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Abstract —Particle swarm optimization (PSO) is 
predominately used to find solutions in continuous space. To 
explore the utility of PSO in the discrete space, this paper 
proposes a novel set-based PSO (S-PSO) method for 
combinatorial optimization problems (COPs). The proposed 
algorithm describes the discrete solution domains of COPs based 
on the concept of sets. A possible solution to the problem is 
mapped to a crisp set, and the velocity in S-PSO is defined as a 
set with possibilities. All arithmetic operators in the velocity and 
position updating rules in the original PSO are replaced by the 
operators defined on crisp sets and sets with possibilities in the 
proposed S-PSO. Based on S-PSO, most of the existing PSO 
variants, such as the global version PSO, the local version PSO 
with different topologies and the comprehensive learning PSO 
(CLPSO), can be extended to their discrete versions. These 
discrete PSO variants based on S-PSO are tested on two famous 
COPs: the traveling salesman problem (TSP) and the 0-1 
knapsack problem (0-1 KP). Experimental results show that the 
discrete version of the CLPSO algorithm based on the proposed 
S-PSO is promising. 

Keywords—particle swarm optimization, combinatorial 
optimization, discrete space

I. INTRODUCTION

Particle swarm optimization (PSO) is a population-based 
stochastic optimization algorithm proposed by Kennedy and 
Eberhart in 1995 [1]. The algorithm is inspired by the social 
interaction behavior of bird flocking and fish schooling. To 
search for the optimal solution, each individual, which is 
called a “particle”, updates its flying velocity and current 
position iteratively according to its own flying experience and 
the other particles’ flying experience. By now, PSO has 
become one of the most popular optimization techniques for 
the problems in the continuous space [1]-[3]. 

The original PSO is simple and effective, but it is restricted 
to the continuous space. As many optimization problems are 
defined in a discrete space, the research on extending the PSO 
to solve discrete space COPs become attractive in recent years. 

The first attempt to extend PSO to discrete domains is the 
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binary version of PSO proposed by Kennedy and Eberhart [4]. 
As the binary PSO use binary coding schemes, the types of 
COPs that can be solved are limited. In order to define a more 
general discrete PSO (DPSO) algorithm, several approaches 
have been developed. These approaches can be classified into 
four types. The first type is the swap-operator based DPSO 
outlined by Clerc [5]. Another type of discrete PSO algorithms 
is characterized by a space transformation technique. The most 
common space transformation method is to view the position 
as a priority-based list [6]-[8]. The third type of discrete PSO 
algorithms defines the position and velocity as a fuzzy matrix 
[9][10]. Besides, there are also some hybrid PSO algorithms 
which integrate PSO with other meta-heuristics or problem-
dependent local search methods to solve specific discrete 
optimization problems [11]-[13]. 

Although various DPSO algorithms have been proposed, 
their performance is generally not satisfactory. The first three 
types of pure DPSO algorithms manage to follow the simple 
structure of the original PSO on the whole. However, 
compared with the other meta-heuristics for discrete 
optimization, the performance is not competitive. For example, 
in the TSP, the best results obtained by the pure DPSO 
approaches [5][8][9][12] are still far behind the ones obtained 
by the ant colony optimization (ACO) algorithm [14]. On the 
other hand, the hybrid DPSO algorithms perform better than 
the pure DPSO approaches. But as these hybrid DPSO 
algorithms are generally designed for specific problems, their 
structures are more complicated, and it is not easy to apply 
these hybrid algorithms to other COPs. 

This paper explores the utility of PSO for the optimization 
problems in discrete space and proposes a set-based PSO (S-
PSO) method based on the concept of sets and possibility 
theory. The S-PSO method has the following features. First, a 
set-based representation scheme is designed to describe the 
discrete search space as a universal set of elements. Based on 
this representation scheme, many different kinds of COPs can 
be mapped to the problems that can be solved by S-PSO. 
Second, in S-PSO, a candidate solution corresponds to a crisp 
subset of the universal set. A velocity is defined as a set with 
possibilities, that is, each element in a velocity is assigned 
with a possibility. All related arithmetic operators in the 
velocity and position updating rules in the original PSO are 
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replaced by the operators defined on crisp sets and sets with 
possibilities in S-PSO. 

The above features enable the S-PSO method to follow the 
simple structure of the original PSO in the discrete set space. 
As a result, the search behavior of S-PSO is similar to that of 
the original PSO in continuous domains. Moreover, different 
improved variants of the original PSO, e.g., the PSO with 
different topologies [15][16] and the comprehensive learning 
PSO (CLPSO) [3], can also be extended to their discrete 
versions based on the S-PSO method. The proposed algorithm 
is tested in two famous COPs, the TSP and the 0-1 KP. 
Experimental results demonstrate the effectiveness of the 
proposed algorithm. 

