
A Physics Informed Neural Network for Time–Dependent
Nonlinear and Higher Order Partial Differential Equations

Revanth Mattey a, Susanta Ghosh a,b,∗

aDepartment of Mechanical Engineering–Engineering Mechanics, Michigan Technological University, MI, USA
bThe Center for Data Sciences, Michigan Technological University, MI, USA

Abstract

A physics informed neural network (PINN) incorporates the physics of a system by satisfying
its boundary value problem through a neural network’s loss function. The PINN approach has
shown great success in approximating the map between the solution of a partial differential
equation (PDE) and its spatio-temporal input. However, for strongly non-linear and higher order
partial differential equations PINN’s accuracy reduces significantly. To resolve this problem, we
propose a novel PINN scheme that solves the PDE sequentially over successive time segments
using a single neural network. The key idea is to re-train the same neural network for solving
the PDE over successive time segments while satisfying the already obtained solution for all
previous time segments. Thus it is named as backward compatible PINN (bc-PINN). To illustrate
the advantages of bc-PINN, we have used the Cahn Hilliard and Allen Cahn equations, which
are widely used to describe phase separation and reaction diffusion systems. Our results show
significant improvement in accuracy over the PINN method while using a smaller number of
collocation points. Additionally, we have shown that using the phase space technique for a higher
order PDE could further improve the accuracy and efficiency of the bc-PINN scheme.

Keywords: Physics informed neural networks,, Partial differential equation (PDEs), Allen Cahn
equation, Cahn Hilliard equation

1. Introduction

Traditional physics-based numerical methods for solving partial differential equations (PDEs)
have found remarkable success in solving various science and engineering problems. These meth-
ods are accurate but computationally expensive for complex problems such as nonlinear PDEs and
requires problem–specific techniques. In the last decade data driven methods have gained a lot of
attention in almost all areas of science and engineering. Data driven methods for PDEs can help
in identifying highly non-linear mappings (between the inputs and outputs) which can substitute
or augment expensive physics based simulations. Due to their versatility and fast evaluation capa-
bilities, machine learning based models can be used as PDE solvers in situations when there is a
requirement of large number of simulations such as the inverse–problem and homogenization [1, 2].

Several data–driven techniques have been attempted to solve PDEs. For instance, the
Gaussian Process based approaches described in [3, 4, 5, 6, 7]. Despite the ease of training for
Gaussian Process, this approach did not gain as much popularity as neural network for solving

∗Corresponding author; Email: susantag@mtu.edu

Preprint submitted to Computer Methods in Applied Mechanics and Engineering June 15, 2021

ar
X

iv
:2

10
6.

07
60

6v
1

 [
m

at
h.

N
A

]
 4

 J
un

 2
02

1

https://orcid.org/0000-0002-6732-622X
https://orcid.org/0000-0002-6262-4121

PDEs due to its difficulties in handling high dimensional problems.

Among different data–driven techniques for PDEs the Physics Informed Neural Networks
(PINN) has shown remarkable promise and versatility. PINN is a new class of machine learning
technique where a neural network’s loss function is designed to satisfy the Initial Boundary Value
Problem (IBVP) [8]. A PINN “learns” the non linear map between the spatio–temporal input
and the solution of the PDE in a given domain. PINN utilizes the automatic-differentiation
capability [9] to compute the derivatives of the field variables.

Different variants of PINN are shown to work effectively in solving many forward and inverse
problems [10, 11, 12]. Recently in [13], PINNs have been extended to satisfy various conservation
laws while solving the PDEs. This approach is named as cPINNs. cPINNs solve the problem
over several sub-domains and ensure flux continuity at the boundaries of the sub-domains. While
most of the PINN approaches solves the strong form of a PDE, it can also be used to solve
the weak (variational) form of a PDE. Since the weak form incorporates the natural boundary
conditions, the neural network solution only needs to satisfy the essential boundary conditions a
priori. This aspect is used in several numerical methods for PDEs such as finite element method.
Due to this advantage of weak form over strong form the application of PINNs on the weak
form have been in investigated in [14]. In this study the authors have considered the variational
form for stochastic PDEs and applied the idea of PINNs to obtain the solution of the PDE.
Also the corresponding uncertainty propagation through their model is presented in [14, 15].
Uncertainty quantification provides the variation associated with the prediction of the model. It
is particularly useful for systems where there is a high cost of data acquisition or lack of high
resolution data [16]. The authors in [17] proposed a Bayesian approach for physics informed
neural network to solve forward and inverse problems.

The promise and versatility of PINN have been demonstrated through its application for a
wide range of problems. PINN has been used in modelling subsurface transport phenomena [18],
approximating Euler equations for high speed flows [1], constitutive modeling of stress strain
behavior in biological tissues [19], predicting arterial blood pressure from noisy MRI data of flow
velocity [20], and cardiac activation mapping for diagnosing atrial fibrillation [21].

In the present work, we demonstrate that the accuracy of the state-of-the-art PINN [8] suffers
in the presence of (i) Strong Non-linearity, and (ii) Higher order partial differential operators. In
order to illustrate the above, we chose the Allen Cahn equation having strong non-linearity and
Cahn Hilliard equation having strong non-linearity and fourth order derivative. These are the
two most widely used PDEs to study diffusion separation and multi phase flows [22, 23, 24, 25].
To overcome the drawbacks of state of the art PINN, we have proposed an extension, which is
named as backward compatible PINN (bc-PINN). The proposed bc-PINN solves the PDE over
successive time segments by re-training the same neural network, where the key idea is:

To ensure that the neural network can reproduce the solution for all the prior time segments
while solving the PDE for a particular time segment.

Henceforth, this idea is referred as backward compatibility. Some of the main advantages of the
proposed bc-PINN method are as follows:

1. It works for higher order and strongly nonlinear PDEs by using less number of iterations
and collocation points while achieving significantly higher accuracy when compared to
standard PINN.

