overcome the limited DOF of the microscope lenses, this thesis builds upon the 

novel approach for SL measurement of micro-scale objects developed in [80-81] by other members 

of our research group which uses focus fusion methods to combine images taken at different focus 

settings, in order to obtain all-in-focus images of the deformed fringe patterns over a larger 

measurement volume, Figure 7(b). In addition, a novel calibration procedure for these systems 

based on a calibration model valid for the entire measurement volume was developed. 
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(a) 

 
(b) 

Figure 7. Top view schematic representation of the measurement volume and the in-focus 

region of the camera and projector (a) without and (b) with image focus fusion, 

respectively. 
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5.1.1 Focus Fusion 

Image focus fusion is a digital post-processing technique that combines multiple images, taken at 

different focus levels, in order to generate a single resulting all-in-focus (AIF) image with a 

greater DOF than any of the individual source images [82]. The focus fusion technique is generally 

used in the fields of macro-photography and microscopy where the DOF is limited by the optics. 

In this thesis, the use of image focus fusion is proposed to overcome the small in-focus region 

caused by the shallow DOF of the microscope lenses, shown in Figure 7. Namely, a novel 

measurement approach is proposed by incorporating image focus fusion techniques into the SL 

system measurement [80-81], with the goal of obtaining an image where all the features of the 

measured objects are focused. 

The starting point for focus fusion algorithms is a set of images of the same scene captured with 

different focus settings, i.e., with different focal lengths. Based on this image set, focus 

fusion algorithms typically consist of three stages: calculating a focus measure, selecting the 

focused regions of each image in the set, and image fusion [83]. First, the square of the gradient 

of image intensities is calculated for all pixels and used as a focus measure. Second, the regions in 

each image with the highest focus measures are selected to form part of the final AIF image. 

Finally, the focused regions of each image are aligned and combined to generate the AIF image, 

typically using a weighted average approach.  

In SL systems that use image focus fusion for micro-scale measurements, the target object is placed 

at the reference position. Then, to measure the 3D surface profile of this micro-scale object, the 

projector and camera scan through the part with sequential focus steps along their optical axes, 

projecting the designed light patterns onto the object and capturing their deformation caused by 

the object surface profile. Once all images are obtained, the images corresponding to the same 

projected pattern but with different focus levels are fused to obtain a set of AIF images, one for 

each pattern. In order to minimize noise in the fused image that could be caused by camera noise 

and system vibration, an image alignment algorithm was combined with a selective image fusion 

algorithm that is robust to noise [77]. In particular, the Selective All-in-Focus (SAF) algorithm 

[83] is used to create the AIF images. 
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5.2 Design Methodology for SL System Configurations for 
Micro-Scale Measurements 

As discussed in Chapter 3, the triangulation configuration between the camera, projector and the 

measured part has a significant influence on the resulting measurement accuracy. In this context, 

it was also discussed how implementation-related issues such as physical interference, working 

distances of the lenses, FOV and DOF, impose a set of geometrical constraints that significantly 

limit design choices. Hence, the first step in the system setup and calibration of an SL system for 

micro-scale measurements is the design of the hardware triangulation configuration. 

The design methodology presented in Chapter 3 is adapted and described in this section. Figure 8 

shows the methodology for designing the triangulation configuration of SL systems for micro-

scale measurements. The full design methodology described in Section 3.2 is not directly 

applicable, for two reasons. First, the implementation of focus fusion methods to increase the size 

of the measurement volume for micro-scale measurements requires that the focal length ()) of the 

optics varies during projection and capturing. In consequence, the ray tracing model presented in 

Section 3.2.3 as part of the design methodology, which is formulated for a constant focal length, 

is no longer valid. Second, the shallow depth of field and short working distance of the microscope 

lenses must be considered when modelling the triangulation configuration between the measured 

object, camera and projector. The triangulation model with these new optical specifications makes 

the geometric constraints (FOV/DOF overlap, physical interference) the critical consideration for 

the triangulation design. 
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Figure 8. Proposed design methodology for SL system configuration for micro-scale 

measurements. 

As shown in the flowchart in Figure 8, the optimization objective for the SL system for micro-

scale measurements is redefined to be maximizing the size of the measurement volume. The 

hardware triangulation configuration for the SL system for micro-scale measurements was 

designed using only the geometric constraint models described in Section 3.2.2. In other words, 

the system triangulation was designed to maximize the overlap between the FOV and DOF of the 

camera and projector optics, while considering the design constraints defined by practical 

limitations of the hardware components. 
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5.3 Design Methodology for Optimizing SL Pattern Sequences 
for Micro-Scale Measurements 

The reduction in random noise in phase values obtained by the sequential unwrapping of the 

optimal pattern sequence is of particular importance during the calibration procedure for micro-

scale measurements. As Section 5.4.4 will show that pixel-to-pixel correspondences, which are 

estimated from phase values, can introduce significant errors in the calibration data. Hence, the 

novel design methodology described in Chapter 4 is used for optimizing pattern sequences for SL 

measurement micro-scale measurements. However, a slight modification on the way of estimating 

the random noise in phase of SL systems using microscope lenses since the random noise in phase 

for such systems also vary with the number of fringes.  

The adapted design methodology for SL systems for micro-scale measurements is presented in 

Figure 9. Similar to the methodology described in Chapter 4, this methodology is used to determine 

the optimal pattern sequence. To this end, the first step is to determine the set of fringes Ä] that 

will be considered for designing the pattern sequence. The second step of the methodology is 

modified in order to estimate the noise in phase values caused by random noise in image intensity, 

based on noise in phase for fringe patterns with all the number of fringes in the set Ä]. In addition, 

to take into account the effect of shallow DOF of microscope optics, e.g., the noise introduced by 

unfocused images, the noise in phase values is determined at different z-positions within the target 

measurement volume. The end result of this process is a full characterization of the noise in phase 

values, as a function of z-position and the number of fringes of the pattern projected. This 

comprehensive characterization of the noise in phase values provides the information required to 

proceed with simulations of the sequential unwrapping process. After the noise in phase values is 

fully characterized, the rest of the steps of the pattern sequence design methodology are conducted 

without any further modifications. 
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Figure 9. Proposed design methodology for SL pattern sequence for micro-scale 

measurements. 

5.4 Calibration Procedure  

The goal of the calibration procedure is to determine the coefficients of the calibration model that 

are valid for measuring objects within a target measurement volume [62]. The calibration data 

used for obtaining the model parameters is obtained by imaging a planar calibration object placed 

at different positions within the target measurement volume [42]. The calibration object features a 

grid of markers with known, certified dimensions and spacing, and it is mounted on a 3-axis 

translational precision stage. 

In order to calibrate an SL sensory system, the calibration procedure presented in Figure 10 is 

used. Namely, in order to obtain the calibration data, a planar calibration object is moved within 

the measurement volume and imaged using the optimal pattern sequence determined following the 

design methodology described in Section 5.3. The calibration procedure consists of: 1) taking 

several images with multiple focus levels for each pattern and a fully-illuminated image, 2) 

generating all-in-focus captured patterns, 3) detecting the object features (calibration markers) in 

the fully-illuminated image in the camera image coordinate frame, 4) re-mapping the obtained 

features to the projector image coordinate frame using the phase obtained from the patterns, and 

5) fitting and selection of the model with the lowest prediction errors for the calibration data. 



58 

 

 

Figure 10. Procedure for calibration of the SL system for micro-scale measurements. 

A world coordinate frame needs to be defined as a fixed reference coordinate system to describe 

the position of the measured objects within the measurement volume of the SL system. The 

calibration plane is placed vertically on a 3-axis stage, i.e., with the normal of the plane aligned 

with the depth movement which coincided with the �-axis. The �, � and � directions of the world 

coordinate frame are aligned with the movement of the stage in the vertical, horizontal and depth 

(perpendicular to the �� plane) directions, respectively, following the right-hand rule. The origin 

of the world coordinate frame is defined to be the top left marking of the calibration object when 

placed at the farthest position from the camera. 

5.4.1 Multi-focus Imaging of the Calibration Object 

During the calibration procedure, the calibration object is gradually moved with a fixed step along 

the �-axis, starting from the farthest position (� = 0) to the closest �-position to the sensory 

system. Then, the plane is returned to the � = 0 position, moved with a fixed step in the �-

direction, and then followed by another set of incremental, fixed-step movements in the �-

direction.This procedure is repeated multiple times so that the calibration object markers form a 
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dense grid within the measurement volume. The rationale for moving the object back to the � =0 position before performing lateral translations is to avoid positioning errors due to backlash in 

the precision stages. 

At each position of the calibration object, the fringe patterns are projected and captured using 

different focus settings of the optics. This ensures that each region of the measured object has been 

captured, in focus, illuminated for each pattern. In addition, fully illuminated images (with no 

fringes) are captured at the same set of focus settings; these images are used during the focus fusion 

step, described next. The end result of this process is a set of �@ÏP+�  × (�8}ÚÚ?>]� + 1) images, 

where �@ÏP+� is the number of focus settings and �8}ÚÚ?>]� is the number of fringe patterns, 

incremented by 1 to account for the fully illuminated images. 

5.4.2 Focus Fusion 

After the images have been captured, a post-processing step is performed to fuse images from 

multiple focus settings into a single, AIF image for each fringe pattern. First, fully illuminated 

images of the calibration object captured under different focus settings are fused with the Selective 

All-in-Focus (SAF) algorithm [83], a step that identifies and maps each region of the final AIF 

image to one or more of the input images in which this region is in focus. In this thesis, the images 

captured for each pattern are fused using the same focused region mapping that resulted from the 

fusion of the fully illuminated images. By reusing the focused region mapping from the fully 

illuminated images to fuse the images of the fringe patterns, the computational cost of the focus 

fusion procedure is reduced. Furthermore, the use of fully illuminated images as a base for focus 

fusion reduces potential errors that may be introduced in the focused region mapping by the 

varying illumination of the fringe patterns. 