The rest of this paper is organized as follows. The next 
section gives a brief review of the original PSO in continuous 
domains and some of its representative successors. In Section 
III, the proposed S-PSO is described. Section IV further 
discusses the search behavior of S-PSO. Experimental studies 
are given in Section V, and the conclusions are finally 
summarized in Section VI. 

II. TRADITIONAL PSO ALGORITHMS IN CONTINUOUS SPACE

In the original PSO [1][2], a swarm of M particles 
cooperate to search for the global optimum in the n-
dimensional search space. Each particle i maintains a position 

),,,( 21 n
iii xxxiX  and a velocity ),,,( 21 n

iii vvviV . In each 
iteration, each particle updates the velocity and position as 
follows 
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where ),...,,( 21 n

iii pbestpbestpbestiPBest  is the best-so-far 
solution of particle i, and ),...,,( 21 npbestpbestpbestGBest  is 
the best-so-far solution obtained by the whole swarm. r1

j and r2
j

are random numbers uniformly distributed in [0,1]. c1 and c2
are two parameters to weigh the importance of self-cognitive 
and social-influence respectively, and j represents the jth

dimension. ω  is a parameter named the inertia weight. 
As the original PSO has the problem of premature 

convergence, developing different topologies has become an 
important strategy to improve the performance of PSO. While 
the original PSO uses the global best position GBest to update 
the velocity, Kennedy and Mendes [15][16] suggested to use 
the local best position ),,,( 21 n

iii lbestlbestlbestiLBest  of a 
neighborhood and modified the velocity rule (1) into 
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The neighborhood of a particle can be defined by different 

topologies, such as Ring, URing, von Neumann, random, and 
so on [15][16]. In this paper, we term the global version GPSO, 
the local version with URing topology ULPSO, and the local 
version with von Neumann topology VPSO. 

Some PSO variants modify the learning strategies of 
particles to prevent premature convergence. A representative 
PSO variant is the comprehensive learning PSO (CLPSO) 
proposed by Liang et al. [3]. The algorithm updates velocity 
using the following equation: 
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where c is a parameter, rj is a random number in [0,1], and 

j
jfi

pbest )(  means the jth dimension of the PBest position of the 
particle fi(j). fi(j) is given by first generating a random number 
ran. If ran is larger than a parameter Pc, then fi(j)=i. Otherwise, 
the algorithm applies the tournament selection to two randomly 
selected particles to choose fi(j). CLPSO has been shown to be 
excellent for complex multimodal optimization problems [3]. 

III. THE PROPOSED SET-BASED PSO 

A. Representation 
According to [17], a COP can be defined by a triple (PS, f,

Ω), where PS is a set of candidate solutions (search space), f is 
the objective function, and Ω is a set of constraints. The goal 
is to find a global optimal feasible solution PSX ∈*  that 
satisfies Ω and optimizes the objective function f.

According to [18], many COPs can be formulated in the 
abstract as “find from a set E a subset X that satisfies some 
constraints Ω and optimizes the objective function f”. In terms 
of this formulation scheme, in S-PSO, the COP (PS, f, Ω) is 
mapped to a problem that includes the following 
characteristics: 

A universal set E of elements is given. E has n
dimensions, i.e., nEEEE ∪∪∪= 21 .
A candidate solution to the problem PSX ∈
corresponds to a subset of E, i.e., X⊆E. X also has n
dimensions, i.e., =X nXXX ∪∪∪ 21 , where Xj⊆Ej

(j=1,2,…,n).
X is a feasible solution only if X satisfies the Ω .
The objective of the COP problem is to find a feasible 
solution X* that optimizes f.

With the above representation scheme, taking the 
symmetric TSP for example, each arc (j,k) is considered as an 
element. The universal set E corresponds to the set of arcs A.
Dimension Ej is composed of the arcs that are connected with 
node j. A candidate solution X⊆E is a subset of arcs. X is 
feasible only if the arcs in X form a Hamiltonian circuit of the 
graph. In the 0-1 KP, each dimension Ej can be defined as a set 
of two elements Ej={(j,0),(j,1)}, where (j,1) indicates that item 
j is chosen in the bag and (j,0) means item j is not chosen. A 
candidate solution is nXXXX ∪∪∪= 21 , where 
Xj={(j,0)} or Xj={(j,1)}. If X satisfies the capacity constraint, X
is a feasible solution to the problem. 

B. Velocity Updating 
In PSO, a velocity gives the moving direction and tendency 

of a particle. In the original PSO, particles use the information 
of the best solutions found previously to adjust their velocities, 
so that the velocities can direct particles to move to better 
positions. The velocity updating rule in the S-PSO method 
follows the same idea. For example, the velocity updating rule 
in the discrete version of GPSO based on S-PSO is given by 
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where Vi

j is the jth dimension of the ith particle’s velocity and Xi
j

is the jth dimension of the ith particle’s position. PBestij is the jth
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dimension of the best-so-far solution found by particle i, and 
GBestj is the jth dimension of the best-so-far solution found by 
all particles. c1>0, c2>0, and ]1,0[∈ω  are parameters. 

