
978-1-4244-2794-9/09/$25.00 ©2009 IEEE SMC 2009

A Novel Set-Based Particle Swarm Optimization
Method for Discrete Optimization Problems

Wei-Neng Chen, Jun Zhang and Wen-Liang Zhong
Department of Computer Science

Sun Yat-sen University
Guangzhou, China P.R. 510275

Abstract —Particle swarm optimization (PSO) is
predominately used to find solutions in continuous space. To
explore the utility of PSO in the discrete space, this paper
proposes a novel set-based PSO (S-PSO) method for
combinatorial optimization problems (COPs). The proposed
algorithm describes the discrete solution domains of COPs based
on the concept of sets. A possible solution to the problem is
mapped to a crisp set, and the velocity in S-PSO is defined as a
set with possibilities. All arithmetic operators in the velocity and
position updating rules in the original PSO are replaced by the
operators defined on crisp sets and sets with possibilities in the
proposed S-PSO. Based on S-PSO, most of the existing PSO
variants, such as the global version PSO, the local version PSO
with different topologies and the comprehensive learning PSO
(CLPSO), can be extended to their discrete versions. These
discrete PSO variants based on S-PSO are tested on two famous
COPs: the traveling salesman problem (TSP) and the 0-1
knapsack problem (0-1 KP). Experimental results show that the
discrete version of the CLPSO algorithm based on the proposed
S-PSO is promising.

Keywords—particle swarm optimization, combinatorial
optimization, discrete space

I. INTRODUCTION

Particle swarm optimization (PSO) is a population-based
stochastic optimization algorithm proposed by Kennedy and
Eberhart in 1995 [1]. The algorithm is inspired by the social
interaction behavior of bird flocking and fish schooling. To
search for the optimal solution, each individual, which is
called a “particle”, updates its flying velocity and current
position iteratively according to its own flying experience and
the other particles’ flying experience. By now, PSO has
become one of the most popular optimization techniques for
the problems in the continuous space [1]-[3].

The original PSO is simple and effective, but it is restricted
to the continuous space. As many optimization problems are
defined in a discrete space, the research on extending the PSO
to solve discrete space COPs become attractive in recent years.

The first attempt to extend PSO to discrete domains is the

This work was supported in part by the National Science Foundation
of China under Project 60573066, in part by the National Natural
Science Foundation of China Joint Fund with Guangdong under Key
Project U0835002, in part by the National High-Technology
Research and Development Program of China, No. 2009AA01Z208.

Jun Zhang is the corresponding author. (email: junzhang@ieee.org)

binary version of PSO proposed by Kennedy and Eberhart [4].
As the binary PSO use binary coding schemes, the types of
COPs that can be solved are limited. In order to define a more
general discrete PSO (DPSO) algorithm, several approaches
have been developed. These approaches can be classified into
four types. The first type is the swap-operator based DPSO
outlined by Clerc [5]. Another type of discrete PSO algorithms
is characterized by a space transformation technique. The most
common space transformation method is to view the position
as a priority-based list [6]-[8]. The third type of discrete PSO
algorithms defines the position and velocity as a fuzzy matrix
[9][10]. Besides, there are also some hybrid PSO algorithms
which integrate PSO with other meta-heuristics or problem-
dependent local search methods to solve specific discrete
optimization problems [11]-[13].

Although various DPSO algorithms have been proposed,
their performance is generally not satisfactory. The first three
types of pure DPSO algorithms manage to follow the simple
structure of the original PSO on the whole. However,
compared with the other meta-heuristics for discrete
optimization, the performance is not competitive. For example,
in the TSP, the best results obtained by the pure DPSO
approaches [5][8][9][12] are still far behind the ones obtained
by the ant colony optimization (ACO) algorithm [14]. On the
other hand, the hybrid DPSO algorithms perform better than
the pure DPSO approaches. But as these hybrid DPSO
algorithms are generally designed for specific problems, their
structures are more complicated, and it is not easy to apply
these hybrid algorithms to other COPs.

This paper explores the utility of PSO for the optimization
problems in discrete space and proposes a set-based PSO (S-
PSO) method based on the concept of sets and possibility
theory. The S-PSO method has the following features. First, a
set-based representation scheme is designed to describe the
discrete search space as a universal set of elements. Based on
this representation scheme, many different kinds of COPs can
be mapped to the problems that can be solved by S-PSO.
Second, in S-PSO, a candidate solution corresponds to a crisp
subset of the universal set. A velocity is defined as a set with
possibilities, that is, each element in a velocity is assigned
with a possibility. All related arithmetic operators in the
velocity and position updating rules in the original PSO are

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
1448

 SMC 2009

replaced by the operators defined on crisp sets and sets with
possibilities in S-PSO.

The above features enable the S-PSO method to follow the
simple structure of the original PSO in the discrete set space.
As a result, the search behavior of S-PSO is similar to that of
the original PSO in continuous domains. Moreover, different
improved variants of the original PSO, e.g., the PSO with
different topologies [15][16] and the comprehensive learning
PSO (CLPSO) [3], can also be extended to their discrete
versions based on the S-PSO method. The proposed algorithm
is tested in two famous COPs, the TSP and the 0-1 KP.
Experimental results demonstrate the effectiveness of the
proposed algorithm.

The rest of this paper is organized as follows. The next
section gives a brief review of the original PSO in continuous
domains and some of its representative successors. In Section
III, the proposed S-PSO is described. Section IV further
discusses the search behavior of S-PSO. Experimental studies
are given in Section V, and the conclusions are finally
summarized in Section VI.