5.4.3 Image Feature Detection 

The calibration data set consists of the coordinates of calibration object markers defined in the 

image camera and projector coordinate systems (�	 , 	 , �2, 2) as well as their 3D coordinates 

(� , � , � ) in the world coordinate system. For each calibration object position, the set of fringe 

patterns and a fully-illuminated image are projected onto the planar calibration object, and images 

are captured using a range of focus levels. The images are then combined to obtain AIF images 

using the focus fusion algorithm explained in Section 5.4.2. 
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The AIF, fully-illuminated image is used to determine the image camera coordinates (�	 , 	) of 

each marker at each �-position using automated feature detection algorithms. A Hough Transform 

[83] is used in this work to identify the image coordinates of the calibration object markers, due to 

its robustness to the presence of noise in the images.  

The final result of the image feature detection step is a data set of �P}à�á points, containing the 

world coordinates of the calibration object markers (� ,a, � ,a, � ,a), known from the position 

of the motion stages, and the image coordinates of these points in the camera sensor (�	,a, 	,a), * = 1, … , �P}à�á, determined from the captured images through the automated detection procedure. 

5.4.4 Image Feature Re-mapping 

Previous steps of the calibration procedure have resulted in a data set (� ,a, � ,a, � ,a, �	,a, 	,a), * = 1, … , �P}à�á, containing the world and image coordinates of the calibration object markers. To 

complete this calibration data set, however, the image coordinates of the calibration object markers 

in the projector panel (�2,a , 2,a) must be determined. In [80], the viewpoint re-mapping technique 

was used to generate the projector viewpoint of the image, using the pixel-to-pixel 

correspondences obtained from the absolute phase values of each pixel to generate a full synthetic 

image of the scene from the viewpoint of the projector. After synthetic images of the projector 

view of the calibration object are obtained through viewpoint re-mapping, the image feature 

detection procedure was conducted on these images to determine the location of the calibration 

object markers in the projector panel [80-81]. 

However, the projector viewpoint images obtained through re-mapping usually are of lower quality 

than the camera images, due to the effects of triangulation geometry, image noise, and errors in 

the pixel-to-pixel correspondences. These viewpoint re-mapping errors can reduce the accuracy of 

the image feature detection procedure, thus introducing errors in the calibration data. To address 

this issue, a novel approach for re-mapping is introduced, which focuses only on re-mapping the 

coordinates of the calibration object markers that were detected in the (more accurate) original 

images. In other words, the feature detection algorithms are used only on the original AIF images, 

which are taken from the viewpoint of the camera. Then only the coordinates of the calibration 

object markers are remapped to the projector viewpoint, without the need for further feature 

detection. 
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For the *-th calibration object marking, its coordinates in the projector panel, (�2,a , 2,a), are 

determined by first identifying the absolute phase values (Φâ,a , Φã,a) that correspond to the image 

coordinates of the markers (�	,a, 	,a) in the camera. Feature detection algorithms determine the 

image coordinates of the markers with subpixel accuracy (i.e., pixel coordinates are real numbers, 

not integers), while the absolute phase values are only available at integer pixel coordinates in the 

camera. Hence, a bilinear interpolation approach is used to determine (Φâ,a , Φã,a) from the phase 

values captured by the camera at the pixels that surround the pixel (�2,a , 2,a) where the *-th 

calibration marking was detected. The bilinear interpolation can be expressed as: Φâ,a��	,a, 	,a� = ³- + ³#�	,a + ³u	,a + ³%�	,a	,a,  (33) 

Φã,a��	,a, 	,a� = ä- + ä#�	,a + äu	,a + ä%�	,a	,a,  (34) 

where ³� and ä�, � = 0, … 3, are the interpolation coefficients, found from the solution to the 

following systems of equations: 

åææ
æç1 �	,� 	,w �	,�	,w1 �	,� 	,wè# �	,�	,wè#1 �	,�è# 	,w �	,�è#	,w1 �	,�è# 	,wè# �	,�è#	,wè#éêê

êë ì³-³#³u³%
í = åææ

æç Φâ,(�,w)Φâ,(�,wè#)Φâ,(�è#,w)Φâ,(�è#,wè#)éêê
êë ,  (35) 

 

åææ
æç1 �	,� 	,w �	,�	,w1 �	,� 	,wè# �	,�	,wè#1 �	,�è# 	,w �	,�è#	,w1 �	,�è# 	,wè# �	,�è#	,wè#éêê

êë ìä-ä#äuä%
í = åææ

æç Φã,(�,w)Φã,(�,wè#)Φã,(�è#,w)Φã,(�è#,wè#)éêê
êë ,  (36) 

In Eqs. (35) and (36), �	,� = î�	,aï, �	,�è# = ð�	,añ, 	,w = î	,aï, 	,wè# = ð	,añ are the image 

coordinates of the pixels that surround the detected calibration marking ��	,a , 	,a�. Once the 

absolute phase values (Φâ,a , Φã,a) of the markers are known, the corresponding image coordinates 

in the projector panel (�2,a , 2,a) can be determined uniquely by linear interpolation. Given the 

horizontal and vertical resolution of the projector panel, òròâ and òròã, respectively, the 

projector coordinates of the calibration markers are 
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�2,a = òròâ m Àó,ÍOÀó,ô«ÂÀó,ôõWOÀó,ô«Âp + 1,  (37) 

 

2,a = òròã m Àö,ÍOÀö,ô«ÂÀö,ôõWOÀö,ô«Âp + 1,  (38) 

where Φâ,�}H, Φâ,��], Φã,�}H, Φã,��] are the maximum and minimum of the encoded absolute 

phase values in the projector, in the horizontal and vertical directions, respectively. 

This final result of this step of the calibration procedure is the complete calibration data set, which 

consists of the world coordinates (� ,a, � ,a, � ,a) of each calibration marking *, and its 

corresponding image coordinates in the camera ��	,a , 	,a� and projector, ��2,a , 2,a�.  

5.4.5 Model Fitting and Selection 

The mathematical model for the computation of the 3D surface profile from the camera and 

projector pixel coordinates of a point on the object surface is referred to here as the calibration 

model. In this thesis, in contrast to LUT approaches that fit regression models to each pixel data 

(Section 2.4.2), a single calibration model is used for all camera pixels to predict each 3D world 

coordinate of each point in the object surface as a function of its camera and projector pixel 

coordinates, namely: � = )÷��ø, P , �8, 8�,  (39) 

 � = )ù��ø, P , �8, 8�,  (40) 

 � = )ú��ø, P , �8, 8�,  (41) 

where �ø, P and �8, 8 are, the camera and projector image coordinates of the point on the object 

surface, respectively. � , � , and �  are its coordinates in the world reference frame, and )a, * =�, �, �,  are regression functions with coefficients determined based on the calibration data set 

generated in the previous steps. By using a single model for each world coordinate that is fitted to 
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data from all pixels, the proposed calibration approach is able to capture the global trends and non-

linear interactions between input variables, which may arise due to image distortions and optical 

aberrations. More importantly, using all pixel data to fit a single model for each world coordinate 

allows for a larger data set, which leads to more robust estimates for the calibration parameters 

and narrower confidence intervals for the model predictions, in contrast with LUT approaches. 

Based on previous work [55] that has used polynomial functions to establish phase-to-height 

relationships, in this work polynomial regression functions are considered as candidates for )a, 

Table 1. The choice of considering only polynomial regression functions of up to the third degree 

is based on the statistical principle of parsimony [84], and is further verified in this work through 

analysis of regression residuals and model selection metrics, discussed later in this section. 

Table 1. Polynomial regression models considered. 

Model Number of 

Model Parameters 

Mathematical Equation 

Linear 4 )a(�P , P , �8) =  7- + 7#�P + 7uP + 7%�8 

Linear with Interactions 7 )a(�P , P , �8) =  7- + 7#�P + 7uP + 7%�8+ 7v�PP + 7ûP�8 + 7ü�P�8 

Quadratic 10 )a(�P , P , �8) =  7- + 7#�P + 7uP + 7%�8+ 7v�PP + 7ûP�8 + 7ü�P�8+ 7ý�Pu + 7þPu + 7��8u 

Cubic 20 )a��P , P , �8� =  7- + 7#�P + 7uP + 7%�8+ 7v�PP + 7ûP�8 + 7ü�P�8+ 7ý�Pu + 7þPu + 7��8u+ +7#-�PuP + 7##�PPu + 7#uPu�8+ 7#%P�8u + 7#v�Pu�8 + 7#û�Pu�u+ 7#ü�Pvøu� + 7#ý�P% + 7#þP%+ 7#��8% 

Once the functional form of a parametric regression model has been specified (e.g., as in Table 1), 

model fitting refers to the process of estimating the optimal set of coefficients 7w based on a set of 

calibration data. Since the models listed in Table 1 are linear on the regression coefficients, the 

theory of linear regression can be easily applied to fit the models to the calibration data. It is known, 

however, that linear regression coefficients are highly sensitive to noisy and/or outlier-ridden data. 

Given that the proposed SL system for micro-scale measurements can be affected by multiple 

sources of noise (vibrations, ambient illumination, object albedo), robust regression methods are 

recommended to obtain estimates of the regression coefficients that are less sensitive to outliers. 
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Namely, the Iteratively Re-weighted Least Squares (IRLS) method [85], a robust regression 

method, is used to determine robust coefficients for the calibration models. In the following lines, 

the standard notation found in the regression literature [85] is used to briefly describe IRLS 

regression. 