]1,0[1 ∈jr  and ]1,0[2 ∈jr  are random numbers. Obviously, the 
velocity updating rule in equation (5) is in the same format as 
equation (1), but the positions (Xi

j, PBestij and GBestj), velocity 
(Vi

j) and all related arithmetic operators in equation (5) are 
redefined in discrete domains as follows. 

Position
A position is a feasible solution to the problem. In terms of 

the representation scheme given above, a feasible solution 
corresponds to a subset of elements. We denote the position of 
the ith particle as Xi (Xi⊆E). Similarly, PBesti⊆E, GBest⊆E, and 
LBesti⊆E are the ith particle’s best-so-far position, global best-
so-far position, and the ith particle’s local best-so-far position, 
respectively. At the beginning, Xi is initialized with a 
randomly-generated feasible solution. 

Velocity 
In S-PSO, a velocity is defined as a set with possibilities. 
Definition 1 (set with possibilities): Let E be a crisp set. A 

set with possibilities V defined on E is given by 
}|)(/{ EeepeV ∈=             (6) 

that is, each element Ee ∈  has a possibility ]1,0[)( ∈ep  in the 
set with possibilities. In fact, if E′  is a crisp subset of E, we 
can also regard E′  as a set with possibilities defined on E by 
assigning p(e)=1 if Ee ′∈  and p(e)=0 if Ee ′∉ . In general, if 
p(e)=0, we omit the item e/p(e) in the set for short. 

Based on this definition, }|)(/{ jj
i EeepeV ∈=  is a set 

with possibilities defined on Ej. The overall velocity for particle 
i is }|)(/{ EeepeVi ∈= , which is a set with possibilities 
defined on E. We will see later that the possibility p(e) in Vi
actually gives the possibility that particle i will learn from 
element e to build a new position. 

At the beginning of the algorithm, Vi is initialized by 
randomly selecting n elements from E and assigning each of 
these elements a random possibility ]1,0[)( ∈ep . The 
possibilities for the other unselected elements are set to 0. 

Coefficient × Velocity 
The term coefficient here is used to denote a parameter or a 

random number which is a nonnegative real number. In S-PSO, 
the product of a coefficient and a set with possibilities is 
defined as follows. 

Definition 2 (multiplication operator between a 
coefficient and a set with possibilities): Given a coefficient c
(c 0) and a set with possibilities }|)(/{ EeepeV ∈= , their 
product is given by 

×
>×=′∈′= otherwise),(

1)(if,1)(},|)(/{ epc
epcepEeepecV (7) 

Position – Position 
In the representation scheme of S-PSO, a position is given 

by a crisp set. S-PSO follows the traditional definition of the 
minus operator between two crisp sets. Given two crisp sets A
and B, the relative complement A–B of B in A is given by 

}and|{ BeAeeBA ∉∈=−     (8) 
Based on this definition, the effect of GBestj-Xi

j and PBestij-
Xi

j is to find out the elements used by the GBest (PBesti)

position but not used by the current position Xi. Such elements 
may have great potential to improve Xi.

Coefficient × (Position – Position) 
The result of “Position – Position” operation is a crisp set. 

The multiplication operator between a coefficient and a crisp 
set is defined as follows. 

Definition 3 (multiplication operator between a 
coefficient and a crisp set): Given a coefficient c (c 0) and a 
crisp set E′ , E′  is a subset of the universal set E. According to 
definition 1, E′  can be considered as a set with possibilities 

}|)(/{ EeepeE ∈=′  where 1)( =ep  if Ee ′∈  and p(e)=0 if 
Ee ′∉ . So the product of c and E′  can be defined in the same 

way as definition 2, i.e. 
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Velocity + Velocity 
Finally, we define the union operator between two sets with 

possibilities. 
Definition 4 (union operator between two sets with 

possibilities): Given two sets with possibilities 
}|)(/{ 11 EeepeV ∈=   and }|)(/{ 22 EeepeV ∈=  defined on 

E, 21 VV ∪  is defined as 
}|))(),(max(/{ 212121 EeepepeVVVV ∈=+=∪   (10) 

that is, the possibility p(e) for element e in 21 VV ∪  is set to the 
larger one between p1(e) and p2(e). In order to be consistent 
with the notation in the original PSO, 21 VV ∪  is also denoted 
as V1+V2 in this paper. 

Avoiding inconsistency of the velocities of different 
dimensions 

In some special COPs, e.g., in the symmetric TSP, an 
element (arc) (j,k) belongs to both dimensions j and k. In this 
situation, after updating all Vi

j for particle i, different 
dimensions of velocity Vi

j may be inconsistent. That is, for an 
element (j,k) ((j,k) Ej and (j,k) Ek), it may occur that the 
possibility for (j,k) in Vi

j is not equal to the one in Vi
k. Suppose 

pj(j,k) and pk(j,k) are the possibilities for (j,k) in Vi
j and Vi

k

respectively, we unify them as pj(j,k)=
pk(j,k)=p(j,k)=max{pj(j,k),pk(j,k)}. So the possibility for (j,k) in 
the new velocity Vi after velocity updating can be kept 
consistent.  