II. TRADITIONAL PSO ALGORITHMS IN CONTINUOUS SPACE

In the original PSO [1][2], a swarm of M particles
cooperate to search for the global optimum in the n-
dimensional search space. Each particle i maintains a position

),,,(21 n
iii xxxiX and a velocity),,,(21 n

iii vvviV . In each
iteration, each particle updates the velocity and position as
follows

)()(2211
j

i
jjj

i
j

i
jj

i
j

i xgbestrcxpbestrcvv −+−+← ω (1)
j

i
j

i
j

i vxx +← (2)
where),...,,(21 n

iii pbestpbestpbestiPBest is the best-so-far
solution of particle i, and),...,,(21 npbestpbestpbestGBest is
the best-so-far solution obtained by the whole swarm. r1

j and r2
j

are random numbers uniformly distributed in [0,1]. c1 and c2
are two parameters to weigh the importance of self-cognitive
and social-influence respectively, and j represents the jth

dimension. ω is a parameter named the inertia weight.
As the original PSO has the problem of premature

convergence, developing different topologies has become an
important strategy to improve the performance of PSO. While
the original PSO uses the global best position GBest to update
the velocity, Kennedy and Mendes [15][16] suggested to use
the local best position),,,(21 n

iii lbestlbestlbestiLBest of a
neighborhood and modified the velocity rule (1) into

)()(2211
j

i
j

i
jj

i
j

i
jj

i
j

i xlbestrcxpbestrcvv −+−+← ω (3)
The neighborhood of a particle can be defined by different

topologies, such as Ring, URing, von Neumann, random, and
so on [15][16]. In this paper, we term the global version GPSO,
the local version with URing topology ULPSO, and the local
version with von Neumann topology VPSO.

Some PSO variants modify the learning strategies of
particles to prevent premature convergence. A representative
PSO variant is the comprehensive learning PSO (CLPSO)
proposed by Liang et al. [3]. The algorithm updates velocity
using the following equation:

)()(
j

i
j

jf
jj

i
j

i xpbestrcvv
i

−⋅+← ω (4)
where c is a parameter, rj is a random number in [0,1], and

j
jfi

pbest)(means the jth dimension of the PBest position of the
particle fi(j). fi(j) is given by first generating a random number
ran. If ran is larger than a parameter Pc, then fi(j)=i. Otherwise,
the algorithm applies the tournament selection to two randomly
selected particles to choose fi(j). CLPSO has been shown to be
excellent for complex multimodal optimization problems [3].

III. THE PROPOSED SET-BASED PSO

A. Representation
According to [17], a COP can be defined by a triple (PS, f,

Ω), where PS is a set of candidate solutions (search space), f is
the objective function, and Ω is a set of constraints. The goal
is to find a global optimal feasible solution PSX ∈* that
satisfies Ω and optimizes the objective function f.

According to [18], many COPs can be formulated in the
abstract as “find from a set E a subset X that satisfies some
constraints Ω and optimizes the objective function f”. In terms
of this formulation scheme, in S-PSO, the COP (PS, f, Ω) is
mapped to a problem that includes the following
characteristics:

A universal set E of elements is given. E has n
dimensions, i.e., nEEEE ∪∪∪= 21 .
A candidate solution to the problem PSX ∈
corresponds to a subset of E, i.e., X⊆E. X also has n
dimensions, i.e., =X nXXX ∪∪∪ 21 , where Xj⊆Ej

(j=1,2,…,n).
X is a feasible solution only if X satisfies the Ω .
The objective of the COP problem is to find a feasible
solution X* that optimizes f.

With the above representation scheme, taking the
symmetric TSP for example, each arc (j,k) is considered as an
element. The universal set E corresponds to the set of arcs A.
Dimension Ej is composed of the arcs that are connected with
node j. A candidate solution X⊆E is a subset of arcs. X is
feasible only if the arcs in X form a Hamiltonian circuit of the
graph. In the 0-1 KP, each dimension Ej can be defined as a set
of two elements Ej={(j,0),(j,1)}, where (j,1) indicates that item
j is chosen in the bag and (j,0) means item j is not chosen. A
candidate solution is nXXXX ∪∪∪= 21 , where
Xj={(j,0)} or Xj={(j,1)}. If X satisfies the capacity constraint, X
is a feasible solution to the problem.

B. Velocity Updating
In PSO, a velocity gives the moving direction and tendency

of a particle. In the original PSO, particles use the information
of the best solutions found previously to adjust their velocities,
so that the velocities can direct particles to move to better
positions. The velocity updating rule in the S-PSO method
follows the same idea. For example, the velocity updating rule
in the discrete version of GPSO based on S-PSO is given by

)()(2211
j

i
jjj

i
j

i
jj

i
j

i XGBestrcXPBestrcVV −+−+← ω (5)
where Vi

j is the jth dimension of the ith particle’s velocity and Xi
j

is the jth dimension of the ith particle’s position. PBestij is the jth

1449

 SMC 2009

dimension of the best-so-far solution found by particle i, and
GBestj is the jth dimension of the best-so-far solution found by
all particles. c1>0, c2>0, and]1,0[∈ω are parameters.

]1,0[1 ∈jr and]1,0[2 ∈jr are random numbers. Obviously, the
velocity updating rule in equation (5) is in the same format as
equation (1), but the positions (Xi

j, PBestij and GBestj), velocity
(Vi

j) and all related arithmetic operators in equation (5) are
redefined in discrete domains as follows.

Position
A position is a feasible solution to the problem. In terms of

the representation scheme given above, a feasible solution
corresponds to a subset of elements. We denote the position of
the ith particle as Xi (Xi⊆E). Similarly, PBesti⊆E, GBest⊆E, and
LBesti⊆E are the ith particle’s best-so-far position, global best-
so-far position, and the ith particle’s local best-so-far position,
respectively. At the beginning, Xi is initialized with a
randomly-generated feasible solution.

Velocity
In S-PSO, a velocity is defined as a set with possibilities.
Definition 1 (set with possibilities): Let E be a crisp set. A

set with possibilities V defined on E is given by
}|)(/{ EeepeV ∈= (6)

that is, each element Ee ∈ has a possibility]1,0[)(∈ep in the
set with possibilities. In fact, if E′ is a crisp subset of E, we
can also regard E′ as a set with possibilities defined on E by
assigning p(e)=1 if Ee ′∈ and p(e)=0 if Ee ′∉ . In general, if
p(e)=0, we omit the item e/p(e) in the set for short.

