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ABSTRACT Shape complementarity is the most
basic ingredient of the scoring functions for protein-
protein docking. Most grid-based docking algo-
rithms use the total number of grid points at the
binding interface to quantify shape complementar-
ity. We have developed a novel Pairwise Shape
Complementarity (PSC) function that is conceptu-
ally simple and rapid to compute. The favorable
component of PSC is the total number of atom pairs
between the receptor and the ligand within a dis-
tance cutoff. When applied to a benchmark of 49 test
cases, PSC consistently ranks near-native struc-
tures higher and produces more near-native struc-
tures than the traditional grid-based function, and
the improvement was seen across all prediction
levels and in all categories of the benchmark. With-
out any post-processing or biological information
about the binding site except the complementarity-
determining region of antibodies, PSC predicts the
complex structure correctly for 6 test cases, and
ranks at least one near-native structure in the top 20
predictions for 18 test cases. Our docking program
ZDOCK has been parallelized and the average com-
puting time is 4 minutes using sixteen IBM SP3
processors. Both ZDOCK and the benchmark are
freely available to academic users (http://zlab.bu.edu/
�rong/dock). Proteins 2003;51:397–408.
© 2003 Wiley-Liss, Inc.
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INTRODUCTION

One of the ultimate goals of genomic and proteomic
projects is to determine the biological functions and cellu-
lar roles of all genes and proteins. With the rapid develop-
ment of high-throughput technologies, the scientific com-
munity is flooded with sequence data. Meanwhile,
structural genomics1 has considerably accelerated the
experimental determination of protein 3-Dimensional (3D)
structures.2 In addition, recent developments in proteom-
ics technologies such as mass spectrometry, genome-scale
yeast 2-hybrid, and display cloning experiments are uncov-
ering numerous novel protein-protein interactions.3–12

However, experimental determination of the 3D struc-
tures of protein-protein complexes has remained difficult.
Knowledge of the protein complex structures can provide

insights into the functions of the component proteins and
can guide the design of novel molecules to regulate protein
interaction networks. Thus, there is a pressing need to
develop reliable and rapid protein-docking methods for
predicting complex structures at a genomic scale.

There has been a wealth of research on protein-protein
docking, described in several reviews.13–19 Predictive dock-
ing methods start with the individually determined (un-
bound) structures of two proteins and aim to predict the
complex structure, the unbound docking problem. Further-
more, binding site information rarely accompanies novel
protein-protein interactions uncovered by proteomics. Thus,
we focus on the unbound docking problem with minimal
prior knowledge of the binding site. A number of methods
are capable of unbound docking without assuming any
binding site information.17,20–34 All docking programs
contain a scoring function that can discriminate near-
native docked orientations from incorrect ones, and a
search algorithm that is able to sample all possible docking
orientations rapidly. To various degrees, proteins undergo
conformational changes upon complex formation. Even
though structural flexibility is mostly restricted to surface
side chains,35 it makes docking unbound molecules ex-
tremely difficult. Since it is infeasible to explore all pos-
sible conformations, scoring functions must be sufficiently
“soft” to tolerate structural imperfections, provided that it
does not lead to an increased number of false positives.

Shape complementarity is the most basic ingredient of
all scoring functions for docking. As the name implies, it is
a geometric descriptor, stemming from the practical obser-
vation that protein surfaces are complementary to each
other at the binding interface. However, the exact formula
for shape complementarity differs among docking algo-
rithms, and can be classified into two general categories:
functions based on surface curvatures or surface areas.
Connolly developed a method to calculate smooth 3D
contours for proteins analytically,36,37 which has formed
the basis of curvature-dependent shape complementarity
since the earliest docking methods. Protein surfaces are
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described using critical points and surface normals, and
the docking strategy is to align sets of critical points in the
receptor and the ligand with opposing normals. Since this
description can capture fine surface features, it works
extremely well for reassembling separated components of
a known complex,38–40 and remains helpful for unbound
docking.20,29,32 The widely used small molecule docking
algorithm DOCK falls within this category.41 Shoichet and
colleagues have also successfully applied DOCK to protein
docking.42,43