In the IRLS algorithm, at iteration E, a weighted linear least squares problem is solved, 

7(�è#) = arg min
�

∑ 9�(�)��� − ��7(�)�u� = ���	(�)��O#
��	(�)
,  (42) 

where 	(�) is a diagonal matrix of weights that controls the influence of each observation, 
 is 

the vector of observed responses, and � is the design matrix of the regression, with each column 

representing a regression variable and each row an observation. In the context of fitting calibration 

models for the SL system, the observed responses 
 are the world coordinates (� , � , � ) of the 

calibration markers while the design matrix of the regression � would contain as columns the 

individual terms of the polynomial regression models listed in Table 1, e.g., (1, �P , P , �8, �Pu, Pu, �8u, … ). Initially, the weights are set all equal to 1, 9�(-) = 1, � = 1, … �, and 

are updated at each iteration E as a function of the magnitude of the residual between each 

observation and the corresponding regression model prediction. A commonly used choice of 

weighting function is the Cauchy weighting function, also used in this work without loss of 

generality, 

9�(�è#) = ##è��«O�«�(Û)�».  (43) 

Other weighting functions can be used [86]. However, initial tests performed in this work (not 

shown here) did not find significant differences between results obtained with different weighted 

functions. Overall, the effect of the IRLS method is, as iterations proceed, to give progressively 

smaller weights to the observations that deviate the most from the regression model, thus making 

the process robust to outliers. 

To evaluate the performance of each calibration model with the calibration data set, the root mean 

squared (RMS) error and the median absolute deviation (MAD) were used, calculated as: 
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�r� = |#] ∑ (��� − ��)u]��# ,  (44) 

r�ò = hy��³�È|��� − ��|, � = 1, … , �É,  
(45) 

where � < �P}à�á is the number of observations used to calculate the error metric, ��� is the 

prediction of the calibration model, and �� is the observed data. RMS is used herein as the error 

metric of choice in standard regression analysis, while MAD is used as the preferred error metric 

in robust regression as it is less influenced than RMS by the large residuals that occur at any 

observation that is considered an outlier.  

Once all the calibration models are fitted to the calibration data, the model selection metrics below 

are used to select the best model for that particular data set [84]. In this context, the best model is 

defined as that which fits the data well without overfitting, thus exhibiting better generalization 

capabilities [84]. In particular, in this work the residual mean squared error is used, calculated as: r�>?�(¬) = QQ�ËÌ�(8)]O8 ,  (46) 

and the leave-one-out cross-validation error is also used, calculated as: 

�� = |#] 1�A��,  (47) 

where � is the number of observations, ¬ is the number of model coefficients (a measure of 

“complexity” of the model), ��A>?�(¬) = ∑ (��� − ��)u]��#  is the sum of squared errors for a 

regression model with ¬ parameters, 1�A�� = ∑ (��O� − ��)u]��# , is the prediction sum of squares 

for leave-one-out cross-validation, and ��O� is the value of the �-th observation predicted by a model 

fitted to a data set from which this observation has been removed. 

To prepare for fitting the calibration models and selecting the model with the lowest predictive 

error for the calibration data, the calibration data set is split into two subsets following best 

practices for data analysis [87]. One data set, named the training data set and containing 80% of 

the observations, is used for fitting the calibration models, i.e., to determine the model coefficients. 

The second set, named the validation data set and containing the remaining 20% of the data, is 

used after the model is fitted to assess its predictive abilities. 
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The IRLS method described above is used on the training data to fit the regression models listed 

in Table 1. Then, the error metrics and model selection criteria, Eqs. (46) and (47), are calculated 

for these models based on the training data sets. In addition, RMS and MAD error metrics are 

calculated based on the validation data sets. This information is then used to select the best model 

for the data, and to quantify its predictive accuracy. 

The final result of the calibration procedure is a mathematical model that maps the image 

coordinates of each pixel in the camera frame (�P , P), and its corresponding pixel coordinates in 

the projector panel (�8,8), to the world coordinates of the corresponding point on the surface of 

the measured object (� , � , � ). 

5.5 Summary 

In this chapter, a novel calibration approach for SL systems for micro-scale measurements has 

been presented. In the proposed Structured-Light with Image Focus Fusion technique, a focus 

fusion approach is used to combine images of the measured object illuminated with the fringe 

patterns at a set of different focus levels, thus increasing the effective depth of field of the 

microscope lenses used in the camera and projector. In addition, a novel viewpoint re-mapping 

technique is introduced to determine the image coordinates of the detected calibration markers in 

the projector panel, necessary to complete the calibration data set. Furthermore, a single, global 

calibration model, valid for all pixels in the image, is fitted to the calibration data to predict the 

world coordinates of the object surface, as opposed to typical look-up table approaches that fit one 

regression model for each image pixel. Finally, a formal approach for fitting, selection and 

assessment of calibration models is presented, resulting in calibration models that have the lowest 

predictive errors for a given calibration data set. 
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Chapter 6  
Implementation Experiments on SL System Configuration Design 

for Macro-Scale Measurements 

The design methodology presented in Chapter 3 was applied to a real-time SL system for surface 

profiling of complex objects. Experiments were conducted with an optimal sensor configuration 

and the performance of the optimal sensor configuration was compared with a non-optimal 

hardware configuration. 

6.1 Testing the Design Methodology 

In this section, the proposed design methodology was utilized to simulate the optimal 

configurations of an SL system consisting of a CCD camera (Prosilica GE680C) with a 640x480 

pixel resolution and a DLP projector (Texas Instrument Inc. DLP Light Commander®) with a 

1024x748 native pixel resolution. The projection area used in the simulations was 640x480 pixels. 

The pixel size of the camera was 7.4 µm, whereas the pixel size for the projector was 10.8 µm. 

Table 2 presents the hardware specifications for the projector, the camera and their corresponding 

optics. The user-defined measurement volume is also identified to be 60x70x30 mm3 in order to 

contain small complex objects of interest. Based on these specifications, the design constraints are 

defined to determine the physical feasibility of implementing SL triangulation configurations with 

the corresponding hardware components for the desired measurement volume. 

Table 2. Hardware and user-defined specifications. 

 Parameters Values 

Focal lengths )	 , )2  16 mm, 28 mm 

Working distance range for camera’s lens �	,��], �	,�}H 300 mm, 700 mm 

Working distance range for projector’s 

lens 
�2,��], �2,�}H 575 mm, 1000 mm 

Pixel sizes F	 , F2   7.4 µm, 10.8 µm 

Resolution G�,	 , G,,	 , G�,2 , G,,2  640, 480, 640, 480  

Camera volume �	 [50, 40, 70] mm 

Projector volume �2 [200, 55, 115] mm 

Measurement volume � [60, 70, 30] mm 

Number of axes for pattern encoding G}  1 

The ranges for the design variables were arbitrarily defined in order to explore a wide variety of 

triangulation configurations while being consistent with the space limitations of our physical test 

environment, Table 3. The 3D SL system models described in Section 3.1 were used to estimate 
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the performance metrics. A flat plane was moved along the �-axis of the world coordinate system 

at 7.5 mm increments across the measurement volume. 

Table 3. Ranges for the design variables used during optimization. 

Design Variable  Ranges 

Distance to the reference plane �>?@  [250, 1000] mm 

Camera-projector distance in � 9  [-500, 0] mm 

Camera-projector distance in � :  [-500, 0] mm 

Camera-projector distance in � ;  [0, 500] mm 

First projector’s Euler angle 62  [-90, 0] ° 

Second projector’s Euler angle 72  [70] ° 

Eighteen optimal triangulation configurations were obtained from the design methodology for the 

specified hardware as shown in Table 4. Each configuration is different from the others by at least 

one design variable.  

Table 4. Optimal configurations obtained by the proposed methodology. 

Configuration No. ���� (mm) � (mm) � (mm) � (mm) �� (°) ��(°) 

1 756.3 -475.0 -100.0 212.5 -18.00 10.88 

2 756.3 -412.5 -100.0 275.0 -6.75 14.63 

3 756.3 -475.0 -100.0 87.5 -18.00 14.00 

4 756.3 -475.0 -100.0 87.5 -18.00 11.50 

5 756.3 -412.5 -100.0 337.5 -18.00 10.88 

6 756.3 -412.5 -100.0 275.0 -18.00 12.75 

7 756.3 -475.0 -287.5 275.0 -18.00 10.88 

8 756.3 -475.0 -475.0 87.5 -6.75 13.38 

9 756.3 -475.0 -412.5 87.5 -6.75 10.88 

10 756.3 -412.5 -412.5 337.5 -18.00 13.38 

11 756.3 -350.0 -475.0 337.5 -6.75 10.88 

12 756.3 -225.0 -162.5 337.5 -6.75 10.88 

13 756.3 -225.0 -100.0 212.5 -6.75 12.13 

14 550.0 -175.0 -362.5 450.0 -54.00 12.63 

15 756.3 -225.0 -162.5 25.0 -18.00 10.88 

16 756.3 -162.5 -162.5 337.5 -6.75 14.00 

17 756.3 -100.0 -162.5 337.5 -6.75 11.50 

18 756.3 -100.0 -412.5 25.0 -18.00 11.50 

The performance metric results for each of these configurations are presented in Table 5. All 

eighteen optimal configurations can be implemented using the aforementioned SL system 

hardware. In the next section, experiments conducted are presented for Configuration No. 5, 

chosen among these optimal triangulation configurations because it presents a reasonable trade-

off between the optimization objectives shown in Table 5. 
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Table 5. Performance metrics for the optimal configurations obtained by the proposed 

methodology. 