Based on this definition, }|)(/{ jj
i EeepeV ∈= is a set

with possibilities defined on Ej. The overall velocity for particle
i is }|)(/{ EeepeVi ∈= , which is a set with possibilities
defined on E. We will see later that the possibility p(e) in Vi
actually gives the possibility that particle i will learn from
element e to build a new position.

At the beginning of the algorithm, Vi is initialized by
randomly selecting n elements from E and assigning each of
these elements a random possibility]1,0[)(∈ep . The
possibilities for the other unselected elements are set to 0.

Coefficient × Velocity
The term coefficient here is used to denote a parameter or a

random number which is a nonnegative real number. In S-PSO,
the product of a coefficient and a set with possibilities is
defined as follows.

Definition 2 (multiplication operator between a
coefficient and a set with possibilities): Given a coefficient c
(c 0) and a set with possibilities }|)(/{ EeepeV ∈= , their
product is given by

×
>×=′∈′= otherwise),(

1)(if,1)(},|)(/{ epc
epcepEeepecV (7)

Position – Position
In the representation scheme of S-PSO, a position is given

by a crisp set. S-PSO follows the traditional definition of the
minus operator between two crisp sets. Given two crisp sets A
and B, the relative complement A–B of B in A is given by

}and|{ BeAeeBA ∉∈=− (8)
Based on this definition, the effect of GBestj-Xi

j and PBestij-
Xi

j is to find out the elements used by the GBest (PBesti)

position but not used by the current position Xi. Such elements
may have great potential to improve Xi.

Coefficient × (Position – Position)
The result of “Position – Position” operation is a crisp set.

The multiplication operator between a coefficient and a crisp
set is defined as follows.

Definition 3 (multiplication operator between a
coefficient and a crisp set): Given a coefficient c (c 0) and a
crisp set E′ , E′ is a subset of the universal set E. According to
definition 1, E′ can be considered as a set with possibilities

}|)(/{ EeepeE ∈=′ where 1)(=ep if Ee ′∈ and p(e)=0 if
Ee ′∉ . So the product of c and E′ can be defined in the same

way as definition 2, i.e.

′∉
≤≤′∈

>′∈
=′∈′=′

if
10andif

1andif

0
,
,1

)(},|)(/{
Ee

cEe
cEe

cepEeepeEc (9)

Velocity + Velocity
Finally, we define the union operator between two sets with

possibilities.
Definition 4 (union operator between two sets with

possibilities): Given two sets with possibilities
}|)(/{ 11 EeepeV ∈= and }|)(/{ 22 EeepeV ∈= defined on

E, 21 VV ∪ is defined as
}|))(),(max(/{ 212121 EeepepeVVVV ∈=+=∪ (10)

that is, the possibility p(e) for element e in 21 VV ∪ is set to the
larger one between p1(e) and p2(e). In order to be consistent
with the notation in the original PSO, 21 VV ∪ is also denoted
as V1+V2 in this paper.

Avoiding inconsistency of the velocities of different
dimensions

In some special COPs, e.g., in the symmetric TSP, an
element (arc) (j,k) belongs to both dimensions j and k. In this
situation, after updating all Vi

j for particle i, different
dimensions of velocity Vi

j may be inconsistent. That is, for an
element (j,k) ((j,k) Ej and (j,k) Ek), it may occur that the
possibility for (j,k) in Vi

j is not equal to the one in Vi
k. Suppose

pj(j,k) and pk(j,k) are the possibilities for (j,k) in Vi
j and Vi

k

respectively, we unify them as pj(j,k)=
pk(j,k)=p(j,k)=max{pj(j,k),pk(j,k)}. So the possibility for (j,k) in
the new velocity Vi after velocity updating can be kept
consistent.

The velocity updating rules for different discrete PSO
variants

Based on the above definitions, the velocity updating rule
for the discrete version of GPSO based on S-PSO [equation (5)]
is summarized in Fig. 1.

The velocity updating rule of the other PSO variants can
also be extended to discrete versions based on S-PSO in a
similar way. The velocity updating rules in the PSO with
different topologies [equation (3)] and the CLPSO [equation
(4)] are as follows

)()(2211
j

i
j

i
jj

i
j

i
jj

i
j

i XLBestrcXPBestrcVV −+−+← ω (11)
)()(

j
i

j
jf

jj
i

j
i XPBestcrVV

i
−+← ω (12)

where LBesti is the local best position of a neighborhood and
j

jfiPBest)(is the jth dimension of particle fi(j)’s PBest position.
The neighborhood can be defined by any type of topologies.
The parameters and the function fi(j) in equation (11) and (12)

1450

 SMC 2009

are the same as the ones in equation (3) and (4). In the rest of
this paper, we name the discrete version of GPSO, VPSO,
ULPSO [15][16], and CLPSO [3] based on S-PSO as S-GPSO,
S-VPSO, S-ULPSO, and S-CLPSO, respectively.

coefficient
j

iV)(j
i

j XGBest −

set with
possibilities×

ω)(j
i

j
i XPBest −

crisp set
j

iPBest

coefficient crisp set
×

coefficient crisp set
×

crisp set
j

iX
crisp set

jGBest
crisp set

j
iX− −

set with possibilities
j

iVω
set with possibilities set with possibilities

)(11
j

i
j

i
j
i XPBestrc −)(22

j
i

jj
i XGBestrc −

set with possibilities

+ +

)()(2211
j

i
jj

i
j

i
j

i
j
i

j
i

j
i XGBestrcXPBestrcVV −+−+← ω

equation (8) equation (8)

equation (7) equation (9) equation (9)

equation (10)equation (10)