A number of grid-based docking algorithms have emerged
in the past decade. In the seminal work by Katchalski-
Katzir and colleagues,21 a Fast Fourier Transform (FFT)-
based algorithm was introduced to explore all transla-
tional orientations rapidly. This method has been further
developed by several other groups.17,22–28 All of these
methods use a surface description that does not include
explicit information regarding surface curvature. Instead,
a layer of grid points that surround but do not overlap with
any protein atoms is computed for the receptor, and the
total number of grid points in this layer that overlap any
ligand grid points (which approximates buried surface
area upon complexation), minus the penalty incurred by
overlapping grid points that correspond to atoms in the
two proteins, is the surface complementarity score (Grid-
based Shape Complementarity [GSC]). Recently, we have
augmented GSC with desolvation and electrostatics for
unbound docking.33

Here, we present a novel and simple shape complemen-
tarity scoring function called Pairwise Shape Complemen-
tarity (PSC). It computes the total number of receptor-
ligand atom pairs within a distance cutoff, minus a clash
penalty. Unlike any of the shape complementarity func-
tions in the above two categories, PSC is not explicitly
based upon protein surface curvature or surface area.
Instead, it simply rewards all close atomic contacts be-
tween the receptor and the ligand. Since neighboring
atoms in one protein tend to make contacts with the same
atoms in the other protein, our PSC function effectively
rewards continuous surface patches at the binding site.
This is an important feature for protein docking, since the
interfaces of many false-positive predictions are often
large but not continuous.

We have thoroughly explored the surface thickness
parameter used in GSC and the distance cutoff in PSC on a
benchmark of 49 test cases (version 0.0).44 Our results
indicate that PSC is much more effective than GSC for
unbound docking. With optimal parameters for each
method, PSC can detect near-native structures for 3 times
as many test cases as GSC. FFT docking algorithms
explicitly explore the entire rotational space. The receptor
is fixed at the origin, and the ligand is rotated about each of
its Euler angles incrementally. Therefore, the computing
time scales as 1/�3, where � is the angular interval. We
have examined the performance of PSC at � of 4–15°.
Results on the benchmark indicate that sampling density
does not have a major impact on the ranking of the first hit.
However, finer sampling consistently leads to many more
hits at any given number of predictions.

Since shape complementarity sets the foundation for
other scoring functions such as desolvation, electrostatics,
and hydrogen bonding, our results have important implica-
tions for unbound docking. PSC is a powerful scoring
function despite conformational flexibility, and can serve
as an efficient primary filter before more costly evaluation
criteria.

METHODS
ZDOCK

The basic search procedure in this study is similar to
that in our previous study,33 with two significant modifica-
tions:

1. Evenly distributed Euler angles are used for the rota-
tional search. The Euler angle sets at several sampling
intervals (�) have been obtained from Dr. Julie C.
Mitchell. An angle set is equivalent to a uniformly
distributed set of points on a projective sphere, which
ensures that minimal orientations are required to cover
the entire rotational space. The angular distance be-
tween any orientation and its nearest orientation,
computed using the formula in Lattman,45,46 is � or
smaller.

2. Only the best translational orientation is kept for every
rotational orientation. We used to keep the top 10
translational orientations for each rotation.33 We subse-
quently discovered that these 10 translations are ex-
tremely similar, and keeping only the best one helped to
remove false positives without affecting the ranking of
the best hit.

For practical convenience, we used to take the ligand
orientation as superposed on the crystal complex to be the
origin of the angular sampling.33 We subsequently noticed
that this led to slightly but consistently better perfor-
mance than using a random starting orientation. Thus, for
all grid-based docking algorithms, it is important not to
sample a near-native orientation deliberately. In this
study, we have randomly perturbed all starting receptor
and ligand orientations.

A grid spacing of 1.2 Å is used throughout this study.
Also, the angular sampling density is 15° unless otherwise
stated.

GSC

GSC has been described in detail in our previous publica-
tion.33 Briefly, we obtain two functions RGSC and LGSC by
discretizing the receptor (R) and the ligand (L) using an
N � N � N grid, with grid point (l, m, n � 1, 2, . . . , N)
assigned the following value:

RGSC�l,m,n� � �
1 solvent accessible surface layer of R
9i solvent excluding surface layer of R
9i core of R
0 open space