Configuration No. ���� (mm) ���� (mm)   !"  #!" (mm) 

1 0.3295 0.0647 0.158 443 5.52 

2 0.3366 0.0669 0.162 388 5.57 

3 0.3430 0.0660 0.155 295 6.68 

4 0.3432 0.0677 0.158 314 6.63 

5 0.3519 0.0781 0.158 826 4.23 

6 0.3612 0.0774 0.156 646 4.82 

7 0.3640 0.0673 0.158 509 5.25 

8 0.3860 0.0718 0.163 129 8.43 

9 0.3870 0.0707 0.166 139 8.18 

10 0.4319 0.0829 0.156 584 5.07 

11 0.4422 0.0795 0.166 314 6.60 

12 0.5107 0.1072 0.166 908 4.08 

13 0.5515 0.1205 0.164 527 5.25 

14 0.5634 0.1605 0.098 30 9.71 

15 0.6553 0.1647 0.158 321 6.77 

16 0.7253 0.1673 0.162 995 3.96 

17 1.4571 0.3878 0.165 1037 3.87 

18 1.5306 0.4023 0.158 238 7.46 

6.2 Experimental verification 

In this section, experiments conducted with an optimal configuration (Configuration No. 5 from 

Table 4) of the real-time SL system presented in Section 6.1 are evaluated to verify its performance 

with respect to a feasible configuration (�>?@ = 810.99 mm, 9 = -413.97 mm, : = -162.56 mm, ;=159.65 mm, 68= -25.58°, 78 = 10.89°), generated randomly in the design space but satisfying 

the design constraints provided by the proposed design methodology. Furthermore, the 

performance of the optimally configured SL system is also investigated with respect to obtaining 

the 3D surface profile of objects with different surface complexities. 

6.2.1 System hardware 

The SL system utilized in the experiments was implemented using the hardware components 

specified in Section 6.1. Figure 11 shows the SL hardware system. The DLP projector and the 

CCD camera were synchronized by a micro-controller for pattern projection and capturing at a 

frame rate of 200 fps. The hardware components of the SL system were placed according to a 

triangulation configuration and the overall SL system was calibrated using the procedure presented 

in [42]. A high-precision linear stage, Aerotech Model ATS212, with a repeatability of ±1~m, 

was utilized for the calibration of the overall sensory system.  
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Figure 11. SL hardware system. 

6.2.2 Pattern coding strategy 

In order to establish the projector-camera correspondence, a continuous time-multiplexing 

technique with a sinusoidal intensity profile, previously developed by our group [43], was utilized 

as the pattern coding strategy due to its ability to provide accurate measurements and real-time 

processing speeds [3]. The technique uses two sets of three 2π/3 phase-shifted patterns. The first 

set of patterns consists of five vertical fringes, while the second set consists of only one vertical 

fringe. After correspondence has been established, the 3D reconstruction model presented in 

Section 3.1.4 is used to obtain the 3D world coordinates of the measured surface points of an object 

of interest.  

6.2.3 Comparison between optimal and feasible triangulation 
configurations 

The experimental comparison was performed by measuring a flat plane and a metric step block, 

both of which were mounted on a high-precision stage and placed within the measurement volume. 

For the experimental comparison of the triangulation configurations, only the performance metrics 

related to the reconstruction errors were used by comparing the measured 3D profile of an object 

with respect to its known dimensions. The number of 3D points obtained from unique pixel-to-

pixel correspondence nor their dispersion within the measurement volume can be physically 

determined in the SL system set-up. This is due to the fact that these two metrics are primarily 

based on the 3D points with unique pixel-to-pixel correspondence established during the backward 

ray-tracing method in the design methodology. In contrast, during the experiments, the unique 

pixel-to-pixel correspondence cannot be identified since individual light rays cannot be isolated in 

order to determine whether the majority of the rays corresponding to a particular camera pixel are 

originating from the same projector pixel. 
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The plane was placed on the aforementioned high-precision stage and moved along the z-axis of 

the world coordinate system at 0.1 mm increments, covering a depth of 6 mm at the center of the 

measurement volume. Figure 12 shows the RMS errors in depth. The optimal SL triangulation 

configuration provides more accurate measurements (min. RMS error = 0.1869 mm, max. RMS 

error = 0.1992mm, mean RMS error = 0.1924 mm) than the feasible configuration (min. RMS 

error = 0.2410 mm, max. RMS error = 0.2985 mm, mean RMS error = 0.2701 mm). 

 
Figure 12. 3D surface reconstruction of the SL system within 6 mm range. 

The metric step block with certified dimensions (American Society for Testing and Materials 

International E797 metric step block) was also measured in order to compare the system 

performance when measuring an object with known depth variation, Table 6. The step block was 

placed on the stage and its height dimension was aligned with the � axis of the coordinate frame 

of the SL system. Namely, the measured height corresponds to the �-coordinate (� ,�) in Eqs. (11) 

and (12). The mean value of the measured height for each step was estimated by comparing the 

measurement results with the corresponding certified height. Figure 13 shows the surface profile 

of the step block obtained from measurements with the optimal triangulation configuration for the 

SL system. Overall, the comparison results show that the optimal SL system configuration 

obtained with the proposed methodology outperforms the feasible configuration, thus validating 

the effectiveness of the methodology as a general design tool for SL systems. 

Table 6. Measurement results of a certified metric step block. 

Certified height Optimal configuration Feasible configuration 

1.0 mm 1.024 mm 1.255 mm 

2.5 mm 2.513 mm 2.672 mm 

5.0 mm 4.918 mm 5.216 mm 
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Figure 13. 3D surface reconstruction of metric step block measured with the optimal 

configuration. 

6.2.4 3D reconstruction of complex objects using the optimal SL 
triangulation configuration 

As a further evaluation of the optimally configured SL sensory system, a set of complex objects 

were measured. The objects chosen were: (a) a LEGO™ part with an array of protruding pins on 

its surface; (b) a propeller with four slender blades with evenly distributed small holes; and (c) a 

curved gear with both convex and concave regions and small teeth. The measurement results in 

Figure 14 show the ability of the designed SL system to obtain the 3D surface profiles of objects 

with different surface complexities. 
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(a) 

 
(b) 

 
(c) 

Figure 14. 3D surface reconstruction of complex objects: (a) LEGO™ piece, (b) 

propeller, and (c) gear. 
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6.3 Summary 

An SL system configuration was designed utilizing the proposed design methodology for SL 

system configurations. Experiments were conducted to compare the implementation of an optimal 

configuration determined by the design methodology with respect to a feasible configuration also 

provided by the methodology. Experimental results showed that the optimal configuration 

provided more accurate 3D surface profiles than the feasible configuration. The optimally 

configured SL system was also used to show the capability of the designed SL system in obtaining 

the 3D surface profiles of objects with different surface complexities. Due to its generality, the 

proposed methodology can be used to design optimal SL system for any given set of hardware 

components to measure objects with varying surface complexities. 
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Chapter 7  
Implementation Experiments on Pattern Sequence Design for SL 

Systems for Macro-Scale Measurements 

The proposed pattern sequence design methodology presented in Chapter 4 is implemented on an 

SL system and its performance is compared extensively in experiments to a commonly used 

approach for obtaining fringe pattern sets using a variety of test objects. 

7.1 Pattern Sequence Methodology applied to an SL Sensory 
System 

The proposed methodology was implemented in order to determine the optimal sequence of multi-

fringe patterns for an SL sensory system developed following the methodology presented in 

Chapter 4. The SL sensory system consists of a DLP projector (Optoma ML300) with a native 

resolution of 1024x748 pixels, a CCD camera (Prosilica GE680C) with a native resolution of 

640x480 pixels and a triggering unit consisting of an Arduino micro-controller responsible for 

synchronizing the projector and camera during pattern projection and image capturing, Figure 15. 

The hardware triangulation configuration between the projector, camera and an object of interest 

was determined using the hardware set-up design methodology previously developed in Chapter 

3. The system was calibrated using the procedure presented in [42]. The pattern projection area for 

the overall system is defined to be 400x300 pixels. It is important to note that the methodology is 

not dependent on any specific hardware components and can be used with other SL hardware 

systems to meet user needs. 

 
Figure 15. Objects with different surface complexities. 
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7.1.1 Set of Fringes 

Step 1 of the proposed methodology was implemented to determine the set of fringes to be 

investigated based on the pattern coding resolution of the SL system. The sinusoidal patterns were 

designed to vary along the higher resolution horizontal axis, with G = 400 pixels. Therefore, the 

set of fringes evaluated were defined as Ä] = Å�@Æ ={1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80} where �@ corresponds to the number of fringes that satisfy the following conditions: 1) �@ Ç È1, … ,400/5É, and 2) 400 hk� �@ = 0. 

7.1.2 Random Noise in Relative Phase 

Step 2 of the methodology was implemented by projecting a single fringe pattern onto a flat plane 

placed at the center position within the measurement volume of the SL system. The random noise 

in relative phase, ��ÁÂ¾I = 0.036 rad, was estimated by (7) as the average of the standard deviations 

of 20 measurements of the phase values for the single fringe ��ÁI̧. 

7.1.3 Set of Patterns 

Step 3 of the methodology was used to determine the optimum set of multi-fringe patterns among 

the set of existing fringes determined in Step 1. To define the range for the noise level of the phase 

values for the simulations, a value of  � = 2 was considered, i.e., the noise level was set to be 

within 0 < �ÁÂ¾I < 0.072 rad. In order to characterize the random variable �ÀÂ¾I , the absolute 

phase ΦÒ ]¾	  was simulated G>?8� = 20 times for each random noise value defined by incrementing 

through the aforementioned range by 0.001. 

In order to identify the set of patterns required to achieve the minimum noise in the absolute phase 

for the SL system, Eq. (31) was used. The number of unwrapping steps was determined to be two 

using the random noise reduction criterion in Step 3. The results are presented in Figure 16, where 

the random noise in the resulting absolute phase �ÀÂ¾I  is presented as a function of the number of 

fringes �@, the random noise level of the relative phase �ÁÂ¾I  and the reference phase �ÀËÌ¾I . 