After updating all , eliminate the inconsistency
of the possibilities for each element
in different dimensions if necessary

j
iV

j
irc 11

j
irc 22

Fig. 1. The arithmetic operators in the velocity updating rule of S-PSO

procedure position_updating(Xi, Vi)
01 generate a random number (0,1)α ∈ ;
02 for each dimension j),,2,1(nj =
03 () { | / () and () }j j

i icut V e e p e V p eα α= ∈ ≥ ;
04 end for
05 _ iNEW X = Φ ;
06 for each dimension j),,2,1(nj =
07 _ { | () and satisfies }j j

i iCandidate Set e e cut V eα= ∈ Ω ;
08 while the construction of _ j

iNEW X is not finished and _ j
iCandidate Set ≠ Φ

09 select an element from _ j
iCandidate Set and add it to _ j

iNEW X ;
10 update _ j

iCandidate Set ;
11 end while
12 if the construction of _ j

iNEW X is not finished
13 }satisfiesand|{_ Ω∈= eXeeSetCandidate j

i
j

i ;
14 while the construction of _ j

iNEW X is not finished and _ j
iCandidate Set ≠ Φ

15 select an element from _ j
iCandidate Set and add it to _ j

iNEW X ;
16 update _ j

iCandidate Set ;
17 end while
18 end if
19 if the construction of _ j

iNEW X is not finished

20 }satisfiesand|{_ Ω∈= eEeeSetCandidate jj
i ;

21 select the elements from _ j
iCandidate Set to complete _ j

iNEW X ;
22 end if
23 end for
24 _i iX NEW X= ;
end procedure

Fig. 2. pseudo code for the position updating procedure

C. Position Updating
After updating velocity, particle i uses the new velocity Vi

to adjust its current position Xi and builds a new position
NEW_Xi. Different from the case in the continuous space, the
positions in the discrete space must satisfy the constraints Ω .
To ensure the feasibility of NEW_Xi, in S-PSO, the ith particle
applies the position updating procedure position_updating(Xi,
Vi) given in Fig. 2 to build new positions. That is, in S-PSO,
particle i updates its position as follows

),(_ iii VXupdatingpositionX ← (13)
1) The set with possibilities Vi is converted to a crisp set.

In each iteration, a random number)1,0(∈α is generated
for each particle. For each element e in the jth dimension, if its
corresponding possibility p(e) in the new velocity Vi

j is not
smaller than α, element e is reserved in a crisp set , that is,

})(and)(/|{)(αα ≥∈= epVepeeVcut j
i

j
i (14)

2) Particle i learns from the elements in cutα(Vi
j) to build a new

position.
After generating cutα(Vi

j), particle i builds a new position
NEW_Xi by learning from the elements in cutα(Vi

j). In S-PSO,
the new position is built in a constructive way. The constraints
Ω must be taken into account during the construction. At the
beginning, the new position is set as an empty set NEW_Xi= .
We denote the jth dimension of NEW_Xi as NEW_Xi

j. For each
dimension j, particle i first learns from the elements in cutα(Vi

j)
and adds them to NEW_Xi

j. If the construction of NEW_Xi
j is

not finished and there is no available element in cutα(Vi
j),

particle i reuses the elements in the previous Xi
j to build

NEW_Xi
j. If the construction of NEW_Xi

j is still not finished
and there is no available element in the Xi

j, particle i uses the
other available elements to complete NEW_Xi

j. After all
NEW_Xi

j have been completed, the construction of NEW_Xi is
finished.

Note that there is a selection operator in the position
updating rule. The operator can be either a random selection,
where the elements are randomly chosen, or a heuristic-based
selection, where some problem-dependent information is
applied to prefer better elements. Taking the TSP for example,
we can employ the length of each arc as the heuristic
information, and select the shortest arc from the candidate set
to add to the new position. The performance of different types
of selection operator will be discussed in the next section.

iX

iXnew

iVω

(a) the search mechanism of the original PSO

iX

iXnew
0.3
0.7

iVω

iLEARN

iLEARN)(iii XLEARNcr −
0.40.8 0.9

(b) the search mechanism of the S-PSO

The element in Xi, but
not in LEARNi

The element in both Xi
and LEARNi

The element selected from
the other available elements

The element in LEARNi-Xi ,
 selected in
The element in LEARNi-Xi ,
 not selected in

iVωThe element in ,
 selected in

 The element in ,
not selected in

iVω

selected from the
other elements

learnt from ()j
icut Vα

reused from
the previous Xi)(j

iVcutα

)(j
iVcutα

)(j
iVcutα

)(j
iVcutα

select in ()j
icut Vα

select in ()j
icut Vα

Fig. 3. Comparison between the original PSO and the S-PSO

0 5000 1000015000200002500030000
0

10
20
30
40
50
60
70
80

0 5000 1000015000200002500030000
0

10
20
30
40
50
60
70
80

0 5000 1000015000200002500030000
0

10
20
30
40
50
60
70
80

0 5000 1000015000200002500030000
0

10
20
30
40
50
60
70
80

(d) S-CLPSO(c) S-ULPSO

(b) S-VPSO(a) S-GPSO

N
um

be
r

Evaluation

N
um

be
r

Evaluation

N
um

be
r

Evaluation

Others

cut
α
(Vj

i
)

X
i

Others

cut
α
(Vj

i)

Xi

Others

cut
α
(Vj

i)

Xi
X

i

Others

cut
α
(Vj

i)

N
um

be
r

Evaluation

Fig. 4. The sources of the arcs that compose a new position

1451

 SMC 2009

IV. BEHAVIOR OF THE PROPOSED SET-BASED PSO

A. Behaviors of Different DPSO Variants Based on S-PSO
We first give an insight into the essence of the velocity and

the position updating rules in S-PSO. The comparison between
the original PSO and the S-PSO is illustrated in Fig. 3. In the
original PSO, the particle uses the velocity vector Vi and the
vector that learned from the previous search experience Learni-
Xi to modify the position as shown in Fig. 3(a). Here, Learni
represents the position from which the particle learns.