(1)
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LGSC�l,m,n� � �
0 solvent accessible surface layer of L
1 solvent excluding surface layer of L
9i core of L
0 open space

where i � ��1. If a protein atom has more than 1 Å2

solvent accessible area, calculated using a water probe
radius of 1.40 Å,47 it is considered a surface atom. Other-
wise, it is a core atom. The “Solvent excluding surface layer
of a protein” is defined by the grid points corresponding to
surface atoms. All other grid points corresponding to any
core atoms are in the protein “core”. “Solvent accessible
surface layer” is an additional layer of grid points surround-
ing a protein; these grid points are adjacent to the surface
atoms of a protein, but do not overlap with protein atoms.
In the past, we set the thickness of this “solvent accessible
surface layer” (T) at 3.4 Å, similar to the thickness of 3.5 Å
used by Eisenstein and Katchalski-Katzir in the TEM-1
	-lactamase/BLIP docking challenge.48

GSC is computed using the following equation (o, p, and
q are the number of grid points by which L is shifted with
respect to R in each dimension):

SGSC�o,p,q� � Re
�
l � 1

N �
m � 1

N �
n � 1

N

RGSC�l,m,n�

� LGSC�l � o,m � p,n � q�]

� Im
�
l � 1

N �
m � 1

N �
n � 1

N

RGSC�l,m,n�

� LGSC�l � o,m � p,n � q�] (2)

The above correlation can be computed rapidly using two
Fourier transforms.33

Figure 1(a) is a 2D schematic illustration of GSC.
Protein atoms are indicated by circles, with open circles for
surface atoms and shaded circles for core atoms. For
clarity, we set grid spacing to be the same as an atom
diameter. Grid points assigned 0 have been omitted from
the figure. Grid points with open circles belong to the
“solvent excluding surface layer”, and grid points without
circles belong to the “solvent accessible surface layer”. For
illustration purposes, we have set the thickness of the
“solvent accessible surface layer” to an atom diameter. The
best ligand orientation in Figure 1(a) (indicated by a block
arrow) will lead to a GSC score of 6.

PSC

The favorable component of PSC is defined as the
number of receptor-ligand atom pairs within a distance
cutoff. To account partially for different atom radii, the
cutoff is defined as a parameter D plus the receptor atom
radius. The unfavorable component of PSC is linearly
proportional to the number of overlapping grid points
between the receptor and the ligand (similar to GSC). In
order to compute PSC efficiently using FFT, two complex
functions, RPSC and LPSC, are used to describe the geomet-
ric characteristics R and L on an N � N � N grid:

Re
RPSC�l,m,n��

� � number of receptor atoms within open space
(D � receptor atom radius)
0 otherwise

Re
LPSC�l,m,n��

� � 1 if this grid is the nearest grid of a ligand atom
0 otherwise

Im
RPSC�l,m,n�� � Im
LPSC�l,m,n��

� � 3 solvent excluding surface of the protein
9 protein core
0 open space

(3)

where Re[ ] and Im[ ] denote the real and imaginary parts
of a complex function.

The final PSC scoring function is computed using a
correlation function between RPSC and LPSC:

SPSC�o,p,q� � Re
�
l � 1

N �
m � 1

N �
n � 1

N

RPSC�l,m,n� � LPSC

�l � o,m � p,n � q��, (4)

where ligand L is translated with respect to receptor R by
o, p, and q grid points in each dimension. For each ligand
rotation, the above correlation function with all possible
translations can be evaluated using only two Fourier
Transforms, provided the Fourier Transform of RPSC is
pre-computed. Details of the FFT-based search algorithm
can be found in several articles.21,33

In Equations [3] and [4], Im[RPSC] and Im[LPSC] are
used to compute the unfavorable component of PSC. A
core-core, surface-core, or surface-surface grid point over-
lap results in a penalty of �9*9 � �81, �3*9 � �27, and
�3*3 � �9 respectively. Overlaps involving surface grid
points are penalized only moderately, which allows PSC to
tolerate some structural flexibility. Re[RPSC] and Re[LPSC]
are used to compute the favorable component of PSC.
Re[RPSC] denotes the number of receptor atoms within the
distance cutoff of each grid point in the open space, and
Re[LPSC] records the nearest grid point for each ligand
atom. The multiplication of these two terms results in the
total number of receptor/ligand atom pairs within the
distance cutoff. Equation [4] computes both the favorable
and unfavorable components of PSC, and sums them into
one score, with a higher score indicating better shape
complementarity.