Namely, Figure 16(a) and Figure 16(b) present the results for the first and the second phase 

unwrapping steps where the random noise in the resulting absolute phase �ÀÂ¾I  is presented in 

logarithmic scale as a function of the number of fringes �@, the random noise level of the relative 
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phase �ÁÂ¾I  and the reference phase �ÀËÌ¾I . It can be seen that when larger numbers of fringes are 

present in the pattern, lower random noise levels are obtained in the absolute phase. Namely, with 

larger number of fringes (lighter shades in Figure 16) there is an order-of-magnitude noise 

reduction in the logarithmic-scale axis of �ÀÂ¾I  in both Figure 16(a) and Figure 16(b). The 

optimization process resulted in �@,�Ú?8# = 10 and �@,�Ú?8u = 50, from Figure 16(a) and Figure 

16(b) respectively. Hence, for our SL sensory system, the robust set of patterns corresponds to 

patterns with {1, 10, 50} fringes. The notation {1, �@,�Ú?8#, �@,�Ú?8u,….} from hereon is used to 

represent a set of fringe patterns for sequential phase unwrapping. 

 
(a) 

 
(b) 

Figure 16. Effect of random noise in relative and reference absolute phases on the 

absolute phase for varying random noise levels during (a) the first and (b) the second 

unwrapping steps. 
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7.2 Experiments 

Experiments were conducted utilizing the proposed pattern sequence methodology for various 

objects. The pattern set obtained using our methodology was compared with two multi-fringe 

pattern sets obtained using a commonly used approach presented in [49] which gradually increases 

the number of fringes of a multi-fringe pattern in order to reduce the noise in phase. As noted 

above, this is the only other existing approach that provides a procedure for increasing the number 

of fringes in a multi-fringe pattern sequence. Namely, the approach requires that the number of 

fringes in each unwrapping step be doubled for the next consecutive unwrapping step. Using this 

approach, the following pattern sets were chosen: 1) {1, 2, 4}, as it consists of the same number 

of unwrapping steps as our methodology defines; and 2) {1, 2, 4, 8, 16}, as it provides a sequence 

of patterns that reaches the largest number of fringes that can be obtained within the set  Ä]. 

The experimental comparison of these pattern sets was performed for a variety of objects with 

varying surface complexities. The objects include a metric step block and three 3D printed objects 

with more complex surfaces including a three-blade propeller, a double-helical gear, and a scaled 

model of a V6 engine block, as shown in Figure 17. These objects contain a combination of smooth 

and discontinuous features allowing us to investigate the robustness of the fringe patterns to 

varying object surface profiles. The performance metrics used for the comparison study were: 1) 

measurement accuracy, and 2) standard deviation in measurements. 

 
Figure 17. Objects with different surface complexities. 

7.2.1 Measurement Accuracy 

In order to compare the measurement accuracy for the three pattern sets, a metric step block with 

ASTM E797 certified dimensions was measured. The random noise in 3D measurement for the 
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step block was experimentally determined by obtaining the mean value of each measured step 

height with respect to the corresponding certified height. The step block was measured fifteen 

times with each pattern set. The mean height measurements for each step of the certified step block 

were then compared, Table 7. From the table, it can be seen that when using the same number of 

unwrapping steps, set {1, 10, 50} obtained from our methodology resulted in smaller measurement 

errors for the height measurements when compared with set {1, 2, 4}. Namely, with the same 

number of unwrapping steps, the set {1, 10, 50} was able to reduce the random noise in the absolute 

phase which resulted in more accurate measurements for the heights of each step. With respect to 

the set {1, 2, 4, 8, 16}, the methodology set {1, 10, 50} provided similar mean values for the height 

measurement, however, with the proposed methodology, the SL system was able to provide these 

measurements with half as many unwrapping steps. 

Table 7. Measured Heights of a Certified Metric Step Block. 

Certified step 

height (mm) 

Methodology set 

{1, 10, 50} 

Set 

{1, 2, 4} 

Set 

{1, 2, 4, 8, 16} 

2.50 2.460 2.560 2.409 

5.00 4.889 4.627 4.885 

10.00 9.922 9.658 9.908 

15.00 14.892 14.724 14.887 

20.00 19.850 19.347 19.850 

7.2.2 Standard Deviation in Measurements 

In order to determine the effect of the random noise in absolute phase �ÀÂ¾I  on the random noise 

in measured height for the metric step block, the standard deviation of the measured heights for 

each pattern set was determined. As can be seen in Figure 18, a significantly lower standard 

deviation of the measured height is obtained with methodology set {1, 10, 50} as indicated in 

Table 8 by non-overlapping 95% confidence intervals around the median standard deviation of the 

measured heights. 
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Figure 18. Distribution of the standard deviation of the measured height for the step 

block. 

 

Table 8. Median and 95% Confidence Interval [in brackets] for the Standard Deviation of 

the measured Heights. 

Measured 

object (mm) 

Methodology set 

{1, 10, 50} 

Set 

{1, 2, 4} 

Set 

{1, 2, 4, 8, 16} 

Step block 
46.86 µm 

[44.70, 49.02] 

195.54 µm 

[189.63, 201.44] 

64.42 µm 

[62.41, 66.42] 

7.2.2.1. Complex Surface Profiles 

To compare the random noise in 3D measurements of the complex objects, the standard deviation 

of the world coordinates of each 3D point was determined for the propeller, gear and V6 engine 

block. The measurements were again repeated fifteen times. Figure 19, Figure 20 and Figure 21 

show a comparison of the distributions of the standard deviations for the propeller, gear and engine 

block, respectively. As can be seen in the figures, the proposed methodology set exhibits smaller 

standard deviations for the 3D measurements. Table 9 shows the median standard deviation and 

95% confidence intervals for each object and pattern set, showing that the standard deviation of 

the 3D measurements for the methodology set is statistically smaller. Figure 22 shows the 3D point 

clouds obtained using each pattern set for all three objects, respectively, with the color of each 

measured 3D point corresponding to its standard deviation. Comparing the point clouds, it can be 

observed that the feature points throughout each object have smaller standard deviations when 

using the methodology set. For example, there are, in general, more dark blue points for the 
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methodology set than the other two sets, noticeably at: 1) the curved blade surfaces in Figure 22(a), 

2) the gear teeth in Figure 22(b), and 3) the edges of the six engine cylinders in Figure 22(c). In 

summary, Figure 19 - Figure 22 show that the proposed methodology approach can reduce random 

noise in 3D measurements of objects with both smooth and complex surface profiles. 

 
Figure 19. Distribution of the standard deviation of the 3D measurements for the 

propeller. 

 

 
Figure 20. Distribution of the standard deviation of the 3D measurements for the gear. 
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Figure 21. Distribution of the standard deviation of the 3D measurements for the scaled 

model V6 engine block. 

 

Table 9. Median and 95% Confidence Interval [in brackets] for the Standard Deviation of 

the 3D Heights. 

Measured 

object (mm) 

Methodology set 

{1, 10, 50} 

Set 

{1, 2, 4} 

Set 

{1, 2, 4, 8, 16} 

Propeller 
32.25 µm 

[35.05, 35.45] 

119.45 µm 

[108.87, 120.07] 

38.98 µm 

[38.76, 39.20] 

Gear 
32.52 µm 

[32.34, 32.71] 

119.45 µm 

[108.87, 110.12] 

40.88 µm 

[40.65, 41.12] 

Scaled Model 

of V6 Engine 

block 

44.26 µm 

[43.96, 44.57] 

154.86 µm 

[153.94, 155.58] 

54.26 µm 

[53.91, 54.61] 
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Figure 22. 3D point clouds obtained using different multi-fringe pattern sets for: (a) a 

propeller, (b) a gear and, (c) a scaled model V6 engine block. The color scale on the right 

corresponds to the standard deviation in mm of the coordinates of each 3D point. 

Since active phase unwrapping allows for 3D reconstruction of each pixel independently of its 

neighbors (as explained in Section 4.1.2), the computation time required to obtain the 3D 

reconstruction, !%4, based on the absolute phase of a multi-fringe pattern is directly proportional 

to the computation time of processing the phase of a given pixel (!'Ü«WÌ() and its corresponding 3D 

coordinates (!%4Ü«WÌ(), the number of captured pixels (r x G pixels) and, the unwrapping steps 

(��Ú?8�) in sequential unwrapping, i.e., !%4 = !'Ü«WÌ(!%4Ü«WÌ(  r G ��Ú?8�. In this context, the 

proposed methodology is efficient in that it minimizes the noise in 3D measurements by using only 
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the optimal number of unwrapping steps and fringes. The set {1, 2, 4, 8, 16} when compared to 

the methodology set {1, 10, 50} requires two additional unwrapping steps and also doubles the 

computation time needed to produce a 3D measurement. In general, the methodology set can be 

used for a wide range of objects which exhibit smooth varying surface regions, as well as with 

large numbers of discontinuous and complex features, examples of which are shown herein in the 

experiments. Furthermore, because the methodology set requires the least number of captured 

images to obtain accurate 3D reconstruction of an object, it is suitable for real-time and fast-

measurement applications as well as measuring dynamic objects when implemented using high 

throughput hardware components such as those in [13, 88]. 

7.3 Summary 

The proposed pattern sequence design methodology was utilized to determine the optimal pattern 

sequence for an SL system. Comparison experiments presented verified that the multi-fringe 

pattern set determined by our proposed methodology is able to minimize random noise in 

measurements when compared with multi-fringe pattern sets obtained from a frequently used 

approach. 
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Chapter 8  
Implementation Experiments on Design Methodologies for Micro-

Scale Measurements 

In this chapter, the proposed design methodologies presented in Chapters 3, 4 and 6 are applied to 

the design of a 3D SL system for micro-scale measurements. This chapter discusses how the design 

methodologies were applied to determine the optimal configuration of the hardware components 

and the optimal pattern sequence to reduce the 3D reconstruction errors. The measurement volume 

for the SL system developed was defined to be 0.5x0.5x0.5 mm3. The SL system was calibrated 

with a measurement accuracy of 1 µm, following the calibration procedure presented in Section 

5.4 using the optimal system configuration and the optimal pattern sequence. Experiments were 

conducted to evaluate the achievement of the desired measurement accuracy and the ability of the 

designed SL system of measuring a variety of micro-scale objects. Experimental results 

demonstrate the effectiveness of the proposed methodologies for designing SL systems for micro-

scale measurements. 