The velocity and position updating rules in S-PSO work in
a similar way. The velocity in S-PSO also includes the inertia
ωVi and the elements learnt from previous search experience
cr(Learni-Xi). (Learni represents GBest, LBesti, PBesti, etc.) In
terms of the definition of “position-position”, the effect of
Learni-Xi is to find out the elements that are used by the
promising solution Learni, but not used by Xi. Such elements
may have great potential to improve Xi. The essence of S-PSO
is to let particles learn from some of these promising elements
from the previous Vi and Learni-Xi iteratively to improve their
current positions, as illustrated in Fig. 3(b).

0 10000 20000 30000 40000 50000

540

560

580

600

620

640

Le
ng

th

Evaluation

 S-GPSO
 S-VPSO
 S-ULPSO
 S-CLPSO

Fig. 5. Comparison of the convergence speeds among the four discrete PSO
variants based on S-PSO in the TSP instance eil76. The results are averaged
over 30 runs.

0 30000 60000 90000120000150000
400

450

500

550

600

650

700

0 200000 400000 600000 800000

550

600

650

700

750

800

L
en

gt
h

Evalutions
(a) eil51

 Heuristic
 Random
 Greedy initialization
 Greedy Algorithm

 Heuristic
 Random
 Greedy initialization
 Greedy Algorithm

L
en

gt
h

Evalutions
(b) eil76

Fig. 6. Comparison between the random and the greedy selection operator:
the results are averaged over 30 runs. In the plots, “Heuristic” and “Random”
represents the S-CLPSO algorithm with heuristic-based selection operator and
random selection operator, respectively. “Greedy initialization” represents the
algorithm with random selection operator, but the positions are initialized
using the greedy algorithm. “Greedy algorithm” represents the best results
obtained by the greedy algorithm.

According to the position updating procedure, the elements
in a new position come from three sources: cutα(Vi

j), Xi
j and the

other available elements. The sources of the elements in a new
position are tightly related to the convergence behavior of S-
PSO. The fact that a large number of elements coming from
cutα(Vi

j) implies a very “fast” flying speed, as the particle can
learn from a lot of elements from cutα(Vi

j). Oppositely, if the
number of elements from cutα(Vi

j) is small, the particle only
searches in a small neighborhood. We run the S-GPSO, S-
VPSO, S-ULPSO, and S-CLPSO algorithms on a TSP instance
eil76 from TSPLIB [19]. In Fig. 4, it can be seen that only a
few arcs come from neither cutα(Vi

j) nor the Xi. At the early
stage, most of the arcs come from cutα(Vi

j). In this case, a lot of
new elements can be introduced to improve Xi, and the search
shows a diverse behavior. As the procedure continues, the

differences between Learni and Xi become smaller, and thus the
number of elements in cutα(Vi

j) reduces. As a result, more arcs
come from the previous Xi. In the S-GPSO, S-VPSO, and S-
ULPSO, after 5000 evaluations, only less than 5 arcs come
from cutα(Vi

j). In this situation, the search procedure has
converged to a small search area. In an extreme case, if all arcs
come from the previous Xi, the search procedure stagnates.
Similar to the CLPSO algorithm for continuous problems [3],
compared with the other S-PSO variants, the S-CLPSO based
on S-PSO is also able to keep the swarm’s diversity (Fig. 4).
Therefore it manages to achieve better performance compared
with S-GPSO, S-VPSO, and S-ULPSO (Fig. 5).

B. The Selection Operator in Position Updating
In the position updating procedure (Fig. 2), there is a

selection operator. The selection operator can be either random
or heuristic-based. The performance of these two selection
operators is tested. The results are plotted in Fig. 6. Obviously,
the algorithm with the heuristic-based selection operator
performs better, as some problem-dependent information is
employed to guide the search direction. In fact, many
successful algorithms for COPs, e.g., ACO [14][17], also
employ problem-dependent heuristic information. Such
heuristic information is able to accelerate the search process
especially in large-scale instances.

Note that using the heuristic-based selection operator does
not mean that the algorithm behaves in the same way as the
greedy-search algorithm. The algorithm still follows the
learning mechanism of S-PSO. In fact, according to the results
in Fig. 6, even using the random selection operator instead of
the heuristic-based selection operator, the algorithm can also
achieve much better results than the ones obtained by the
greedy-search algorithm, though the search speed is slow. This
demonstrates that the learning mechanism in S-CLPSO is
indeed contributing. The effect of the heuristic-based selection
operator is to accelerate the search speed of the algorithm.

In some COPs, it may be difficult to design a suitable
heuristic-based selection operator. In this situation, to
accelerate the search speed, we can apply some deterministic
search techniques to generate good initial solutions. For
example, in the TSP, we use the greedy-search algorithm to
generate initial solutions, but only use the random selection
operator in the course of search. Fig. 6 reveals that this scheme
also manages to achieve acceptable results quickly.

C. Inertia Weight and Acceleration Coefficient
The most important parameters in the PSO algorithms for
continuous domains are inertia weight ω and acceleration
coefficients (c1 and c2 in GPSO, and c in CLPSO).
Interestingly, in the experiments, it is found that these
parameters are able to play similar roles in S-PSO.

In S-PSO, each element e in a velocity is assigned with a
possibility p(e). Only the elements whose possibilities are not
smaller than a random number]1,0[∈α can be reserved in
cutα(Vi

j). According to the velocity updating rule, in each
iteration, the possibility p(e) for each element e that inherited

1452

 SMC 2009

from the previous velocity is multiplied by an inertia weight
]1,0[∈ω . In this situation, after t iterations, p(e) is reduced to

ωtp(e). Therefore, a small ω will make particles forget the
elements in the previous Vi quickly, and the size of cutα(Vi

j)
becomes small. As most of the elements come from the
previous Xi, the algorithm performs a local search behavior. In
contrast, a large ω will reinforce the elements in the previous
Vi. Typically when ω=1, the elements in previous Vi will never
be forgotten. As there are too many elements in cutα(Vi

j),
particles only use the elements in cutα(Vi

j), and the search
procedure becomes too diverse to find good solutions. We also
test the scheme proposed by [2] to decrease the value of ω
from 0.9 to 0.4. The results in Fig. 7 show that this
configuration for ω manages to balance the convergence and
diversity and performs well.