Figure 1(b) is a 2D schematic illustration for computing
PSC. Similar to Figure 1(a), protein atoms are shown in
circles, with open circles indicating surface atoms and
shaded circles indicating core atoms. Unlike Figure 1(a),
however, here we do not define the “solvent accessible
surface layer” and any grid point that does not correspond
to an atom is in the “open space”. For grid points in the
open space of RSC, we record the total number of receptor
atoms within a distance cutoff. For illustration purposes,
we have defined the cutoff to be 1.5 times atom diameters,
which allows atoms occupying diagonal grid points to be
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Fig. 1. 2D schematic illustration for the discrete functions (a) RGSC and LGSC used in calculating GSC
(Equation 1) and (b) RPSC and LPSC for PSC (Equation 3). Protein atoms are indicated using circles, with open
circles indicating surface atoms and shaded circles indicating core atoms. For clarity, we use a grid spacing that
equals atom diameter and grid points whose values are 0 have been omitted from the figure. The value
assigned to each grid point is indicated, with i � ��1. Grid points with open circles are in the “solvent excluded
surface layer”. The block arrow indicates the direction of translation for the ligand in order to achieve the optimal
shape complementarity score. In a, grid points without any circles are in the “solvent accessible surface layer”.
The thickness of this layer is set to an atom diameter for illustrative purpose. In b, we don’t define “solvent
accessible surface layer”; rather, for each grid point in the open space of RSC, we record the number of atoms
within a distance cutoff. We have set the cutoff to be 1.5 times atom diameters for illustration purposes. Small
arrows point out the five atoms that are within the distance cutoff of a grid and thus contribute to its score of 5.
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within the cutoff. In Figure 1(b), we use small arrows to
point out the five atoms that contribute to the score of a
grid. It is clear from Figure 1(b) that grid points in the
concave binding pocket of the receptor receive high scores,
due to the large number of nearby atoms. This enables
PSC to locate concave binding pockets effectively. The PSC
score for the best ligand orientation indicated by a block
arrow is 20.

Note that our PSC definition is impartial to the receptor/
ligand assignment of input proteins, while previous shape
complementarity functions typically work better when the
protein with the concave binding site is designated as the
receptor. Such a decision cannot be made when the binding
site is not known. Since PSC’s accuracy is not sensitive to
the assignment, we always assign the larger protein as the
receptor to improve computational speed.

Performance Evaluation

Following our previous work,33 near-native structures
or hits are defined as predictions with Root Mean Square
Deviation (RMSD) below 2.5 Å after optimal superposi-
tion. Superposition and RMSD calculation only involve the
C atoms of interface residues, which are receptor (or
ligand) residues with at least one atom within 10 Å of any
atoms of the ligand (or receptor).

In order to evaluate the overall performance of ZDOCK
on the entire benchmark, we propose to use success rate;
given some number of predictions being evaluated for each
test case (NP), success rate is the percentage of complexes
in the benchmark for which at least one hit is ranked above
NP. Note that success rate only depends on the rank of the
first hit in each complex. Therefore, it is useful for evaluat-
ing a stand-alone docking program. If post-processing will
be involved, the number of hits a program can retain is also
important. We introduce another measure of performance
called hit count. First, we count the number of hits ranked
above NP in each test case. Hit count is simply the average
of these counts over the benchmark.

Computational Implementation

Written in C, ZDOCK has been implemented on an
IBM-SP and an SGI Origin 2000. We have also parallel-
ized the program by distributing rotations amongst all
processors, using Message Passing Interface (http://www-
unix.mcs.anl.gov/mpi/index.html) and OpenMP (http://
www.openmp.org/) for inter-processor communication. The
average computing time with a 15° rotational sampling
interval and a 128 � 128 � 128 grid is 4 minutes on a
16-processor IBM SP3.

RESULTS
Improving ZDOCK and GSC

We used a benchmark that contains 49 non-redundant
test cases: 23 enzyme/inhibitor, 16 antibody/antigen, and
10 others.44 There are 26 unbound/unbound and 23 un-
bound/bound test cases (indicated using the * symbol in
Table I). To the best of our knowledge, this is the largest
collection of diverse protein-protein docking test cases.

Unlike earlier studies,30,33 no homodimer has been in-
cluded in this benchmark.

The two modifications we make to ZDOCK, using evenly
distributed Euler angle sets and keeping only the best
translational orientation per rotation, have significantly
improved the performance of GSC. In Figure 2, success
rates of our previous GSC33 and the new GSC are plotted
against NP, the number of predictions retained for evalua-
tion. The comparison was done on an earlier version of the
benchmark, which included only 43 test cases (Table I
except the last two enzyme/inhibitor, the last three anti-
body/antigen, and the last complex in the others category).
When the algorithms were allowed to make only one
prediction, the previous GSC succeeded for 3 complexes
while the new GSC succeeded for only 2 complexes.
However, the input protein structures for the previous
GSC had not been randomly rotated, which contributed to
its slightly inflated performance. For any other numbers of
predictions, the new GSC performed better than the
previous GSC, and the difference in success rate ranged
3–11%.