2

2. A single neural network is used for the entire domain and continuity across the time
segments is ensured for the predicted solution and its derivatives.

The rest of the paper is organized as follows: in section (2) the PINN method is briefly
reviewed; in section (3) the proposed bc-PINN method is presented; in section (4) and (5)
the bc-PINN method is analyzed and compared against the PINN method for the Allen Cahn
equation and Cahn Hilliard equation respectively. Finally, the conclusions are presented in
section (6).

2. A brief review of physics informed neural network (PINN) for partial differential
equations

Physics informed neural network (PINN) is a class of machine learning model where the
governing PDE is satisfied through the loss function of the neural network. The efficient
optimization and prediction capabilities of neural network are exploited in the PINN approach.
In PINN a neural network is trained to predict the solution at any point in the entire spatial–
temporal domain. Let’s consider the general form of a mth order partial differential equation
(PDE):

ht = F (h(x, t), h(1)
x (x, t) , h(2)

x (x, t), · · · , h(m)
x (x, t)) , x ∈ Ω ⊂ R , t ∈ (0, T] (1)

Here, Ω is an open set of R. F is a non linear function of the solution h(x, t) and it’s spatial

derivatives (h
(1)
x (x, t), h

(2)
x (x, t), · · · , h(m)

x (x, t)) where x and t are the space and time coordinates
respectively. The corresponding boundary conditions and initial conditions are

h(x, 0) = φ(x), x ∈ Ω

h(−x, t) = h(x, t), (x, t) ∈ Γ× (0, T]

h(1)
x (−x, t) = h(1)

x (x, t) , (x, t) ∈ Γ× (0, T]

(2)

Where, Γ is the boundary of Ω. The PDE, the Initial and the Boundary Conditions (given by
equation (1–2)) form a initial–boundary value problem (IBVP) considered in this study. The
boundary conditions are taken as periodic and the initial condition is a real function.

PINN approximates the map between points in the spatio-temporal domain to the solution of
the PDE. The parameters of the neural network are randomly initialized and iteratively updated
by minimizing the loss function that enforces the PDE. The PINN’s loss function consists of
three error components, for the prediction of the neural network as in the following (i) Initial

Condition, (ii) Boundary Condition, and (iii) PDE. Let ĥ(x, t) be the output of neural network.
The three components of the PINN’s loss function are given below:

• Mean squared error on the Initial Condition

MSEI =
1

Ni

Ni∑
k=1

(
ĥ(xik, 0)− hik

)2

, xik ∈ Ω (3)

where ĥ(xik, 0) is the neural network output and hik is the given initial condition at (xik, 0).
Here, the superscript, (•)i stands for initial condition.

• Mean squared error on the Boundary Condition

MSEB =
1

Nb

Nb∑
k=1

nd∑
d=1

(
ĥ(d−1)(xbk, t

b
k)− ĥ(d−1)(−xbk, tbk)

)2

, (xbk, t
b
k) ∈ Γ× (0, T] (4)

3

where nd is the highest order of derivative to which the periodicity is enforced on the
boundary, Γ. Here, the superscript, (•)b stands for boundary condition.

• The Mean squared error due to Residual of the partial differential equation

R := ĥt − F (ĥ, ĥ(1)
x , ĥ(2)

x , ...ĥ(m)
x)

MSER =
1

Nr

Nr∑
k=1

(R(xrk, t
r
k))

2
, (xrk, t

r
k) ∈ Ω× (0, T]

(5)

The superscript, (•)r stands for residual of the PDE. (xik) and (xbk, t
b
k), represent the set of points

where the initial and boundary errors are computed. The residual/collocation error is computed
at the collocation points (xrk, t

r
k). These points on the domain and the boundary are obtained

using a latin hypercube sampling approach. Therefore, the total loss function of the neural
network is given by adding all the aforementioned mean squared errors

MSE = MSEI + MSEB + MSER (6)

Once the PINN is trained, the accuracy of the predicted solution is computed with respect
to the true/exact solution at unknown points (called testing points). Highly accurate solution
of the initial boundary value problem obtained by the Chebyshev polynomial based numerical
algorithm [26] and is considered as the exact solution. The relative total error (εtotal) of the
PINN’s prediction over the entire domain is obtained by normalizing the error with respect to
the true solution as

εtotal =

[
1
N

∑N
k=1

(
ĥ(xk, tk)− h(xk, tk)

)2
]1/2

[
1
N

∑N
k=1 (h(xk, tk))

2
]1/2

(7)

The relative error (ε) of the PINN’s prediction at each point is obtained by normalizing the
absolute error with respect to the true solution as

ε(xk, tk) =

∣∣∣ĥ(xk, tk)− h(xk, tk)
∣∣∣[∑N

k=1 (h(xk, tk))
2
]1/2

(8)

Where h(xk, tk) is the true solution and ĥ(xk, tk) is the neural network prediction for a set of

testing points {(xk, tk)}Nk=1, (xk, tk) ∈ Ω× (0, T]. For all comparisons between true and predicted
solutions the relative total error ‘εtotal’ and relative error ‘ε’ is used.

3. The proposed backward compatible sequential PINN method (BC-PINN)

In this section, we introduce an extension of the standard PINN technique that solves an
initial-boundary value problem sequentially in time.