The velocity updating rules for different discrete PSO 
variants 

Based on the above definitions, the velocity updating rule 
for the discrete version of GPSO based on S-PSO [equation (5)] 
is summarized in Fig. 1. 

The velocity updating rule of the other PSO variants can 
also be extended to discrete versions based on S-PSO in a 
similar way. The velocity updating rules in the PSO with 
different topologies [equation (3)] and the CLPSO [equation 
(4)] are as follows 
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where LBesti is the local best position of a neighborhood and 
j

jfiPBest )(  is the jth dimension of particle fi(j)’s PBest position. 
The neighborhood can be defined by any type of topologies. 
The parameters and the function fi(j) in equation (11) and (12) 
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are the same as the ones in equation (3) and (4). In the rest of 
this paper, we name the discrete version of GPSO, VPSO, 
ULPSO [15][16], and CLPSO [3] based on S-PSO as S-GPSO, 
S-VPSO, S-ULPSO, and S-CLPSO, respectively. 
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equation (7) equation (9) equation (9)

equation (10)equation (10)

After updating all      , eliminate the inconsistency
of the possibilities for each element 
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j
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j
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j
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Fig. 1.  The arithmetic operators in the velocity updating rule of S-PSO 

procedure position_updating(Xi, Vi)
01  generate a random number (0,1)α ∈ ;
02  for each dimension j ),,2,1( nj =
03   ( ) { | / ( )  and ( ) }j j

i icut V e e p e V p eα α= ∈ ≥ ;
04  end for
05  _ iNEW X = Φ ;
06  for each dimension j ),,2,1( nj =
07   _ { | ( ) and  satisfies  }j j

i iCandidate Set e e cut V eα= ∈ Ω ;
08   while the construction of _ j

iNEW X  is not finished and _ j
iCandidate Set ≠ Φ

09    select an element from _ j
iCandidate Set  and add it to _ j

iNEW X ;
10   update _ j

iCandidate Set ;
11   end while
12  if the construction of _ j

iNEW X  is not finished 
13   }satisfiesand|{_ Ω∈= eXeeSetCandidate j

i
j

i ;
14   while the construction of _ j

iNEW X  is not finished and _ j
iCandidate Set ≠ Φ

15    select an element from _ j
iCandidate Set  and add it to _ j

iNEW X ;
16    update _ j

iCandidate Set ;
17   end while
18  end if 
19  if the construction of _ j

iNEW X  is not finished 

20   }satisfiesand|{_ Ω∈= eEeeSetCandidate jj
i ;

21   select the elements from _ j
iCandidate Set  to complete _ j

iNEW X ;
22  end if
23 end for 
24 _i iX NEW X= ;
end procedure 

Fig. 2.  pseudo code for the position updating procedure 

C. Position Updating 
After updating velocity, particle i uses the new velocity Vi

to adjust its current position Xi and builds a new position 
NEW_Xi. Different from the case in the continuous space, the 
positions in the discrete space must satisfy the constraints Ω .
To ensure the feasibility of NEW_Xi, in S-PSO, the ith particle 
applies the position updating procedure position_updating(Xi,
Vi) given in Fig. 2 to build new positions. That is, in S-PSO, 
particle i updates its position as follows 

),(_ iii VXupdatingpositionX ←  (13) 
1) The set with possibilities Vi is converted to a crisp set. 

In each iteration, a random number )1,0(∈α  is generated 
for each particle. For each element e in the jth dimension, if its 
corresponding possibility p(e) in the new velocity Vi

j is not 
smaller than α, element e is reserved in a crisp set , that is, 

})(and)(/|{)( αα ≥∈= epVepeeVcut j
i

j
i        (14) 

2) Particle i learns from the elements in cutα(Vi
j) to build a new 

position. 
After generating cutα(Vi

j), particle i builds a new position 
NEW_Xi by learning from the elements in cutα(Vi

j). In S-PSO, 
the new position is built in a constructive way. The constraints 
Ω  must be taken into account during the construction. At the 
beginning, the new position is set as an empty set NEW_Xi= .
We denote the jth dimension of NEW_Xi as NEW_Xi

j. For each 
dimension j, particle i first learns from the elements in cutα(Vi

j)
and adds them to NEW_Xi

j. If the construction of NEW_Xi
j is 

not finished and there is no available element in cutα(Vi
j),

particle i reuses the elements in the previous Xi
j to build 

NEW_Xi
j. If the construction of NEW_Xi

j is still not finished 
and there is no available element in the Xi

j, particle i uses the 
other available elements to complete NEW_Xi

j. After all 
NEW_Xi

j have been completed, the construction of NEW_Xi is 
finished. 