Also plotted in Figure 2 is the performance of the new
GSC on all 49 test cases in the benchmark. The two
new-GSC curves (43 vs. 49 test cases) are very similar to
each other, indicating that our benchmark is sufficiently
large and representative. This also indicates that the
success rate vs. number of predictions curve is a useful
measure for docking performance, since the same method
scores similarly over a 14% increase of the test set.

It has been postulated that a thinner surface layer on
the receptor would be less tolerant to clashes and, there-
fore, might improve the stringency of shape complementa-
rity. Gabb et al. indicated that using thinner surface (1.2
vs. 1.5 Å) significantly improves the rankings of top hits.24

We have thoroughly examined the impact of the surface
thickness T on docking performance. Thin surface layers
(T � 2 Å) performed poorly, with success rates less than
half of that obtained with T � 3.4 Å at all numbers of
predictions. T ranging from 2 to 3.4 Å gave similar
performance, with T � 3 Å being the best, which has been
used as the default value for all GSC calculations. Gabb et
al. used finer grid resolutions (0.74–0.96 Å, vs. 1.2 Å in
this study). This may explain the discrepancy between
their results and ours. We did not observe any improve-
ment with higher grid resolution, despite the significantly
increased computing time (data not shown).

Optimizing PSC

PSC is composed of two terms: the favorable term
calculates the total number of atom pairs between the
receptor and the ligand within a distance cutoff (D plus the
receptor atom radius); the penalty term prevents clashes
by assigning �81 to every core-core grid point overlap and
�9 to every surface-surface grid point overlap. The param-
eters in the penalty term (�9 and �81) have been taken
directly from our earlier GSC formulation. Thus, the only
adjustable parameter in the PSC scoring function is the
distance cutoff D. We varied D from 2.6 to 4.6 Å with a
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0.2-Å interval to investigate its impact on algorithm
performance.

We plot success rate or hit count against D, at different
NP values. Smaller D performed better for smaller NP and
larger D performed better for larger NP, although the

optimal D is slightly different for success rate and hit
count. For NP � 10 or 20, the best D values were 3.2–3.6 Å
for success rate and 3.6–3.8 Å for hit count. For NP � 500
or 1,000, they were 3.6–3.8 Å for success rate and 3.8–4.2
Å for hit count. Small D (� 3.4 Å) did poorly in terms of hit

TABLE I. Comparison Between GSC and PSC on the Benchmark

Complex

GSC PSC

Number of hitsa Rankb RMSDc (Å) Number of hitsa Rankb RMSDc (Å)

1CGI 3 18 1.84 10 7 2.50
1CHO 3 116 0.79 13 1 1.51
2PTC 0 — — 5 104 1.67
1TGS 5 113 2.13 13 9 1.83
2SNI 0 — — 0 — —
2SIC 1 521 1.48 3 48 1.48
1CSE 0 — — 3 492 0.91
2KAI 0 — — 5 252 2.22
1BRC 0 — — 4 47 1.93
1ACB 3 147 1.61 10 20 1.37
1BRS 6 18 2.2 8 24 2.34
1JTG 5 3 1.3 9 1 2.46
1MAH 0 — — 3 126 1.17
1UGH 1 595 2.33 1 367 1.79
1DFJ 2 373 2.43 1 12 2.48
1FSS 0 — — 1 220 1.15
1AVW 0 — — 7 1 2.08
1PPE* 17 1 0.74 34 1 1.17
1TAB* 0 — — 9 5 1.38
1UDI* 2 220 2.22 3 492 1.38
1STF* 5 2 0.71 4 1 0.92
2TEC* 3 161 1.17 12 3 0.50
4HTC* 8 1 1.51 7 2 2.48