3.1. bc-PINN

In the proposed method the PDE is solved progressively in time by re-training a single neural
network over successive time segments. The limitation of such retraining is that the network
can predict only for the latest time segment and cannot predict for previous time segments for

4

those it has been trained earlier. To overcome this limitation, the proposed model is designed to
satisfy the solution of all the previous time segments while solving the PDE over a particular
time segment. This scheme ensures backward compatibility of the solution by a single network.
The proposed method is henceforth referred as backward compatible PINN (bc-PINN). The
schematics of bc-PINN for a particular time segment is shown in figure (1) and the sequential
scheme of proposed bc-PINN approach is shown in figure (2). In bc-PINN the time domain [0, T]
is discretized into nmax segments as

[T0 = 0, T1], [T1, T2], · · · , [Tn−1, Tn], · · · , [Tnmax−1, Tnmax = T] (9)

where the nth segment is denoted as ∆Tn = [Tn−1, Tn], n = 1, · · · , nmax.

Figure 1: The schematics of the proposed backward compatible PINN (bc-PINN) approach for a time segment
((Tn−1, Tn]). The neural network re-trains the PDE over (Tn−1, Tn] while satisfying the solution for all previous
time segments.

��
�
��
�
∈ Γ ��− ��

��

��

∈ Ω ��− ��

��−

��
�

∈ Ω

��

��

∈ Ω ��−

���� ��
�

��� ��

��

���� ��
�
��
�

���� ��

��

� = 0
�

�

�� ��+1 �

Figure 2: Illustration of the proposed backward compatibility scheme that satisfies the solutions obtained on all
previous time segments ([0, Tn−1]) while satisfying the PDE on the current time segment ((Tn−1, Tn]).

5

For the first time segment ∆T1 the solution of the PDE is sought through the standard PINN
by minimizing the following loss function

MSE∆T1
= MSEI(xik, 0) + MSEB(xbk, t

b
k) + MSER(xrk, t

r
k)

xik ∈ Ω, (xbk, t
b
k) ∈ Γ× (0, T1] (xrk, t

r
k) ∈ Ω× (0, T1]

(10)

Here, (xik, t
i
k) represent the set of points where the error on initial condition is computed and

(xbk, t
b
k) represent the set of points where the error on boundary condition is computed within the

time segment ∆T1 = (0, T1]. For all of the subsequent time segments (i.e. ∆Tn, n = 2, · · · , nmax)
we propose a novel loss function, which satisfies the solution of all previous time segments. The
solution of all previous time segments is enforced by penalizing the departure from the already
obtained solutions from the previous training, as given by

MSE∆Tn = MSEI(xik, 0) + MSEB(xbk, t
b
k) + MSER(xrk, t

r
k)

+MSES(xsk, t
s
k) , n = 2, · · · , nmax

xik ∈ Ω, (xbk, t
b
k) ∈ Γ× (Tn−1, Tn]

(xrk, t
r
k) ∈ Ω× (Tn−1, Tn], (xsk, t

s
k) ∈ Ω× [0, Tn−1]

(11)

Here, (xik, 0) represent the set of points where the error on initial condition is computed and
(xbk, t

b
k) represent the set of points where the error on boundary conditions is computed within

the time segment (Tn−1, Tn]. The residual/collocation error as given in equation (5) is computed
at the collocation points (xrk, t

r
k). We also minimize the departure from the already obtained

solution that were stored at the grid points (xsk, t
s
k). The solution obtained (on (0, Tn]) at the

nth segment is stored for using it in the (n+ 1)th segment.

3.2. Details of the neural network of bc-PINN

We have used a standard (deep) neural network with two input neurons consisting of the

spatial variable (x) and temporal variable (t). The output of the neural network (ĥ(x, t))
approximates the solution of the PDE (h(x, t)). To avoid model bias due to input features of
different scales we have performed “min-max” normalization to scale the data uniformly. The
neural network has 4 hidden layers consisting 200 neurons in each layer with a tanh activation
function. The neural network has more than 100,000 learning parameters which have been
initialized using the “xavier initialization” technique. The optimization of the loss function and
updating the learning parameters (weights and biases of the neural network) is performed using
the ADAM and LBFGS optimizers. The learning rate for ADAM optimizer is considered as
0.001 with all other parameters as suggested in [27]. Following standard PINN, after training
the neural network using the ADAM optimizer we again train it using the L–BFGS optimizer
until one of the following stopping criteria is met: (i) Maximum iterations are equal to 50,000
(ii) Maximum number of function evaluations are equal to 50,000 (iii) Maximum number of
line search steps (per iteration) equal to 50 (iv) The maximum number of variable metric
corrections used to define the limited memory matrix are equal to 50 (v) The iteration stops

when fk−fk+1

max(|fk|,|fk+1|,1)
<= 2.22044604925e− 16, where f is the neural network objective function

and k is the iteration number.

3.3. Details of the Computational Platform

All the neural networks are trained on Nvidia Tesla P100 (3584 CUDA cores and 16GB of
HBM2 vRAM) and Nvidia Volta V100 GPU (5120 CUDA cores, 640 Tensor cores and 16GB of

6

HBM2 vRAM). For inferencing and generating the true solutions via chebfun, we have used Dell
precision 3630 workstation with Intel core i7-9700k 8 core (4.9 GHz Turbo) and 32 GB RAM.
The software packages used for all the computations are Tensorflow 1.15 and MATLAB R2020a.

3.4. The reference solution

Accurate numerical solutions for the Allen Cahn and Cahn Hilliard equations are obtained
using the chebfun package [26]. The chebfun approach provides a polynomial interpolant
for smooth functions in Chebyshev points. To solve time varying PDEs an exponential time
differencing with Runge–Kutta time stepping scheme [28] has been implemented in chebfun,
which is used in the present work. Henceforth, these solutions are considered as the true/exact
solutions. We have taken 512 points for spatial discretization and 201 points for discretization in
time scale. A fourth order Runge–Kutta time integrator with time step ∆t = 10−5 is used.

The bc-PINN approach is applied to solve Allen Cahn equation and Cahn Hilliard equation in
the next section to demonstrate its advantages for nonlinear and higher order PDEs in comparison
to standard PINN method [8].