8.1 Design of the SL System Configuration 

8.1.1 Description of the Hardware Components 

The SL system for micro-scale measurements was developed and implemented in [80] by a 

member of our research group following the design methodology presented in this thesis and 

discussed in Section 5.2. The details of the hardware selection and system implementation can be 

found in [80]. In this section a brief description of the hardware components is provided. 

The 3D SL system for micro-scale measurements consists of a DLP projector for projecting the 

fringe patterns onto the measured object, a CMOS camera for capturing the deformed patterns, 

and their corresponding microscope lenses, as shown in Figure 23. A micro-controller is used to 

synchronize the projection and capturing of the fringe patterns of the measured object mounted on 

a precision stage. The complete SL system, shown in Figure 23, was mounted on a passively 

damped optical table to minimize the effect of vibration on the experimental results. In the 

following paragraphs, a description of the hardware components is presented. 
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Figure 23. 3D SL sensory system for micro-scale measurements. 

The projector is the TI (Texas Instruments Inc.) Light Commander® with a native resolution of 

1024 x 768 pixels and a square pixel size of 10.8 µm, which generates 8-bit gray scale (0-255 gray 

level) light patterns. In order to scale down the light fringe pattern generated by the 0.55” XGA 

DMD projector panel onto the object size, an assembly of microscope lenses from Navitar Inc. 

were mounted onto the projector to achieve a magnification level of 16.6X. In order to compensate 

for an offset vertical angle of 7° on the projection of the Light Commander®, a tilt-shift lens 

(Nikon 45 mm f/2.8D tilt-shift lens) was incorporated to successfully cancel out the vertical tiling 

angle of the projection path. In addition, the tilt-shift lens was coupled to a reversed larger aperture 

Fujinon CCTV lens (Fujinon 25 mm f/1.4) to eliminate the diffraction and neutralize the 

magnification before further coupling it to the microscope lens (Navitar Zoom 6000). In order to 

compensate for the Scheimpflug effect, the back support of the projector was lifted up by 8 cm 

until the effect was minimized in the images through empirical experiments [80]. The list of the 

microscope lens assembly for the projection side is presented in Table 10. 

The camera was the Adimec Quartz Q-4A180/CL with a native resolution of 2048x2048 pixels 

and a square pixel size of 5.5 µm. The camera can capture images at a maximum frame rate of 180 

fps. The assembly of microscope lenses attached to the camera and consists of: a 20X Mitutoyo 

infinity-corrected long working distance microscope objective lens, a 6.5 X motorized UltraZoom 

microscope lens (1-62316), a 1.0 X tube lens (1-6015), and a lens motor controller. The microscope 

lens assembly has a magnification range of 2.8X-18X at a long microscope working distance of 

20 mm when coupled to the camera. Table 10 presents the list of the optical components in the 

microscope lens assemblies for the camera. 
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Table 10. Assemblies of the microscope lens setup for the projector and the camera [80]. 

Optics components 

Projector Camera 

Nikon 45 mm f/2.8D tilt-shift lens 

Fujinon CCTV lens (Fujinon 8 mm f/1.4) 

(reverse lens) 

20X Mitutoyo objective lens 

6.5 X Zoom microscope lens 

2.0 X adapter 

20X Mitutoyo objective lens 

6.5 X motorized UltraZoom microscope 

lens 

1.0 X tube lens 

8.1.2 SL System Configuration 

As discussed in Chapter 3, the triangulation configuration between the camera, projector and the 

measured part has a significant influence on the resulting measurement accuracy, though in 

practice considerations such as physical interference, working distances of the lenses, FOV and 

DOF, impose a set of geometrical constraints that significantly limit design choices. For instance, 

Figure 24 shows the projector and camera lenses in close proximity to the measured object, with 

the world coordinate system shown for reference purposes. The small working distances of the 

camera and projector lenses, combined with their size, make it difficult to jointly focus on the 

target object without obstructing each other’s line of sight. 

The methodology of Section 5.2 was applied, which relies on the geometric constraint models 

described in Section 3.2.2. The optimization objective of maximizing the size of the measurement 

volume was achieved by minimizing the angle between the optical axes of the camera and projector 

while avoiding physical interference. 

 
Figure 24. World coordinate frame indicated on the SL system set-up. 
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8.2 Design of the SL Pattern Sequence 

The design methodology presented in Section 5.3 was used to determine the optimal pattern 

sequence for the SL system for micro-scale measurements, i.e., the sequence of fringe patterns that 

minimizes the 3D reconstruction errors for a given set of hardware components and their 

triangulation configuration. 

8.2.1 Set of Fringes 

Step 1 of the proposed methodology was applied to determine the set of fringes Ä] to analyze 

based on the pattern coding resolution of the SL system. Since the resolution of the projector is 

1024 pixels (in the horizontal direction used for pattern encoding), and ensuring that each fringe 

is represented by at least 5 pixels, the set of fringes is given by Ä] = Å�@Æ =È1, 2, 4,8, 16, 32, 64, 128É, where �@ corresponds to the number of fringes that satisfy these two 

conditions: 1) �@ Ç È1, … ,1024/5É, and 2) 1024 hk� �@ = 0. 

8.2.2 Random Noise in Relative Phase 

Step 2 of the methodology was used to determine the noise in phase values as described in Section 

5.3. In particular, the noise in phase values was determined by projecting fringe patterns with all 

the number of fringes included in the set Ä] onto a vertical flat plane placed within the 

measurement volume of the SL system. The plane was moved to different �-positions within the 

target measurement volume, to fully characterize the behavior of the phase noise across the 

measurement volume. 

The random noise in phase was estimated by: 1) taking repeated measurements of the flat 

calibration object for each �-position, 2) calculating the noise as the standard deviation of the phase 

values at each pixel with respect to the stage known �-position, and 3) taking the noise average of 

all the pixels for each plane position. Figure 25 shows the average of the phase noise for the number 

of fringes considered, for different positions of the plane inside the measurement volume in 50 ~h 

increments. The noise in relative phase increased when the flat plane was imaged at the positions � = È0, 100, 450, 500É ~m, which correspond to the positions that are closest and farthest from 

the camera and projector. This is evidence that these positions do not fall inside the region where 
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both the camera and projector are in focus. Hence, the measurement volume in which both the 

camera and the projector are in focus is limited within � =  100 and � =  400 ~m. 

 
Figure 25. Relative phase noise of fringe patterns projected onto a flat plane moved along 

the �-axis of the measurement volume for micro-scale measurements. 

8.2.3 Pattern Sequence 

After the noise in phase values was fully characterized, Step 3 of the methodology was 

implemented to determine the optimum set of multi-fringe patterns among the set of existing 

fringes determined in Step 1, using the procedure described in Section 4.2.3. Based on the 

information provided by Figure 25, a value of 0.25 rad for the noise in relative phase was used, 

and � = 1.5 was considered, hence the noise level was set to be within 0 < �ÁÂ¾I < 0.375 rad. 

The selected noise level of 0.25 rad and safety factor of � = 1.5 provided an approximate upper 

bound for the phase noise for patterns with up to 16 fringes. The absolute phase ΦÒ ]¾	 was simulated G>?8� = 20 times for each random noise value defined by incrementing through the 

aforementioned range by 0.009 rad. 

Eq. (31) was used to identify the optimal set of patterns required to minimize the random noise in 

the absolute phase for the SL system. Using the random noise reduction criterion in Step 3, 

described in Section 4.2.3, the number of unwrapping steps was determined to be four, resulting 

in patterns with {1, 2, 4, 8, 16} fringes. Figure 26(a) and Figure 26(b) present the results for the 
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first and the last phase unwrapping steps where the random noise in the resulting absolute phase �ÀÂ¾I  is presented in logarithmic scale as a function of the number of fringes �@, and the random 

noise level of the relative phase �ÁÂ¾I  and the reference phase �ÀËÌ¾I . Larger number of fringes are 

represented with lighter shades in Figure 26. For the first unwrapping step, Figure 26(a), it can be 

seen that �@,�Ú?8# = 2 fringes minimizes the random noise in the absolute phase for the entire 

domain of �ÁÂ¾I  and �ÀËÌ¾I . Similarly, after 4 steps of sequential unwrapping, in Figure 26(b), it 

can be seen that �@,�Ú?8v = 16 fringes provides the minimum random noise in the resulting 

absolute phase. 
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(a) 

 
(b) 

Figure 26. Effect of random noise in relative and reference absolute phases on the 

absolute phase for varying random noise levels during (a) the first and (b) the fourth 

(last) unwrapping steps. 

8.3 Calibration Procedure 

For system calibration, the methodology described in Section 5.4 was used. A planar calibration 

object featuring a grid of circles with a radius of 62.5 ~m and a spacing of 125 ~m was used.  
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Figure 27 and Table 11 provide object specifications. The accuracy of the circle spacing is rated 

to 1 ~m. The calibration object was mounted on top of a 3-axis translational stage (Thor Labs 

PT3M) in order to move the calibration object through the measurement volume, Figure 28. The 

position repeatability of the stage is 1.5 ~m, with a backlash error up to 8 ~m. 

 

Figure 27. Calibration object featuring a grid of circles from Edmund Optics, Inc. [89]. 