Note that there is a selection operator in the position 
updating rule. The operator can be either a random selection, 
where the elements are randomly chosen, or a heuristic-based 
selection, where some problem-dependent information is 
applied to prefer better elements. Taking the TSP for example, 
we can employ the length of each arc as the heuristic 
information, and select the shortest arc from the candidate set 
to add to the new position. The performance of different types 
of selection operator will be discussed in the next section. 
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IV. BEHAVIOR OF THE PROPOSED SET-BASED PSO 

A. Behaviors of Different DPSO Variants Based on S-PSO 
We first give an insight into the essence of the velocity and 

the position updating rules in S-PSO. The comparison between 
the original PSO and the S-PSO is illustrated in Fig. 3. In the 
original PSO, the particle uses the velocity vector Vi and the 
vector that learned from the previous search experience Learni-
Xi to modify the position as shown in Fig. 3(a). Here, Learni
represents the position from which the particle learns. 

The velocity and position updating rules in S-PSO work in 
a similar way. The velocity in S-PSO also includes the inertia 
ωVi and the elements learnt from previous search experience 
cr(Learni-Xi). (Learni represents GBest, LBesti, PBesti, etc.) In 
terms of the definition of “position-position”, the effect of 
Learni-Xi is to find out the elements that are used by the 
promising solution Learni, but not used by Xi. Such elements 
may have great potential to improve Xi. The essence of S-PSO 
is to let particles learn from some of these promising elements 
from the previous Vi and Learni-Xi iteratively to improve their 
current positions, as illustrated in Fig. 3(b). 
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Fig. 5.  Comparison of the convergence speeds among the four discrete PSO 
variants based on S-PSO in the TSP instance eil76. The results are averaged 
over 30 runs. 
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algorithm with random selection operator, but the positions are initialized 
using the greedy algorithm. “Greedy algorithm” represents the best results 
obtained by the greedy algorithm. 

According to the position updating procedure, the elements 
in a new position come from three sources: cutα(Vi

j), Xi
j and the 

other available elements. The sources of the elements in a new 
position are tightly related to the convergence behavior of S-
PSO. The fact that a large number of elements coming from 
cutα(Vi

j) implies a very “fast” flying speed, as the particle can 
learn from a lot of elements from cutα(Vi

j). Oppositely, if the 
number of elements from cutα(Vi

j) is small, the particle only 
searches in a small neighborhood. We run the S-GPSO, S-
VPSO, S-ULPSO, and S-CLPSO algorithms on a TSP instance 
eil76 from TSPLIB [19]. In Fig. 4, it can be seen that only a 
few arcs come from neither cutα(Vi

j) nor the Xi. At the early 
stage, most of the arcs come from cutα(Vi

j). In this case, a lot of 
new elements can be introduced to improve Xi, and the search 
shows a diverse behavior. As the procedure continues, the 

differences between Learni and Xi become smaller, and thus the 
number of elements in cutα(Vi

j) reduces. As a result, more arcs 
come from the previous Xi. In the S-GPSO, S-VPSO, and S-
ULPSO, after 5000 evaluations, only less than 5 arcs come 
from cutα(Vi

j). In this situation, the search procedure has 
converged to a small search area. In an extreme case, if all arcs 
come from the previous Xi, the search procedure stagnates. 
Similar to the CLPSO algorithm for continuous problems [3], 
compared with the other S-PSO variants, the S-CLPSO based 
on S-PSO is also able to keep the swarm’s diversity (Fig. 4). 
Therefore it manages to achieve better performance compared 
with S-GPSO, S-VPSO, and S-ULPSO (Fig. 5). 

B. The Selection Operator in Position Updating 
In the position updating procedure (Fig. 2), there is a 

selection operator. The selection operator can be either random 
or heuristic-based. The performance of these two selection 
operators is tested. The results are plotted in Fig. 6. Obviously, 
the algorithm with the heuristic-based selection operator 
performs better, as some problem-dependent information is 
employed to guide the search direction. In fact, many 
successful algorithms for COPs, e.g., ACO [14][17], also 
employ problem-dependent heuristic information. Such 
heuristic information is able to accelerate the search process 
especially in large-scale instances. 

Note that using the heuristic-based selection operator does 
not mean that the algorithm behaves in the same way as the 
greedy-search algorithm. The algorithm still follows the 
learning mechanism of S-PSO. In fact, according to the results 
in Fig. 6, even using the random selection operator instead of 
the heuristic-based selection operator, the algorithm can also 
achieve much better results than the ones obtained by the 
greedy-search algorithm, though the search speed is slow. This 
demonstrates that the learning mechanism in S-CLPSO is 
indeed contributing. The effect of the heuristic-based selection 
operator is to accelerate the search speed of the algorithm. 