4. Allen Cahn Equation

4.1. Allen Cahn equation and parameters

The Allen Cahn equation is a semilinear partial differential equation which is well known for
certain phase separation problems [29, 30, 31]. For every x ∈ Ω, (Ω is an open set of Rn) the
Allen Cahn equation is the L2 gradient flow of the functional

Ic1(h) =
1

2

∫
Ω

|∇h|2dx+
1

c21

∫
Ω

F (h)dx (12)

For a phase separation problem, the parameter h represents the concentration of the individual
component and the parameter c1 represents the interfacial thickness. The solution h tends to
minimize the energy functional Ic1(h) such that the it tends to the minimums of F (h). The
solution progressively develops interfaces separating different phases. For a given initial condition,
h0 ∈ L2(Ω) and T > 0 we seek a function h : Ω × (0, T] → R which satisfies the equation
below.

ht − c21 ∇2h+ f(h) = 0 , t ∈ (0, T], x ∈ Ω ⊂ R
f(h) = c2(h3 − h)

h(x, 0) = x2 cos(πx)

h(x, t) = h(−x, t)
h(1)
x (x, t) = h(1)

x (−x, t)

(13)

The function f is the derivative with respect to h of a double well potential function
F where, F ∈ C1(R) is a non-negative function satisfying F (±1) = 0. We have considered
F = 5(h2 − 1)2/4 and f = 5(h3 − h). Here the values of parameters for equation (13) are
c21 = 0.0001 and c2 = 5.

7

(a)

(b)

Figure 3: (a): The exact solution (Top) and the PINN solution (Bottom) of the Allen Cahn equation for the
entire spatio–temporal domain. (b): Time snapshots for the exact solution () and the PINN solution ()
at t = 0.25 and t = 0.75.

4.2. PINN for Allen Cahn equation

At first we solve the Allen Cahn equation on Ω = [−1, 1] and (0, 1] using standard PINN to
demonstrate the challenge associated with non-linearity. For training the PINN, we have used
20,000 collocation points and trained for 100,000 ADAM iterations. The loss function for PINN
is described in equation (3),(4) and (5). The solution of standard PINN is quite erroneous as
shown in figure (3). In order to understand the reason for failure of the standard PINN, we
analyze its prediction for the individual terms of the Allen Cahn equation. Figure (4) shows
the individual terms of the Allen Cahn equation obtained through the Chebfun method and the
PINN. We observe that the PINN fail to predict the non-linear term (5(h3 − h)) of the Allen
Cahn equation. Therefore we have shown that the standard PINN [8] does not work for the
Allen Cahn equation that consist of a strongly non-linear term.

8

Figure 4: Individual terms of the Allen Cahn Equation obtained through the (Left): standard PINN method
(Right): Chebfun method. h(x, t), (), 0.0001∇2h () and 5(h3 − h) () at t = 0.25.

4.3. bc-PINN for Allen Cahn equation

To overcome this limitation of PINN, we use the backward compatible PINN approach. In
the bc-PINN we propose the following loss function for any given time segment ∆Tn as given
below.

• Mean squared error on the initial Condition is the same as equation (3).

• Mean squared error on the boundary Condition

MSEB =
1

Nb

Nb∑
k=1

nd∑
d=1

(
ĥ(d−1)(xbk, t

b
k)− ĥ(d−1)(−xbk, tbk)

)2

, (xbk, t
b
k) ∈ Γ× (Tn−1, Tn]

(14)

where nd is the order to which periodicity is enforced on the boundary Γ. Here, the
superscript, (•)b stands for boundary condition.

• The Mean squared error due to residual of the partial differential equation

R := ĥt − c21 ∇2ĥ+ f(ĥ)

MSER =
1

Nr

Nr∑
k=1

(R(xrk, t
r
k))

2
, (xrk, t

r
k) ∈ Ω× (Tn−1, Tn]

(15)

The superscript, (•)r stands for residual of the PDE.

• Mean squared error for backward compatibility

MSES =
1

Ns

Ns∑
k=1

(
ĥ(xsk, t

s
k)− ĥ(xsk, t

s
k)
)2

, (xsk, t
s
k) ∈ Ω× [0, Tn−1] (16)

where, ĥ(x, t) is the neural network prediction and ĥ(x, t) is the known solution through
the neural network from the previous time steps Ω× [0, Tn−1]. The superscript, (•)s stands
for the backward compatible solution.

• The total mean squared error or loss is given as

MSE∆Tn = MSEI + MSEB + MSER + MSES (17)

9

The hyper-parameters associated with training the bc-PINN are number of ADAM iterations
(Niter), time steps per segment and number of collocation points (Nr) per segment. Table 1
shows the values of all the aforementioned hyper-parameters for training the bc-PINN.

Variable Description Number
Ni Initial Datapoints 512
Nb Boundary Datapoints 40/segment
Nr Collocation points 20000/segment
Niter Number of ADAM iterations 10000/segment

Table 1: Description of Training Data for Allen Cahn Equation. The segment considered here consists of
40 time steps.

The exact and predicted solution at time t = 0.25 obtained by the standard PINN and
bc-PINN are shown in figure (5). While the standard PINN fails, the proposed bc-PINN predicts
the solution quite accurately. The relative total errors (εtotal) for both the approaches are shown
in table 2.

(a) Standard PINN (b) bc-PINN

Figure 5: Exact () and Predicted () solution at time t = 0.25

Method Error(εtotal)
Standard PINN 0.9919

bc-PINN 0.0701

Table 2: Relative total errors (equation (7)) over the entire domain with respect to Chebfun solution for
different methods.