The acceleration coefficient c weighs the importance of
newly-learnt elements. Since each element e learnt from
LEARNi-Xi is assigned a possibility c×r, a larger c will give a
better chance for reserving e in cutα(Vi

j). When c is small,
particles learn from only a few elements in cutα(Vi

j), and reuse
most of the elements in the previous Xi. Consequently, as
shown in Fig. 8, the performance of the algorithm with c=0.1
and c=0.5 is very poor. (The curve for c=0.1 does not appear
in the figure because its results are too bad and out of the scale
of the figure.) When c>1, the diversity and convergence of the
algorithm can be balanced, and the algorithm performs well.

0 20000 40000 60000 80000100000

21500
22000
22500
23000
23500
24000
24500

Le
ng

th

Evaluations

ω = 0
ω = 0.6
ω = 1
 Decrease

Fig. 7. Performance of the algorithm with different inertia weight values in
the TSP instance kroA100. “Decrease” means the scheme to decrease the
value of ω from 0.9 to 0.4. The results are averaged over 20 runs.

0 20000 40000 60000 80000100000
21000
21500
22000
22500
23000
23500
24000
24500

Le
ng

th

Evaluations

c = 0.1
c = 0.5
c = 1.1
c = 1.5
c = 2.1
c = 2.9

Fig. 8. Performance of the algorithm with different acceleration coefficient
values in the TSP instance kroA100. The results are averaged over 20 runs.

0 30000 60000 90000
21300
21400
21500
21600
21700
21800
21900
22000

Evalutions

M = 10

Le
ng

th M = 30
M = 60
M = 90

10 20 30 40 50 60 70 80 90
21300
21350
21400
21450
21500
21550
21600

Le
ng

th

M
(a) (b)

Fig. 9. Performance of the algorithm with different swarm sizes in the TSP
instance kroA100. The results are averaged over 20 runs.

TABLE I THE NUMBER OF SOLUTIONS GENERATED IN EACH
RUN FOR EACH INSTANCE

TSP instances (derived from the TSPLIB)
instance

name
maximum number

of solutions
instance

name
maximum number of

solutions
eil51 25000 eil101 50000

Berlin52 25000 lin105 50000
st70 35000 kroA150 75000
eil76 35000 kroA200 100000
pr76 35000 pr299 150000

kroA100 50000 lin318 150000
0-1 KP instances (derived from Ref. [20])

100 5000 750 37500
250 12500 1000 50000
500 25000 2000 100000

V. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, we present the experimental results of S-
PSO. The algorithm is tested on the TSP and the 0-1 KP. The
TSP instances can be found in the TSPLIB [19], and the 0-1
KP instances are generated by the same method as in [20]. The
information of instances is given in TABLE I. The experiments
are performed on a machine with Pentium IV 2.80 GHz CPU,
256 MB of RAM, and MS Windows XP operation system. As
has been mentioned before, S-CLPSO is the best discrete PSO
variant based on S-PSO. Here we compare the S-CLPSO
algorithm with the other existing PSO-based approaches and
with some meta-heuristics for COPs.

According to the analysis in Section IV, we apply the
classical settings in [2] to decrease ω from 0.9 to 0.4 linearly
and set c=2.0. The swarm size M is also an important parameter
in PSO. From Fig. 9, it can be seen that M=20, 30, and 40 are
able to achieve the best results. The performance of M=10 is
slightly worse than that of M=20. In the experiment, as the
population size of the ACS algorithm [14] is 10, to make a fair
comparison, we also use M=10 in the comparison studies.

A. Performance on the TSP
We first compare the S-CLPSO algorithm with the other
existing PSO-based algorithms for the TSP, i.e., the PSO-TS -
CO-2opt algorithm [7] and the discrete PSO algorithm
proposed in [12]. In [7], the PSO-TS-CO-2opt algorithm is
integrated with a 2-opt local search procedure and a chaotic
operation (CO). 100000 solutions are generated in each single
run and the results are averaged over ten runs. The mean
results are recorded. In [12], the discrete PSO algorithm is
integrated with a delete-crossover process. Each instance is
run 100 times. The best and the worst solutions are recorded.
The S-CLPSO algorithm with the aforementioned parameter
configurations and the heuristic-based selection operator is run
50 times. The results are compared with the data reported in [7]
and [12] in TABLE II. From the results, it is apparent that the
S-CLPSO outperforms the other two algorithms in all cases.

TABLE II COMPARISON BETWEEN S-CLPSO AND THE OTHER
EXISTING PSO-BASED APPROACHES

 S-CLPSO PSO-TS-CO-2opt [7] Discrete PSO [12]
 best worst mean best worst mean best worst mean

eil51 426 433 427.5 N/A N/A 440.9 427 452 N/A
Berlin52 7542 7618 7544.3 N/A N/A 7704 7542 8362 N/A

st70 675 687 687.7 N/A N/A N/A 675 742 N/A
eil76 538 547 540.3 N/A N/A 560.7 546 579 N/A
pr76 108159 110213 108447 N/A N/A N/A 108280 124365 N/A

The results of S-CLPSO are averaged over 50 runs. The results of PSO-TS-
CO- 2opt and the discrete PSO algorithm are derived from [14] and [20].