In some COPs, it may be difficult to design a suitable 
heuristic-based selection operator. In this situation, to 
accelerate the search speed, we can apply some deterministic 
search techniques to generate good initial solutions. For 
example, in the TSP, we use the greedy-search algorithm to 
generate initial solutions, but only use the random selection 
operator in the course of search. Fig. 6 reveals that this scheme 
also manages to achieve acceptable results quickly. 

C. Inertia Weight and Acceleration Coefficient 
The most important parameters in the PSO algorithms for 
continuous domains are inertia weight ω and acceleration 
coefficients (c1 and c2 in GPSO, and c in CLPSO). 
Interestingly, in the experiments, it is found that these 
parameters are able to play similar roles in S-PSO. 

In S-PSO, each element e in a velocity is assigned with a 
possibility p(e). Only the elements whose possibilities are not 
smaller than a random number ]1,0[∈α  can be reserved in 
cutα(Vi

j). According to the velocity updating rule, in each 
iteration, the possibility p(e) for each element e that inherited 
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from the previous velocity is multiplied by an inertia weight 
]1,0[∈ω . In this situation, after t iterations, p(e) is reduced to 

ωtp(e). Therefore, a small ω will make particles forget the 
elements in the previous Vi quickly, and the size of cutα(Vi

j)
becomes small. As most of the elements come from the 
previous Xi, the algorithm performs a local search behavior. In 
contrast, a large ω will reinforce the elements in the previous 
Vi. Typically when ω=1, the elements in previous Vi will never 
be forgotten. As there are too many elements in cutα(Vi

j), 
particles only use the elements in cutα(Vi

j), and the search 
procedure becomes too diverse to find good solutions. We also 
test the scheme proposed by [2] to decrease the value of ω
from 0.9 to 0.4. The results in Fig. 7 show that this 
configuration for ω manages to balance the convergence and 
diversity and performs well. 

The acceleration coefficient c weighs the importance of 
newly-learnt elements. Since each element e learnt from 
LEARNi-Xi is assigned a possibility c×r, a larger c will give a 
better chance for reserving e in cutα(Vi

j). When c is small, 
particles learn from only a few elements in cutα(Vi

j), and reuse 
most of the elements in the previous Xi. Consequently, as 
shown in Fig. 8, the performance of the algorithm with c=0.1 
and c=0.5 is very poor. (The curve for c=0.1 does not appear 
in the figure because its results are too bad and out of the scale 
of the figure.) When c>1, the diversity and convergence of the 
algorithm can be balanced, and the algorithm performs well. 
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Fig. 7.  Performance of the algorithm with different inertia weight values in 
the TSP instance kroA100. “Decrease” means the scheme to decrease the 
value of ω from 0.9 to 0.4. The results are averaged over 20 runs. 
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Fig. 8.  Performance of the algorithm with different acceleration coefficient 
values in the TSP instance kroA100. The results are averaged over 20 runs. 
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Fig. 9.  Performance of the algorithm with different swarm sizes in the TSP 
instance kroA100. The results are averaged over 20 runs. 

TABLE I THE NUMBER OF SOLUTIONS GENERATED IN EACH 
RUN FOR EACH INSTANCE 

TSP instances (derived from the TSPLIB) 
instance 

name 
maximum number 

of solutions 
instance 

name 
maximum number of 

solutions 
eil51 25000 eil101 50000 

Berlin52 25000 lin105 50000 
st70 35000 kroA150 75000 
eil76 35000 kroA200 100000 
pr76 35000 pr299 150000 

kroA100 50000 lin318 150000 
0-1 KP instances (derived from Ref. [20]) 

100 5000 750 37500 
250 12500 1000 50000 
500 25000 2000 100000 

V. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, we present the experimental results of S-
PSO. The algorithm is tested on the TSP and the 0-1 KP. The 
TSP instances can be found in the TSPLIB [19], and the 0-1 
KP instances are generated by the same method as in [20]. The 
information of instances is given in TABLE I. The experiments 
are performed on a machine with Pentium IV 2.80 GHz CPU, 
256 MB of RAM, and MS Windows XP operation system. As 
has been mentioned before, S-CLPSO is the best discrete PSO 
variant based on S-PSO. Here we compare the S-CLPSO 
algorithm with the other existing PSO-based approaches and 
with some meta-heuristics for COPs. 

According to the analysis in Section IV, we apply the 
classical settings in [2] to decrease ω from 0.9 to 0.4 linearly 
and set c=2.0. The swarm size M is also an important parameter 
in PSO. From Fig. 9, it can be seen that M=20, 30, and 40 are 
able to achieve the best results. The performance of M=10 is 
slightly worse than that of M=20. In the experiment, as the 
population size of the ACS algorithm [14] is 10, to make a fair 
comparison, we also use M=10 in the comparison studies. 