The comparison between the predicted solution using bc-PINN and the chebfun solution is
shown in figure (6). This shows that the bc-PINN can accurately predict the solution for the
entire domain. The solutions and errors by the PINN and bc-PINN are compared in figure (7),
showing much higher accuracy by the bc-PINN. The error plots confirms high accuracy of
bc-PINN. The error increases with time very slowly. This is due to two reasons: (i) the solution
becomes progressively phase-separated (between zero and one) yielding greater curvatures and
sharp phase-boundaries that are difficult to capture, and (ii) due to the sequential nature of
the bc-PINN approach the error accumulates with time progression, which is similar to the
time-integrators. To illustrate the high accuracy of the bc-PINN approach, solutions and errors
for different values of the interfacial thickness (c1) is plotted in figure (8). As we decrease the

10

parameter c1, it can be seen that the error in the prediction decreases. The parameter c1 controls
the effect of the double derivative of the solution (∇2 h). Therefore, as we decrease c1 the error
due to the approximation in derivative reduces and thus the accuracy of the bc-PINN solution
increases. In Appendix B a new loss function including a logarithmic residual for the Allen
Cahn equation is discussed. This new logarithmic residual bc-PINN approach and its results are
presented in comparison with the simple bc-PINN approach without a logarithmic residual.

(a)

(b)

Figure 6: (a): Exact (Top) and bc-PINN (Bottom) solutions of the Allen Cahn equation for the entire spatio–
temporal domain. (b): The exact () and the bc-PINN () solutions at time t = 0.25 and t = 0.75.

11

(a) Predicted solution (top) and relative error (bottom) obtained using PINN

(b) Predicted solution (top) and relative error (bottom) obtained using bc-PINN

Figure 7: Solution and relative error for Allen Cahn equation through bc-PINN.

12

(a) Predicted solution (top) and relative error (bottom) obtained using bc-PINN for c21 = 0.00001

(b) Predicted solution (top) and relative error (bottom) obtained using bc-PINN for c21 = 0.00005

Figure 8: Solutions and relative errors of the Allen Cahn equation for different c21 (of equation (13)) obtained by
the bc-PINN method.

13

5. Cahn Hilliard Equation

5.1. Cahn Hilliard equation and parameters

The Cahn Hilliard equation is considered here to demonstrate the advantages of the proposed
bc-PINN method for nonlinear and higher order PDEs. The Cahn Hilliard equation [32, 33, 34]
plays an essential role in the field of material science for describing the qualitative features in a
phase separation process for two phase systems (assuming isotropy and constant temperature) 1.
Since the entire process is governed by the Cahn Hilliard equation it is essential to understand
the physical significance of each individual variable.

ht(x, t)−∇2(−ακ∇2h(x, t) + κf(h(x, t))) = 0 , x ∈ Ω, t ∈ (0, T] (18)

Here Ω is an open set in R. The order parameter h in equation (18), refers to the rescaled density
or concentration of one of the material components in the system and it takes values between
(-1 and 1 which corresponds to their pure states). The density of second component is 1 − h,
and this ensures that the total density over the simulation domain is a conserved quantity. In
addition, the function f(h), is the derivative of a double well potential function. The two phases
of the system correspond to the two wells of the double well potential function. The parameter κ
is the mobility parameter and the parameter α is related to the surface tension at the interface.
Here the values of parameters are taken as α = 0.02 and κ = 1.

5.2. PINN for Cahn Hilliard equation

Initially we solve the Cahn Hilliard equation using standard PINN to demonstrate the
challenge for this equation. The domain Cahn Hilliard equation on Ω = [−1, 1] and periodic
boundary conditions. The time domain considered is (0, T] = (0, 1]. For training the standard
PINN, we have used 20,000 collocation points and trained for 100,000 ADAM iterations. The
loss function for PINN is described in equation (3), (4) and (5). The solution predicted after
training is shown in figure (9) and it can be observed that there is significant mismatch between
the PINN and the exact solution.

The two possible reasons for the inaccurate solution are strong non-linearity and the high
order derivative terms (fourth order). In PINN the derivatives are approximated using automatic
differentiation. It has been shown that as the order of the derivative increases the complexity in
automatic differentiation increases and it becomes computationally expensive [9]. In order to
overcome the difficulty in approximating the higher order derivative via automatic differentiation,
we adopt the phase space representation in the proposed bc-PINN.

5.3. bc-PINN for Cahn Hilliard equation

In this section, we introduce the bc-PINN approach with a phase space representation for
solving the Cahn Hilliard Equation. The phase space representation is widely used to represent
a high order PDE into coupled multiple lower order PDEs. We show that by adopting phase
space representation the accuracy of the bc-PINN method improves significantly. The phase

1The process of phase separation can be observed when a binary alloy is cooled down adequately. This leads
to a state of total nucleation which is mainly referred to as spinodal decomposition. In the subsequent stage
coarsening occurs in the nucleated microstructure at a much slower rate. This whole phase separation phenomena
affects the mechanical properties (eg. strength, hardness and fracture toughness) of the material.

14

(a)

(b)

Figure 9: (a): The exact solution (Top) and the PINN solution (Bottom) of the Cahn Hilliard equation for the
entire spatio–temporal domain. (b): Time snapshots for the exact solution () and the PINN solution ()
at t = 0.12 and t = 0.37.

space representation of the Cahn Hilliard equation (a fourth order PDE, equation (18)) yields
two coupled second order PDEs.

ht = ∇2(−ακµ+ κf(h)), µ = ∇2h t ∈ (0, T], x ∈ Ω ⊂ R
h(x, 0) = cos(πx)− exp

(
−4(πx)2

)
h(−x, t) = h(x, t), (x, t) ∈ Γ× (0, T]

h(1)
x (−x, t) = h(1)

x (x, t) , (x, t) ∈ Γ× (0, T]

µ(−x, t) = µ(x, t), (x, t) ∈ Γ× (0, T]

µ(1)
x (−x, t) = µ(1)

x (x, t) , (x, t) ∈ Γ× (0, T]

(19)

15

Where, f(h) = h(h2 − 1). Therefore there are two outputs of the neural network ĥ(x, t) and
µ̂(x, t) in the present method. The input features are the spatio–temporal variables (x, t). The
modified loss function for the coupled phase space system includes an error on initial condition,
error on the boundary conditions and error on the residual. In addition it will have the error
for the backward compatibility. Therefore, the total loss function (equation (24)) for any time
segment ∆Tn is sum of all the aforementioned errors given in equation (20–23).