 

Table 11. Specification of the calibration object: Fixed frequency grid distortion target 

from Edmund Optics, Inc. [89]. 

Specification: 

Type Chrome on Opal 

Dimensions (mm) 50.8 x 50.8  

Pattern Size (mm) 25 x 25 

Thickness (mm) 1.5 

Dot Diameter  62.5 µm 

Dot Diameter Tolerance  ± 2 µm 

Dot spacing 125 µm 

Dot Spacing Tolerance (mm) ± 1 µm Center to Center, ± 0.004 Grid Corner to Corner 

Overall Accuracy (mm) ± 1 µm 

Surface Accuracy (λ) 4 - 6 λ per 25.4 Area 

Surface Quality 40-20 

Coating Reflective First Surface Chromium  

Rabs = 50% ± 5% @ 550 nm 
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Figure 28. Assembly of a 3-axis translational stage using a right angle bracket to mount 

the object holder. 

The calibration plane was placed vertically on the stage, i.e., with the normal of the plane aligned 

with the �-axis. The plane was gradually moved with a fixed step along the �-axis, in 50 ~m steps, 

starting from the farthest (� = 0 ~m) to the closest �-position (� = 500 ~m) to the sensory 

system, as indicated in Figure 29. Then, the plane was returned to the position � = 0 ~m, moved 

20 ~m in the �-direction, followed by another set of 50 ~m movements in the �-direction. This 

procedure was repeated 6 times, resulting in a total of 66 plane positions. 

  
(a) (b) 

Figure 29. (a) Schematic of the calibration movement in the world coordinate frame 

during calibration, (b) SL system set-up with the calibration object indicated. 
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8.3.1 Multi-focus Imaging of the Calibration Object 

For each position of the calibration object, the optimal pattern sequence determined in Section 

8.2.3, namely patterns with {1, 2, 4, 8, 16} fringes, were projected. In addition, a fully illuminated 

pattern was also projected for the focus fusion procedure. For each pattern, images were captured 

using a procedure for capturing images at multiple focus settings presented in [81]. This procedure 

consisted of: 1) searching the peak focus of an image to determine the in-focus region, 2) varying 

the focus level to position the in-focus region at the left of the camera view, and 3) imaging the 

camera view with images at successive focus levels until the in-focus region was at the right of the 

camera view. This resulted in a collection of images with a small in-focus region that moved across 

the camera view. 

8.3.2 Focus Fusion 

The images captured in the previous step were post-processed to combine information from 

multiple images captured with different focus levels into a single all-in-focus image for each fringe 

pattern, for each calibration object location. To this end, the fully illuminated images 

corresponding to multiple focus levels are processed first, to determine how each region of each 

image maps out to the final all-in-focus image. Once the mapping between the focused regions of 

each image and the final all-in-focus image has been determined, this mapping is used for the focus 

fusion of the remainder pattern images. 

8.3.3 Image Feature Detection 

The Circular Hough Transform [90], a circle detection algorithm based on the Hough transform, 

was used to determine the location of the centers of the circular markings in the calibration object 

[80]. 

The world coordinates of the circle centers are defined based on the known position of the stage 

and the known distances between circle centers. This information is then combined with the image 

coordinates (�P, P) of the circle centers in the camera. Based on the number of plane positions 

considered (66), and the number of circular calibration markings that are captured in each image, 

a total of approximately 1,000 data points are used for calibration.  
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8.3.4 Image Feature Re-Mapping 

The last step in acquiring the data needed for system calibration is determining the image 

coordinates in the projector panel (�2 , 2) for each of the circle centers that were detected in the 

camera. This requires determining the pixel-to-pixel correspondences between the camera and the 

projector. To this end, the all-in-focus images of the optimal pattern set {1, 2, 4, 8, 16} are 

processed to calculate the relative phase of each pixel, and are then sequentially unwrapped to 

obtain the absolute phases of each pixel. Finally, the absolute phase values of each pixel are used 

to calculate the image coordinates of each detected circle center in the projector. This completes 

the calibration data set, i.e., (� ,a, � ,a, � ,a, �	,a, 	,a, �2,a, 2,a), for * = 1, … , �P}à�á. 

8.3.5 Model Fitting and Selection 

The calibration data set obtained in Section 8.3.4 is used to fit regression models to map the camera 

and projector image coordinates of points in the object surface to the corresponding world 

coordinates. For this purpose, the calibration data set is split into two subsets: A training data set, 

containing 80% of the data and used to determine the coefficients of the model that best fit the 

data, and a validation data set, containing the remaining 20% of the data and used to assess the 

predictive performance of the model with a data set that was not used to fit the model. 

As discussed in Section 5.4.5, polynomial models of first, second and third degree, shown in Table 

1, were considered as candidate models and fitted to the training data set using iteratively re-

weighted least squares (IRLS). Then, model selection metrics were computed using the training 

data to select the single best predictive model for each world coordinate. Figure 30, Figure 31 and 

Figure 32 show the behavior of error metrics (training RMS, validation RMS) and model selection 

metrics (residual MSE, cross-validation error) for each model for predicting the � , �  and �  

coordinates, respectively. As expected, the RMS error of the model for the training data set 

decreases as models with more explanatory variables (and more tunable coefficients) are 

considered. Note, however, that the cross-validation (CV) error increases for the rv (i.e., cubic) 

models, exhibiting its lowest value for the r% (i.e., quadratic) models in all three cases. This is 

evidence that the cubic models are overfitting the data, and are thus unable to predict new 

observations accurately even though they reproduce the training data closely. Based on this 

evidence, the quadratic models are selected for the calibration data set. Table 12 shows the 
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coefficients 7w of the regression models, which are used for determining � , �  and �  based on 

the image coordinates (�2 , 2 , �2). 

 

 
Figure 30. Error metrics and model selection metrics for estimating the *-coordinates using 

the calibration models: M1: Linear, M2: Linear with interactions, M3: Quadratic, M4: 

Cubic. 

 

 



97 

 

 
Figure 31. Error metrics and model selection metrics for estimating the �-coordinates 

using the calibration models: M1: Linear, M2: Linear with interactions, M3: Quadratic, 

M4: Cubic. 

 

 
Figure 32. Error metrics and model selection metrics estimating the �-coordinates using the 

calibration models: M1: Linear, M2: Linear with interactions, M3: Quadratic, M4: Cubic.  

 



98 

 

Table 12. Quadratic regression models fitted to the calibration data set.  

Coordinate 

Regression Model 

7- + 7#�P + 7u�Pu + 7%P + 7v�PP + 7ûPu + 7ü�8 + 7ý�P�8 + 7þP�8 + 7��8u �  7÷<<<<= = [-1.1832 , 0.0141 , -0.0267 , 2.4420 , -0.0073 , 0.0002 , -0.1285 , 0.0662 , -0.0054 , -0.0159] �  7ù<<<<= = [-1.8035 ,  1.9230 , -0.0655 ,  0.0133 , 0.0008 , 0.0002 , 1.3125 ,  0.1914 , 0.0132 , -0.1170] �  7ú<<<<= = [-1.1020 , -8.4957 , 0.2071 , -0.0223 , -0.0105 , -0.0052 , 9.3165 , -0.2730 , 0.0847 , 0.1714] 

The models shown in Table 13 only require one of the projector coordinates. In this work, the 

horizontal image coordinate �2 is used as it is the axis in which the projector has the highest 

resolution. In Section 3.1.4, it was discussed that the 3D reconstruction only requires one image 

coordinate of the projector to establish a unique triangulation for a given point on the surface of 

the measured object, although both projector image coordinates could be used if available to 

enforce a least squares solution of the triangulation equations. In the context of fitting calibration 

models for the SL system for micro-scale measurements, tests conducted using both �2 and 2 

projector image coordinates to fit the calibration models did not result in lower prediction errors.  

Once the model with the lowest cross-validation error was selected for predicting each world 

coordinate, the models were used to predict the data in the validation set to quantify the predictive 

accuracy of the models. In particular, the validation data and the model predictions are used to 

calculate the RMS and MAD error metrics, Eqs. (44) and (45), respectively, which quantify the 

measurement error that can be expected from the SL system for micro-scale measurements. Table 

13 shows the validation error metrics for the calibration models for each world coordinate. It also 

includes the 3D errors (also known as “isometric” errors), calculated as the +u norm of a vector 

which components are the error metrics for each coordinate. The MAD validation error is 1.36 ~m, which is comparable with the position accuracy of the precision stage used for the calibration 

experiments. 

Table 13. Validation error metrics for the quadratic regression models fitted to the 

calibration data. 

Measurement direction 
Validation Error 

(RMS in �m) 

Validation Error 

(MAD in �m) �  0.44 0.34 �  0.57 0.46 �  1.50 1.24 

,(� )u + (� )u + (� )u 1.67 1.36 
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8.4 Experimental Measurements 

Once the calibration of the SL system for micro-scale measurements was completed, a series of 

tests were performed to assess its performance. Both a planar object and complex objects were 

used for these tests, as discussed below. The performance metrics used were: 1) the measurement 

accuracy of the system, and 2) surface profile measurements with depth variations and surface 

discontinuities. 

8.4.1 Planar object 

A planar object was placed vertically on the stage, i.e., with the normal of the object plane aligned 

with the �-axis of the SL system. The plane was moved along the �-axis, following the same 

approach used for the calibration experiments. The plane was moved 10 times in 50 ~m steps from � = 0 ~m to � = 500 ~m, and moved 3 times in 20 ~m steps along the �-direction, for a total 

of 44 plane positions. 