A. Performance on the TSP 
We first compare the S-CLPSO algorithm with the other 
existing PSO-based algorithms for the TSP, i.e., the PSO-TS -
CO-2opt algorithm [7] and the discrete PSO algorithm 
proposed in [12]. In [7], the PSO-TS-CO-2opt algorithm is 
integrated with a 2-opt local search procedure and a chaotic 
operation (CO). 100000 solutions are generated in each single 
run and the results are averaged over ten runs. The mean 
results are recorded. In [12], the discrete PSO algorithm is 
integrated with a delete-crossover process. Each instance is 
run 100 times. The best and the worst solutions are recorded. 
The S-CLPSO algorithm with the aforementioned parameter 
configurations and the heuristic-based selection operator is run 
50 times. The results are compared with the data reported in [7] 
and [12] in TABLE II. From the results, it is apparent that the 
S-CLPSO outperforms the other two algorithms in all cases. 

TABLE II COMPARISON BETWEEN S-CLPSO AND THE OTHER 
EXISTING PSO-BASED APPROACHES 

 S-CLPSO PSO-TS-CO-2opt [7] Discrete PSO [12]  
 best worst mean best worst mean best worst mean 

eil51 426 433 427.5 N/A N/A 440.9 427 452 N/A 
Berlin52 7542 7618 7544.3 N/A N/A 7704 7542 8362 N/A 

st70 675 687 687.7 N/A N/A N/A 675 742 N/A 
eil76 538 547 540.3 N/A N/A 560.7 546 579 N/A 
pr76 108159 110213 108447 N/A N/A N/A 108280 124365 N/A 

The results of S-CLPSO are averaged over 50 runs. The results of PSO-TS-
CO- 2opt and the discrete PSO algorithm are derived from [14] and [20]. 
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TABLE III COMPARISON BETWEEN S-CLPSO AND ACS 

instance best 
known algorithm best worst mean deviation Time 

(ms) 

t-test 
(ACS - 

S-CLPSO)

eil51 426 S-CLPSO 426 433 427.5 1.23 1251 6.220ACS 426 438 430.3 2.93 2387 

Berlin52 7542 S-CLPSO 7542 7618 7544.3 11.34 1200 5.506ACS 7542 7986 7657.4 144.84 2448

st70 675 S-CLPSO 675 687 677.7 3.04 2382 7.558ACS 675 716 685.8 6.94 5759

eil76 538 S-CLPSO 538 547 540.3 2.48 2699 7.968ACS 538 558 547.2 5.60 6633

pr76 108159 S-CLPSO 108159 110213 108447 475.80 2581 9.247ACS 108159 113096 110197.7 1251.31 6453 

kroA100 21282 S-CLPSO 21282 21658 21352.5 84.51 5047 4.823ACS 21282 22823 21584 328.66 15304

eil1101 629 S-CLPSO 629 646 637.1 4.45 5563 7.575ACS 631 661 646.3 7.30 15581

lin105 14379 S-CLPSO 14379 14561 14462.7 55.29 5393 3.960ACS 14379 15121 14539.5 125.48 17225

kroA150 26524 S-CLPSO 26537 27317 26892.1 165.36 14389 6.898ACS 26734 28008 27202.6 272.03 48153

kroA200 29368 S-CLPSO 29399 30139 29722.4 153.58 37072 4.800ACS 29506 31138 30001.5 381.33 111003

pr299 48191 S-CLPSO 48478 50427 49222.5 415.12 249369 5.119ACS 48828 50936 49721.6 550.41 338787

lin318 42029 S-CLPSO 42719 44209 43518.4 335.92 314635 1.513 ACS 43050 44716 43624.4 364.02 383877
The results are averaged over 50 runs. “ ” means the value of t with 49 
degrees of freedom is significant at =0.05 by a two-tailed test. 

We also compare the S-CLPSO algorithm with the ant 
colony system (ACS) [14]. In the comparison, the parameter 
settings in ACS are the same as [14], that is, β=2, q0=0.9, 
α=ρ=0.1, and the number of ants is 10. In every single run, 
both algorithms generate the same number of solutions. The 
number is given in TABLE I. Each instance is run for 50 times. 
The best results, worst results, average results, deviations, and 
the average time to complete a single run (in millisecond) are 
shown in TABLE III. It can be seen that the S-CLPSO 
algorithm outperforms the ACS algorithm in all test instances. 
We also study the convergent speed of these two algorithms. 
The evolutionary curves of both algorithms are given in Fig. 
10. The curves are based on the average results of 50 runs. 
Though S-CLPSO performs worse than ACS in the early 
stages, in the later stages, S-CLPSO is still diverse enough to 
avoid being trapped in local optima. Therefore, S-CLPSO 
manages to yield much better results. 
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Fig. 10.  Comparison between the search speed between S-CLPSO and ACS. 