• Mean squared error on the initial condition for h(x, t) and µ(x, t)

MSEI =
1

Ni

{
Ni∑
k=1

(
ĥ(xik, 0)− hik

)2

+

Ni∑
k=1

(
µ̂(xik, 0)− µi

k

)2}
, xik ∈ Ω (20)

Here, the neural network output is ĥ(xik, 0), µ̂(xik, 0) and the given initial condition is hik, µ
i
k

at (xik, 0). The superscript, (•)i stands for initial condition.

• Mean squared error on the boundary Condition

MSEBh =
1

Nb

{
Nb∑
k=1

nd∑
d=1

(
ĥ(d−1)(xbk, t

b
k)− ĥ(d−1)(−xbk, tbk)

)2
}

MSEBµ =
1

Nb

{
Nb∑
k=1

nd∑
d=1

(
µ̂(d−1)(xbk, t

b
k)− µ̂(d−1)(−xbk, tbk)

)2
}

MSEB = MSEBh + MSEBµ , (xbk, t
b
k) ∈ Γ× (Tn−1, Tn]

(21)

where nd is the order to which periodicity is enforced. The superscript, (•)b stands for
boundary condition.

• Mean squared error on the Residual of the partial differential equation

R1 := ĥt −∇2ĥ(−µ+ f(ĥ))

R2 := µ̂−∇2ĥ

MSER =
1

Nr

{
Nr∑
k=1

R1 (xrk, t
r
k)

2
+

Nr∑
k=1

R2 (xrk, t
r
k)

2

}
, (xrk, t

r
k) ∈ Ω× (Tn−1, Tn]

(22)

The superscript, (•)r stands for residual of the PDE.

• Mean squared error for backward compatibility

MSES =
1

Ns

Ns∑
k=1

(
ĥ(xsk, t

s
k)− h̃(xsk, t

s
k)
)2

, (xsk, t
s
k) ∈ Ω× [0, Tn−1] (23)

where, ĥ(x, t) is the neural network prediction and ĥ(x, t) is the known solution through
the neural network from the previous time steps Ω× [0, Tn−1]. The superscript, (•)s stands
for the backward compatible solution.

• The total mean squared error or loss is given as

MSE∆Tn = MSEI + MSEB + MSER + MSES (24)

16

Variable Description Number
Ni Initial datapoints 512
Nb Boundary datapoints 10/segment
Nr Collocation points 5000/segment
Niter Number of ADAM iterations 10000/segment

Table 3: Description of training data for Cahn Hilliard equation. 10 time steps/segment have been considered
and the amount of collocation points generated remains same and doesn’t increase as we progress through time.

The boundary loss (equation (21) is applied for nd = 1 on ĥ and µ̂, to represent periodic
boundary conditions. Equation (22) describes two components of residual for two PDEs in the
phase space form of the Cahn Hilliard equation (equation (19)). Table 3 describes the values of
the hyper-parameters used in bc-PINN. Ni and Nb refers to the number of points considered to
enforce the initial and boundary condition respectively. Nr is the number of collocation points
per time segment and Niter is the number of ADAM iterations used to train the neural network
per time segment .

The accuracy of the proposed bc-PINN approach is shown by comparing it against the
exact solution obtained by the chebfun method in figure (10). This shows that the phase space
representation with bc-PINN can closely match the exact solution for the Cahn Hilliard equation.
The relative total error (εtotal) obtained for the bc-PINN solution is 0.036 whereas for the
standard PINN solution the error is 0.8594. It is evident from the error plots given in figure (11)
that a more accurate solution is obtained by using the bc-PINN compared to standard PINN.
The higher accuracy can be accredited to the fact that approximating lower order derivatives
using automatic differentiation is much simpler. One key observation to note is that the solution
in the nth time segment takes the solution at time Tn−1 from the (n − 1)th time segment as
initial condition. Thus, only the error at the end point in a time segment is propagated to the
next time segment. For instance, only the error at the time Tn−1 in (n− 1)th time segment is
propagated to the next time segment. Errors at all other time steps in (n− 1)th time segment
does not propagate to the nth time segment. This can be observed in figure (11b), even though
the error at time 0.01 is quite high but since this is not the end point of the time segment [0, 0.05]
it does not propagate with time. The error in the first time segment can be further reduced
by using more iterations and the accuracy of the total solution can be improved. To further
demonstrate the effectiveness of the current phase space backward compatible training approach,
we have taken different values of the parameter (ακ) and compared the predicted solutions with
the exact solutions generated using chebfun which is shown in figure (12). The proposed phase
space representation with bc-PINN approach can be extended to any partial differential equation
consisting higher order derivatives and non-linearity.

17

(a)

(b)

Figure 10: (a): Exact (Top) and bc-PINN (Bottom) solutions of the Cahn Hilliard equation for the entire
spatio–temporal domain. (b): The exact () and the bc-PINN () solutions at time t = 0.02 and t = 0.97.

18

(a) Solution (top) and relative error (bottom) via standard PINN

(b) Solution (top) and relative error (bottom) via bc-PINN

Figure 11: Solution and error associated with respect to the true solution for Cahn Hilliard equation.

19

(a) Solution (top) and error (bottom) for ακ = 0.001

(b) Solution (top) and error (bottom) ακ = 0.0005

Figure 12: Solution and relative errors of the Cahn Hilliard equation for different parameters (ακ of equation (19))
obtained by the bc-PINN method.