At each position, the planar object was measured using the fringe pattern sequence determined in 

Section 8.2.3 to generate the absolute phase maps. Then, using the calibration models, the world 

coordinates of each pixel were calculated, thus generating the point clouds. A mathematical model 

representing a flat plane was fitted to each point cloud using linear regression methods, and the 

mean value of the �  coordinates of the point clouds was used to indicate the �-position of the 

plane. This estimated plane position was compared with the actual position of the stage. Figure 33 

shows the position errors, i.e., the difference between the �-position of the fitted plane and the 

(known) position of the stage. The errors are larger when the planar object is placed in the world 

coordinates � = È0, 50, 450, 500} ~m, which coincide with the positions where the phase noise 

errors were larger. However, median position errors for the central region of the measurement 

volume, i.e., when the planar object was placed in the world coordinates � = È150, … ,400É ~m, 

are under 2 ~m, comparable to the position error of the stage (1.5 ~m). 
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Figure 33. Plane position error with respect to the stage position within the measurement 

volume. 

8.4.2 Complex Objects 

Finally, the SL system for micro-scale measurements was tested measuring objects with different 

surface complexities. The feature of a digit of the year on a Canadian dime (10 cent Canadian coin) 

was measured, Figure 34. Figure 35 shows the surface profiles of the small regions in which the 

number “3” and the letter “N” can be seen. Figure 35(a) and Figure 35(b) were rendered from a 

point cloud with more than 2 million points obtained by registration of 5 and 12, respectively, 

separate, overlapping measurements conducted while moving the coin in the �-coordinate 

direction for measuring the number “3” and in both � - and � -coordinates for the letter “N”. The 

surface profiles of the micro-scale features “3” and “N” depicts the ability of the SL system to 

measure the height variations that characterize the profile of the “3” and the “N”, and the surface 

roughness of the flat area of the coin. 
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Figure 34. Canadian dime with micro-scale features “3” and “N”. 
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(a) 

 
(b) 

Figure 35. Surface profile of the micro-scale features “3” and “N” on a Canadian dime 

measured with the designed SL system. 
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Figure 36. Wrist watch measured with micro-scale gear. 
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Figure 37. Surface profile of the micro-scale gear of wrist watch measured with the 

designed SL system. 

A micro-scale gear from the mechanism of a wrist watch, Figure 36, was also measured. Figure 

37 shows the results of measuring a micro-scale gear from a wrist watch, a small and complex 

object. This surface profile was rendered from a point cloud with 4.5 million points, obtained by 

registration of 7 separate, overlapping measurements conducted while moving the gear in both the �-coordinate and �-coordinate directions. The surface profile of the micro-scale gear illustrates 

that the SL system is able to provide 3D measurements of the discontinuous small teeth, the defined 

edge profile of the teeth, the curvature of the interior diameter of the hub, and the surface roughness 

of the gear. 

8.5 Summary 

In this chapter, the novel design methodologies presented in Chapter 5 were implemented for a 3D 

SL system for micro-scale measurements of objects. The SL system was implemented using the 

optimal configuration of the hardware components to maximize the measurement volume, the 

optimal pattern sequence to reduce the 3D reconstruction errors, and the system calibration for SL 

systems for micro-scale. Experiments conducted with a variety of micro-scale objects 

demonstrated the effectiveness of the proposed methodologies for designing SL systems for micro-

scale measurements. 
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Chapter 9  
Conclusions 

This chapter presents a summary of the research challenges addressed in this thesis, the design 

methodologies proposed for SL system to measure small complex objects, and validation 

experiments conducted to verify the effectiveness of the designed systems. Finally, possible 

directions for future research are discussed. 

9.1 Contributions 

This thesis presented the design, development and implementation of design methodologies for 

SL sensory systems in order for them to measure the 3D surface profile of small complex objects. 

To this end, both hardware and software aspects were considered in the design methodologies for 

SL systems, resulting in the following contributions to the state of the art: 

9.1.1 Design Methodology for SL System Configurations 

To design the system configuration of the hardware components of the SL system for measuring 

small complex objects, a general methodology was developed for determining the optimal 

triangulation configuration of SL systems. Based on the optical specifications of the camera and 

projector, their physical sizes, and the target measurement volume, the proposed design 

methodology determines the optimal configuration of the hardware components based on the 

following performance metrics: 1) minimizing the 3D reconstruction errors, 2) maximizing the 

pixel-to-pixel correspondence between the projector and camera, and 3) maximizing the dispersion 

of the measured 3D points within a required measurement volume. In addition, a set of design 

constraints were defined in order to ensure the feasibility of the resulting configuration, avoiding 

physical interference and occlusions, and keeping the overall system footprint within desired 

ranges. 

9.1.2 Pattern Sequence Design Methodology for SL Systems 

A novel design methodology was developed for determining the optimal pattern sequence that 

minimizes measurement errors in SL systems that use sinusoidal phase-shifting techniques. Based 

on the sequential unwrapping strategy of using a set of patterns with increasing number of fringes, 

the proposed methodology uniquely considers both the number of patterns that are needed in the 
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pattern sequence as well as the number of fringes for each pattern in order to reduce the 

reconstruction errors caused by random noise in the captured patterns. 

9.1.3 Design Methodologies for Micro-Scale Measurements 

Design methodologies for SL system using image focus fusion for micro-scale measurements were 

developed to effectively increase the depth-of-field of the microscope lenses. A novel calibration 

approach is also proposed which includes pattern sequence design, image fusion to get all-in-focus 

patterns and fitting and selection of calibration models for the entire measurement volume. This 

novel calibration approach provides the lowest predictive errors for a given calibration data set 

within the entire measurement volume for SL system using microscope lenses. 

9.1.4 Implementation Experiments on SL System Configuration Design for 
Macro-Scale Measurements 

The design methodology proposed in Chapter 3 was used to determine the optimal system 

configuration of an SL system. Experimental comparison of measurements between using the 

optimal and a feasible configurations validated that optimal system configuration provided more 

accurate 3D surface profiles of the certified object measured. A set of objects with different surface 

complexities was also measured and verified the capability of the designed SL system to handle 

complex surface profiles. 

9.1.5 Implementation Experiments on Pattern Sequence Design for SL 
Systems for Macro-Scale Measurements 

To experimentally validate the proposed methodology in Chapter 4, the optimal pattern sequence 

was obtained for an SL system. A certified metric object was measured, as well as a set of small 

complex objects, namely a gear, a propeller, and a scaled model of an engine block. Experimental 

results comparing the measurements obtained with the pattern sequence designed from the 

methodology and a frequently used approach demonstrate that the former minimized the random 

noise in measurement errors. 

9.1.6 Implementation Experiments on Design Methodologies for Micro-
Scale Measurements 

The design methodologies presented in Chapters 3 and 4 were adapted for micro-scale 

measurements, and applied to a SL system using image focus fusion for measuring micro-scale 
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objects. A novel calibration approach was proposed for this system, which leverages robust 

regression methods and model selection metrics to obtain individual calibration models for each 

3D component, with the lowest prediction errors for a given calibration data set. Such models were 

evaluated to be valid over the entire measurement volume, which was greater than the original 

volume limited by the sallow depth-of-field of the microscope lenses. Experiments conducted 

demonstrated the effectiveness of the proposed methodologies for designing SL systems for 

reconstructing the surface profile of a variety of micro-scale objects. 

9.2 Future Work 

The contributions made in this thesis provide several potential topics for future research. Future 

research could focus on using the SL models and the ray-tracing approach to determine the 

viewpoints required to measure the areas with occlusions and/or shadows. Such methodology 

could also be extended to determine the position of multiple number of cameras to provide more 

measurement points. 

Regarding the pattern sequence, future work could focus on developing adaptive fringe patterns, 

i.e., pattern strategies that would be iteratively adapted to better measure the surface of the target 

object. In such an approach, after a minimal set of phase-shifted patterns is projected, the measured 

object profile would be used to design a new set of patterns that would maximize the measurement 

accuracy for that specific object. Another alternative in the area of pattern design is to investigate 

the use of frequency multiplexing to combine a set of fringe patterns into a single pattern for real-

time applications measuring moving objects. This would increase the acquisition speed as the 

number of patterns is reduced. 

Future work regarding SL system for micro-scale measurements could focus on alternative 

calibration models. For instance, the camera and the projector could be modelled separately so that 

the extensive calibration procedure could be modular and will not require a full recalibration if one 

of the hardware components is replace. Another option to evaluate is the feasibility of using a 

multi-variate regression model, i.e., one model that predicts simultaneously all the 3D coordinates 

for each pixel-to-pixel correspondence. 
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List of My Publications 

 

Journal Publications 

V. E. Marin, W. H. W. Chang, and G. Nejat, "Generic design methodology for the development 

of three-dimensional structured-light sensory systems for measuring complex objects," Optical 

Engineering, vol. 53, p. 112210, 2014. 

V. E. Marin and G. Nejat, "Determining optimal pattern sequences for three-dimensional 

structured light sensory systems," Applied Optics, vol. 55, pp. 3203-3213, Apr 2016. 

 

Conference Proceedings 

V. Marin; W. Chang; E. Nuger & G. Nejat. “Design of a 3D sensing system for surface profiling 

of 3D parts in manufacturing applications,” CIRP sponsored International Conference on Virtual 

Machining Process Technology, Montreal, QC, Canada, May, 2012. 

V. Marin, W. Chang and G. Nejat, “A Methodology for Designing 3D Structured-Light Sensory 

Systems,” CIRP sponsored International Conference on Virtual Machining Process Technology, 

Hamilton, ON, Canada, May 2013. 

V. Marin, W. Chang and G. Nejat, “A Multi-Objective Design Methodology for 3D Structured-

Light Sensors,” CIRP sponsored International Conference on Virtual Machining Process 

Technology, Calgary, AB, Canada, May 2014. 

V. Marin and G. Nejat, "Designing projection patterns for 3D structured-light sensors," ASME 

International Design Engineering Technical Conferences and Computers and Information in 

Engineering Conference, Boston, MA, USA, August 2015, paper DETC2005-47760. 
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