1453

 SMC 2009

TABLE III COMPARISON BETWEEN S-CLPSO AND ACS

instance best
known algorithm best worst mean deviation Time

(ms)

t-test
(ACS -

S-CLPSO)

eil51 426 S-CLPSO 426 433 427.5 1.23 1251 6.220ACS 426 438 430.3 2.93 2387

Berlin52 7542 S-CLPSO 7542 7618 7544.3 11.34 1200 5.506ACS 7542 7986 7657.4 144.84 2448

st70 675 S-CLPSO 675 687 677.7 3.04 2382 7.558ACS 675 716 685.8 6.94 5759

eil76 538 S-CLPSO 538 547 540.3 2.48 2699 7.968ACS 538 558 547.2 5.60 6633

pr76 108159 S-CLPSO 108159 110213 108447 475.80 2581 9.247ACS 108159 113096 110197.7 1251.31 6453

kroA100 21282 S-CLPSO 21282 21658 21352.5 84.51 5047 4.823ACS 21282 22823 21584 328.66 15304

eil1101 629 S-CLPSO 629 646 637.1 4.45 5563 7.575ACS 631 661 646.3 7.30 15581

lin105 14379 S-CLPSO 14379 14561 14462.7 55.29 5393 3.960ACS 14379 15121 14539.5 125.48 17225

kroA150 26524 S-CLPSO 26537 27317 26892.1 165.36 14389 6.898ACS 26734 28008 27202.6 272.03 48153

kroA200 29368 S-CLPSO 29399 30139 29722.4 153.58 37072 4.800ACS 29506 31138 30001.5 381.33 111003

pr299 48191 S-CLPSO 48478 50427 49222.5 415.12 249369 5.119ACS 48828 50936 49721.6 550.41 338787

lin318 42029 S-CLPSO 42719 44209 43518.4 335.92 314635 1.513 ACS 43050 44716 43624.4 364.02 383877
The results are averaged over 50 runs. “ ” means the value of t with 49
degrees of freedom is significant at =0.05 by a two-tailed test.

We also compare the S-CLPSO algorithm with the ant
colony system (ACS) [14]. In the comparison, the parameter
settings in ACS are the same as [14], that is, β=2, q0=0.9,
α=ρ=0.1, and the number of ants is 10. In every single run,
both algorithms generate the same number of solutions. The
number is given in TABLE I. Each instance is run for 50 times.
The best results, worst results, average results, deviations, and
the average time to complete a single run (in millisecond) are
shown in TABLE III. It can be seen that the S-CLPSO
algorithm outperforms the ACS algorithm in all test instances.
We also study the convergent speed of these two algorithms.
The evolutionary curves of both algorithms are given in Fig.
10. The curves are based on the average results of 50 runs.
Though S-CLPSO performs worse than ACS in the early
stages, in the later stages, S-CLPSO is still diverse enough to
avoid being trapped in local optima. Therefore, S-CLPSO
manages to yield much better results.

0 4000 8000 12000 16000 20000
420

440

460

480

500

520

0 10000 20000 30000 40000 50000

21600

22000

22400

22800

23200

0 20000 40000 60000 80000 100000
29500

30000

30500

31000

31500

0 30000 60000 90000 120000150000

50000

51000

52000

53000

Evalutions
(a) eil51

Le
ng

th

 ACS
 S-CLPSO

Le
ng

th

Evalutions
(b) korA100

 ACS
 S-CLPSO

Evalutions
(c)korA200

Le
ng

th

 ACS
 S-CLPSO

Evalutions
(d) pr299

Le
ng

th

ACS
 S-CLPSO

Fig. 10. Comparison between the search speed between S-CLPSO and ACS.

TABLE IV COMPARISON BETWEEN THE S-CLPSO, BPSO, AND
QEA IN THE 0-1 KP

instance algorithm best mean deviation time(ms)

100

S-CLPSO (h) 610.02 609.05 1.915 133.1
S-CLPSO (r) 610.02 605.77 1.779 134.7

BPSO 610.01 603.91 2.528 280.0
QEA 610.00 604.20 2.528 394.7

250

S-CLPSO (h) 1522.94 1521.00 2.423 773.7
S-CLPSO (r) 1522.92 1516.69 2.364 795.6

BPSO 1512.93 1507.03 4.594 1724.0
QEA 1517.93 1505.43 5.997 2435.6

500

S-CLPSO (h) 3074.39 3073.68 1.751 3128.1
S-CLPSO (r) 3074.37 3064.74 3.609 3140.9

BPSO 3059.39 3048.08 6.448 6986.2
QEA 3054.38 3038.68 7.356 9750.9

750

S-CLPSO (h) 4604.44 4599.23 2.842 7199.6
S-CLPSO (r) 4589.44 4581.40 5.783 7255.0

BPSO 4579.44 4558.24 8.722 16074.0
QEA 4554.44 4531.64 9.044 21931.6

1000

S-CLPSO (h) 6128.75 6122.21 3.499 12832.2
S-CLPSO (r) 6108.56 6095.97 5.797 12745.9

BPSO 6093.74 6071.14 11.579 29025.6
QEA 6043.75 6019.43 16.560 39105.3

2000

S-CLPSO (h) 12245.81 12239.77 4.613 54117.2
S-CLPSO (r) 12195.80 12174.38 9.410 51353.8

BPSO 12175.81 12153.85 11.725 119600.3
QEA 12050.81 12009.29 20.711 156880.9

The results are averaged over 50 runs.

B. Performance on the 0-1 KP
We also study the performance of S-CLPSO in the 0-1 KP

and compare it with BPSO [4] and the quantum-inspired
evolutionary algorithm (QEA) [20].

In the QEA [20], a local refinement strategy is applied to
improve the performance of the algorithm. The strategy
removes random items from the knapsack iteratively until the
knapsack is not overfilled, and adds random items to the
knapsack iteratively until the knapsack becomes overfilled. In
order to make fair comparison, we apply this strategy to all of
the three algorithms in the experiment. Both the S-CLPSO
algorithms with the random selection operator and the
heuristic-based selection operator are implemented. The
heuristic-based selection operator for the 0-1 KP is as follows
[21]. Before executing S-CLPSO, all items are sorted by vj/wj
in ascending order. Suppose the jth item’s rank is rankj. In the
selection operator, if both (j,0) and (j,1) are in the candidate set,
a random number]1,0[∈ran is generated. If ran<rankj/n, (j,1)
is chosen. Otherwise, (j,0) is chosen.