20

6. Conclusions

We have proposed a new PINN approach (named as bc-PINN) for solving nonlinear and
higher order PDEs. The bc-PINN re-trains the neural network over successive time segments
while satisfying the solution for all previous time segments.

Additionally, bc-PINN incorporates different techniques such as logarithmic residual, phase
space representation of the PDE to improve its accuracy. The key advantages of bc-PINN are
summarized below.
The proposed bc-PINN method can provide accurate solution for nonlinear and higher–order
PDEs such as Cahn Hilliard and Allen Cahn equations, where standard PINN faces difficulties.

Moreover, the proposed method can achieve high accuracy by using less number of collocation
points. The phase space technique used in the bc-PINN significantly reduces the time required
to compute the derivatives in a higher order PDE. Despite the segmentation of the time
domain, it requires only one neural network and provides a continuous solution for the entire
spatio–temporal domain. The proposed backward compatibility scheme may enhance many other
machine learning approaches applied to complex systems represented by time dependent PDEs.

Acknowledgments: SG acknowledges the financial support by NSF (CMMI MoMS) under
grant number 1937983. We acknowledge Superior, a high-performance computing facility at
MTU and Google Colab, a cloud service hosted by Google. This work used the Extreme Science
and Engineering Discovery Environment (XSEDE) (allocation number MSS200004), which is
supported by the NSF grant number ACI-1548562.

Appendix A. Hyper-parameter selection for bc-PINN

As discussed in section 4 & 5, the proposed method there have a number of hyper-parameters
like number of ADAM iterations (Niter per segment), time steps per segment, number of
collocation points (Nr) etc. In the current section we choose the Cahn Hilliard equation as
the canonical example for all the analysis performed. The accuracy of the bc-PINN’s solution
depends on proper choice of these hyper-parameters. To optimize each of the hyper-parameters,
we considered various cases and metrics like computational time and accuracy. Table (A.4)
describes the optimum parameters required to train 100 steps. The optimum parameters are
chosen to achieve an accurate solution while balancing the computational cost as shown in
figure (A.13). It can be also seen that as the number of collocation points and number of
iterations are increased the accuracy increases. So, we choose an segment size of 10 steps with
5000 collocation points and 10000 iterations per time segment as the computational time required
in this case is comparably less than the other cases.

Appendix B. bc-PINN with a logarithmic residual for Allen Cahn Equation

In this section we show how the bc-PINN with logarithmic residual compares against the
standard PINN and bc-PINN without the logarithmic residual. The loss function for the bc-PINN
with a logarithmic residual is same as the bc-PINN except the equation(15) is replaced by the
following loss term for the residual of the PDE:

R := ĥt − c21 ∇2ĥ+ f(ĥ)

MSE
(ln)
R =

1

Nr

Nr∑
k=1

ln
(
1 + (R(xrk, t

r
k))2

)
, (xrk, t

r
k) ∈ Ω× (Tn−1, Tn]

(B.1)

21

Model Time steps/segment Nr Niter

A 10 5000 10000
B 10 5000 20000
C 10 10000 10000
D 10 10000 20000
E 25 5000 10000
F 25 5000 20000
G 25 10000 10000
H 25 10000 20000

Table A.4: Parameter combinations for choosing the optimum segment size, collocation points and number of
ADAM iterations to apply the bc-PINN technique for Cahn Hilliard equation.

Figure A.13: Relative error (ε) and time taken for various models given in table (A.4).

(a) bc-PINN (b) bc-PINN with log residual

Figure B.14: Exact () and Predicted () solution at time t = 0.25

It turns out that the bc-PINN with a logarithmic residual is more accurate than the bc-PINN.
A possible explanation is that the logarithmic function reduces the relative weight on the MSER,
which would have larger inaccuracy due to its derivative and nonlinear terms. Thus the initial
and boundary terms are satisfied more accurately, which in turn yields a more accurate solution.

22

Method Error(ε)
Standard PINN 0.9919

bc-PINN 0.0701
bc-PINN with logresidual 0.03

Table B.5: Relative errors (equation (7)) over the entire domain with respect to Chebfun solution for
different methods.

This explanation is substantiated by the fact that when the logarithmic function is used on all of
the four terms in the loss function then the accuracy decreases.

Appendix C. Minimization of the bc-PINN loss function

In section 3.2 we have described we have mentioned about the learning rates and stopping
criteria for the ADAM and LBFGS optimizer are utilized to train the bc-PINN. Here, the
minimization of loss function (equation (24)) for training the bc-PINN in time segment [0.45, 0.5]
is given in figure (C.15).

Figure C.15: Loss vs Iterations (Top): using ADAM optimizer (Bottom): using the LBFGS optimizer for training
the time segment [0.45, 0.5] of the Cahn Hilliard equation.

23

References

[1] Z. Mao, A. D. Jagtap, G. E. Karniadakis, Physics-informed neural networks for high-speed
flows, Computer Methods in Applied Mechanics and Engineering 360 (2020) 112789.

[2] H. Arbabi, J. E. Bunder, G. Samaey, A. J. Roberts, I. G. Kevrekidis, Linking machine
learning with multiscale numerics: Data-driven discovery of homogenized equations, JOM
72 (12) (2020) 4444–4457.

[3] M. Raissi, P. Perdikaris, G. E. Karniadakis, Inferring solutions of differential equations using
noisy multi-fidelity data, Journal of Computational Physics 335 (2017) 736–746.

[4] M. Raissi, P. Perdikaris, G. E. Karniadakis, Machine learning of linear differential equations
using Gaussian processes, Journal of Computational Physics 348 (2017) 683–693.

[5] M. Raissi, G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear
partial differential equations, Journal of Computational Physics 357 (2018) 125–141. arXiv:
1708.00588.