TABLE IV COMPARISON BETWEEN THE S-CLPSO, BPSO, AND 
QEA IN THE 0-1 KP 

instance algorithm best mean deviation time(ms)

100 

S-CLPSO (h) 610.02 609.05 1.915 133.1 
S-CLPSO (r) 610.02 605.77 1.779 134.7 

BPSO 610.01 603.91 2.528 280.0 
QEA 610.00 604.20 2.528 394.7 

250 

S-CLPSO (h) 1522.94 1521.00 2.423 773.7 
S-CLPSO (r) 1522.92 1516.69 2.364 795.6 

BPSO 1512.93 1507.03 4.594 1724.0 
QEA 1517.93 1505.43 5.997 2435.6 

500 

S-CLPSO (h) 3074.39 3073.68 1.751 3128.1 
S-CLPSO (r) 3074.37 3064.74 3.609 3140.9 

BPSO 3059.39 3048.08 6.448 6986.2 
QEA 3054.38 3038.68 7.356 9750.9 

750 

S-CLPSO (h) 4604.44 4599.23 2.842 7199.6 
S-CLPSO (r) 4589.44 4581.40 5.783 7255.0 

BPSO 4579.44 4558.24 8.722 16074.0
QEA 4554.44 4531.64 9.044 21931.6

1000 

S-CLPSO (h) 6128.75 6122.21 3.499 12832.2
S-CLPSO (r) 6108.56 6095.97 5.797 12745.9

BPSO 6093.74 6071.14 11.579 29025.6
QEA 6043.75 6019.43 16.560 39105.3

2000 

S-CLPSO (h) 12245.81 12239.77 4.613 54117.2
S-CLPSO (r) 12195.80 12174.38 9.410 51353.8

BPSO 12175.81 12153.85 11.725 119600.3
QEA 12050.81 12009.29 20.711 156880.9

The results are averaged over 50 runs.

B. Performance on the 0-1 KP 
We also study the performance of S-CLPSO in the 0-1 KP 

and compare it with BPSO [4] and the quantum-inspired 
evolutionary algorithm (QEA) [20].  

In the QEA [20], a local refinement strategy is applied to 
improve the performance of the algorithm. The strategy 
removes random items from the knapsack iteratively until the 
knapsack is not overfilled, and adds random items to the 
knapsack iteratively until the knapsack becomes overfilled. In 
order to make fair comparison, we apply this strategy to all of 
the three algorithms in the experiment. Both the S-CLPSO 
algorithms with the random selection operator and the 
heuristic-based selection operator are implemented. The 
heuristic-based selection operator for the 0-1 KP is as follows 
[21]. Before executing S-CLPSO, all items are sorted by vj/wj
in ascending order. Suppose the jth item’s rank is rankj. In the 
selection operator, if both (j,0) and (j,1) are in the candidate set, 
a random number ]1,0[∈ran  is generated. If ran<rankj/n, (j,1)
is chosen. Otherwise, (j,0) is chosen. 

Because each candidate solution to the 0-1 KP is actually a 
binary string, the discrete binary version of PSO [4] can be 
directly applied to the 0-1 KP. In BPSO, each dimension j has a 
bit xj (xj=0 or 1) and a velocity vj. vj determines the possibility 
that the bit xj will take on the value one or zero. While building 
a new solution, if S(vj) is larger than a random number, then 
xj=1, otherwise xj=0 (S(v) is a sigmoid function). In this case, 
the method to construction a new position in BPSO does not 
use the information of the previous position, which is quite 
different from the method in the proposed S-PSO method. In 
the experiment, the parameter configurations for BPSO 
suggested in [4] are used. That is, c1=c2=2, Vmax=6, and the 
population size is 20. 

The parameter configurations for QEA are the same as the 
QEA(3) version given in [20]. These configurations are shown 
to be the best compared with the other QEA versions. 

For each run, the algorithms generate the same number of 
solutions.  The number is given in TABLE I. Each instance is 
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run for 50 times. The experiment performs on the same 
machine as the one used in previous experiments. Experimental 
results are given in TABLE IV. In the table, S-CLPSO(h) 
means the algorithm with the heuristic-based selection scheme, 
and S-CLPSO(r) represents the algorithm with the random 
selection scheme. Apparently, the S-CLPSO(h) algorithm has 
the best performance. Both S-CLPSO(h) and S-CLPSO(r) 
manage to yield better solutions than BPSO and QEA in all 
instances. Moreover, the S-CLPSO consumes less execution 
time to achieve these results. This is because QEA needs to 
evaluate a lot of trigonometric functions, and BPSO uses the 
sigmoid function, which includes an “exp” operator. These 
results reveal that the S-CLPSO based on S-PSO is promising. 

VI. CONCLUSION

A set-based particle swarm optimization (S-PSO) method 
for discrete space COPs has been proposed. S-PSO follows the 
basic idea of the original PSO. In order to solve discrete space 
problems, S-PSO represents the search space of the discrete 
problem with the concept of set. The term “position”, 
“velocity” and all related arithmetic operators in the original 
PSO are replaced by the operators defined on sets and sets with 
possibilities. Based on S-PSO, different PSO variants can be 
extended to their discrete versions. Experimental results 
demonstrate the effectiveness of the proposed algorithm. 
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