Because each candidate solution to the 0-1 KP is actually a
binary string, the discrete binary version of PSO [4] can be
directly applied to the 0-1 KP. In BPSO, each dimension j has a
bit xj (xj=0 or 1) and a velocity vj. vj determines the possibility
that the bit xj will take on the value one or zero. While building
a new solution, if S(vj) is larger than a random number, then
xj=1, otherwise xj=0 (S(v) is a sigmoid function). In this case,
the method to construction a new position in BPSO does not
use the information of the previous position, which is quite
different from the method in the proposed S-PSO method. In
the experiment, the parameter configurations for BPSO
suggested in [4] are used. That is, c1=c2=2, Vmax=6, and the
population size is 20.

The parameter configurations for QEA are the same as the
QEA(3) version given in [20]. These configurations are shown
to be the best compared with the other QEA versions.

For each run, the algorithms generate the same number of
solutions. The number is given in TABLE I. Each instance is

1454

 SMC 2009

run for 50 times. The experiment performs on the same
machine as the one used in previous experiments. Experimental
results are given in TABLE IV. In the table, S-CLPSO(h)
means the algorithm with the heuristic-based selection scheme,
and S-CLPSO(r) represents the algorithm with the random
selection scheme. Apparently, the S-CLPSO(h) algorithm has
the best performance. Both S-CLPSO(h) and S-CLPSO(r)
manage to yield better solutions than BPSO and QEA in all
instances. Moreover, the S-CLPSO consumes less execution
time to achieve these results. This is because QEA needs to
evaluate a lot of trigonometric functions, and BPSO uses the
sigmoid function, which includes an “exp” operator. These
results reveal that the S-CLPSO based on S-PSO is promising.

VI. CONCLUSION

A set-based particle swarm optimization (S-PSO) method
for discrete space COPs has been proposed. S-PSO follows the
basic idea of the original PSO. In order to solve discrete space
problems, S-PSO represents the search space of the discrete
problem with the concept of set. The term “position”,
“velocity” and all related arithmetic operators in the original
PSO are replaced by the operators defined on sets and sets with
possibilities. Based on S-PSO, different PSO variants can be
extended to their discrete versions. Experimental results
demonstrate the effectiveness of the proposed algorithm.

REFERENCES

[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proceedings of IEEE International Conference on Neural Networks, pp.
1942-1948, 1995.

[2] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
Proceedings of IEEE International Conference on Evolutionary
Computation, pp. 69-73, 1998.

[3] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Transactions Evolutionary Computation, vol.10, no.3,
pp. 281-295, 2006.

[4] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Proceedings of IEEE International Conference on
System, Man, and Cybernetics, pp 4104–4109, 1997.

[5] M. Clerc, “Discrete particle swarm optimization,” New Optimization
Techniques in Engineering, Springer-Verlag. 2004.

[6] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization
for task assignment problem,” Microprocessors and Microsystems, vol.
26, pp. 363-371, 2002.

[7] D.Y. Sha and C. Hsu, “A hybrid particle swarm optimization for job
shop scheduling problem,” Computers & Industrial Engineering, vol.
51, pp. 791–808, 2006.

[8] W. Pang, et al., “Modified particle swarm optimization based on space
transformation for solving traveling salesman problem,” in Proceedings
of the Third International Conference on Machine Learning and
Cybernetics, pp. 2342-2348, 2004.

[9] W. Pang, K.-P. Wang, C.-G Zhou, and L.-J. Dong, “Fuzzy discrete
particle swarm optimization for solving traveling salesman problem,” in
Proceedings of the 4th International Conference on Computer and
Information Technology (CIT’04), pp. 796-800, 2004.

[10] C.-J. Liao, C.-T. Tseng, and P. Luarn, “A discrete version of particle
swarm optimization flowshop scheduling problems,” Computers and
Operations Research, vol. 34, pp. 3099-3111, 2007.

[11] Y. Wang, et al., “A novel quantum swarm evolutionary algorithm and its
applications,” Neurocomputing, vol. 70, pp. 633-640, 2007.

[12] X.H. Shi, Y.C. Liang, H.P. Lee, C. Lu, and Q.X. Wang, “Particle swarm
optimization-based algorithms for TSP and generalized TSP,”
Information Processing Letters, vol. 103, pp. 169-176, 2007.

[13] C.-T. Tseng and C.-J. Liao, “A discrete particle swarm optimization for
lot-streaming flowshop scheduling problem,” European Journal of
Operational Research, in press.

[14] Marco Dorigo and Luca Maria Gambardella, “Ant colony system: a
cooperative learning approach to the traveling salesman problem,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp.53-66,
1997.

[15] J. Kennedy, “Small worlds and mega-minds: Effects of neighborhood
topology on particle swarm performance,” in Proceedings of the 1999
Congress on Evolutionary Computation (CEC99), vol. 3, 1999.

[16] J. Kennedy and R. Mendes, “Population structure and particle swarm
performance,” in Proceedings of the 2002 Congress on Evolutionary
Computation (CEC02), vol. 2, pp. 1671-1676, 2002.

[17] M. Dorigo, T. Stützle, Ant colony optimization, MIT Press, 2004.
[18] S. Lin and B.W. Kernighan, “An effective heuristic algorithm for the

traveling-salesman problem,” Operations Research, pp. 498-516, 1972.
[19] G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA

Journal on Computing, vol. 3, no. 4, pp. 376-384, 1991.
[20] K. Han, J. Kim, “Quantum-inspired evolutionary algorithm for a class of

combinatorial optimization”, IEEE Transactions on Evolutionary
Computation, vol. 6, no. 6, pp. 580-593, 2002.

[21] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Sterin, Introduction to
algorithms (Second Edition), MIT Press, 2001

1455