[6] S. Atkinson, N. Zabaras, Structured bayesian gaussian process latent variable model:
Applications to data-driven dimensionality reduction and high-dimensional inversion, Journal
of Computational Physics 383 (2019) 166 – 195.

[7] I. Bilionis, N. Zabaras, B. A. Konomi, G. Lin, Multi-output separable gaussian process:
Towards an efficient, fully bayesian paradigm for uncertainty quantification, Journal of
Computational Physics 241 (2013) 212 – 239.

[8] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics 378 (2019) 686–707.

[9] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in
machine learning: a survey, Journal of machine learning research 18 (2018).

[10] D. Zhang, L. Lu, L. Guo, G. E. Karniadakis, Quantifying total uncertainty in physics-
informed neural networks for solving forward and inverse stochastic problems, Journal of
Computational Physics 397 (2019) 108850.

[11] L. Yang, D. Zhang, G. E. Karniadakis, Physics-informed generative adversarial networks
for stochastic differential equations, SIAM Journal on Scientific Computing 42 (1) (2020)
A292–A317.

[12] X. Meng, G. E. Karniadakis, A composite neural network that learns from multi-fidelity data:
Application to function approximation and inverse pde problems, Journal of Computational
Physics 401 (2020) 109020.

[13] A. Jagtap, E. Kharazmi, G. Karniadakis, Conservative physics-informed neural networks
on discrete domains for conservation laws: Applications to forward and inverse problems,
Computer Methods in Applied Mechanics and Engineering 365 (2020) 113028.

[14] S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional
stochastic elliptic partial differential equations using deep neural networks, Journal of
Computational Physics 404 (2020) 109120. arXiv:1902.05200.

24

http://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1902.05200

[15] R. K. Tripathy, I. Bilionis, Deep UQ: Learning deep neural network surrogate models for
high dimensional uncertainty quantification, Journal of Computational Physics 375 (2018)
565–588.

[16] Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural
networks, Journal of Computational Physics 394 (2019) 136–152.

[17] L. Yang, X. Meng, G. E. Karniadakis, B-pinns: Bayesian physics-informed neural networks
for forward and inverse pde problems with noisy data (2020). arXiv:2003.06097.

[18] Q. He, D. Barajas-Solano, G. Tartakovsky, A. M. Tartakovsky, Physics-informed neural net-
works for multiphysics data assimilation with application to subsurface transport, Advances
in Water Resources 141 (2020) 103610.

[19] M. Liu, L. Liang, W. Sun, A generic physics-informed neural network-based constitutive
model for soft biological tissues, Computer Methods in Applied Mechanics and Engineering
372 (2020) 113402.

[20] G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, P. Perdikaris, Machine learning
in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4d flow
mri data using physics-informed neural networks, Computer Methods in Applied Mechanics
and Engineering 358 (2020) 112623.

[21] F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, Physics-informed neural
networks for cardiac activation mapping, Frontiers in Physics 8 (2020) 42.

[22] H. Abels, H. Garcke, G. Grün, Thermodynamically consistent, frame indifferent diffuse
interface models for incompressible two-phase flows with different densities, Mathematical
Models and Methods in Applied Sciences 22 (03) (2012) 1150013.

[23] K. Deckelnick, G. Dziuk, C. M. Elliott, Computation of geometric partial differential
equations and mean curvature flow, Acta Numerica 14 (2005) 139–232.

[24] J. Lowengrub, L. Truskinovsky, Quasi incompressible cahn hilliard fluids and topological
transitions, Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences 454 (1978) (1998) 2617–2654.

[25] Geometric evolution laws for thin crystalline films: Modeling and numerics, Communications
in Computational Physics 6 (3) (2009) 433–482.

[26] L. N. Trefethen, N. Hale, T. A. Driscoll, Chebfun Guide, Pafnuty Publications, Oxford,
2014.

[27] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization (2017). arXiv:1412.6980.

[28] S. Cox, P. Matthews, Exponential time differencing for stiff systems, Journal of Computa-
tional Physics 176 (2) (2002) 430–455.

[29] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening, Acta Metallurgica 27 (6) (1979) 1085–1095.

[30] S. Bartels, Numerical methods for nonlinear partial differential equations, Vol. 47, Springer,
2015.

[31] J. Shen, X. Yang, Numerical approximations of allen-cahn and cahn-hilliard equations,
Discrete & Continuous Dynamical Systems-A 28 (4) (2010) 1669.

25

http://arxiv.org/abs/2003.06097
http://arxiv.org/abs/1412.6980

[32] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. i. interfacial free energy,
The Journal of chemical physics 28 (2) (1958) 258–267.

[33] A. Miranville, The cahn-hilliard equation and some of its variants, AIMS Mathematics 2
(2017) 479–544.

[34] J. Kim, S. Lee, Y. Choi, S.-M. Lee, D. Jeong, Basic principles and practical applications of
the cahn–hilliard equation, Mathematical Problems in Engineering 2016 (2016).

26

	1 Introduction
	2 A brief review of physics informed neural network (PINN) for partial differential equations
	3 The proposed backward compatible sequential PINN method (BC-PINN)
	3.1 bc-PINN
	3.2 Details of the neural network of bc-PINN
	3.3 Details of the Computational Platform
	3.4 The reference solution

	4 Allen Cahn Equation
	4.1 Allen Cahn equation and parameters
	4.2 PINN for Allen Cahn equation
	4.3 bc-PINN for Allen Cahn equation

	5 Cahn Hilliard Equation
	5.1 Cahn Hilliard equation and parameters
	5.2 PINN for Cahn Hilliard equation
	5.3 bc-PINN for Cahn Hilliard equation

	6 Conclusions
	Appendix A Hyper-parameter selection for bc-PINN
	Appendix B bc-PINN with a logarithmic residual for Allen Cahn Equation
	Appendix C Minimization of the bc-PINN loss function