1MLC 1 632 1.59 2 580 1.80
1WEJ 0 — — 3 259 2.43
1AHW 5 3 2.15 7 3 1.29
1DQJ 0 — — 0 — —
1BVK 0 — — 3 297 2.13
1FBI* 0 — — 0 — —
2JEL* 3 56 0.78 17 18 1.87
1BQL* 3 62 1 5 132 1.00
1JHL* 3 129 1.73 5 51 2.10
1NCA* 4 189 2.11 9 8 1.23
1NMB* 1 829 0.91 2 272 1.21
1MEL* 3 39 1.28 10 8 1.22
2VIR* 1 39 0.78 4 413 1.26
1EO8* 0 — — 1 843 0.62
1QFU* 3 7 0.98 3 386 1.47
1IAI* 0 — — 1 280 2.33

2PCC 0 — — 0 — —
1WQI 3 340 2.28 2 301 2.01
1AVZ 0 — — 0 — —
1MDA 0 — — 0 — —
1IGC* 0 — — 1 622 1.57
1ATN* 1 390 1.21 1 619 1.15
1GLA* 1 248 1.32 0 — —
1SPB* 5 50 1.47 10 1 0.85
2BTF* 1 41 0.85 2 19 0.91
1A0O* 3 34 2.06 0 — —

*, unbound/bound complexes.
aHits are defined as docked structures with interface C RMSD � 2.5 Å from the crystal complex. Only the first 1,000 predictions were retained.
bBest rank of any hit. “-” indicates that no hit was found.
cRMSD for the best ranked hit. “-” indicates that no hit was found.
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count, but had a lesser impact on success rate. Taken
collectively, D � 3.4–3.8 Å is the best if ZDOCK is used as
a stand-alone program, with a high success rate (especially
at low NP) being the chief consideration; D � 3.8 Å is the
best if ZDOCK is used in combination with post-processing
algorithms, since hit count (especially at high NP) would be
of primary interest. We have chosen D � 3.6 Å as the
default value for subsequent PSC calculations.

Rotational Sampling

Since FFT docking algorithms perform an exhaustive
search of the rotational space, it is important to investi-
gate the impact of sampling density. Mandell et al. discov-
ered that using angular spacing (�) of 6° performed
significantly better than 9° for the Acetylcholinesterase/
fasciculin test case while worse for Protein Kinase A/Pro-
tein Kinase Inhibitor.26 However, no systematic analysis
on a large set of test cases has been performed. Here, we
compare the performance of PSC over seven � values (20°,
15°, 12°, 10°, 8°, 6°, and 4°), which correspond to 1,800,
3,600, 9,000, 14,400, 27,000, 54,000, and 180,000 rota-
tions, respectively. We computed time scales linearly with
the number of rotations. Using a 16-processor IBM SP3,
ZDOCK spends 2 minutes per test case with � � 20° and
3.3 hours with � � 4°.

In Figure 3, we plot success rate and hit count against �,
for various NP values. It is apparent from Figure 3(a) that
� � 4° has the lowest success rate for NP larger than 100.
� � 6° also starts to suffer when NP becomes larger than
200. The success rates for other � values seem to be
comparable. This observation is verified using the sign
test,49 illustrated with the following example. Compared
to � � 15°, � � 4° obtained better first ranks for 6 test
cases, worse for 34 test cases, and they tied for 9 test cases.
If we assume that the two � values perform equally, the
binomial distribution indicates that the probability of
obtaining such a difference in performance by chance is
0.00003. We, thus, conclude that finer angular intervals
tend to rank the best hits lower than coarser angular
intervals.

The above conclusion may seem surprising. However, it
can be illustrated using the following simple example. Let
us assume that at a low sampling density, the first hit
(called H) is ranked 2nd for a test case. This means there is
one false positive (called F) that scores better than H. If we
increase the sampling density 10-fold, there will be 9 new
orientations (F1, F2, . . . F9) that are very similar to F, and
9 other new orientations (H1, H2, . . . H9) that are very
similar to H. It is highly likely that F1, F2, . . . F9 have
similar PSC scores to F, and H1, H2, . . . H9 similar to H.
To a first approximation, we can assume that F, F1,
F2, . . . F9 will score better than H, H1, H2, . . . H9, and,
therefore, the ranking of the first hit becomes 11 at the
finer sampling. Only if the scoring function is perfect will
finer sampling guarantee a better performance. When the
scoring function is not perfect, higher sampling density
can lead to a lower success rate and higher hit count (see
below).

One might decide that we should use � � 20°, since it
takes the least amount of time. Figure 3(b) tells the other
side of the story. Smaller � always results in more hits, at
all NP values. This could be due to the increase in total
number of hits with finer sampling. To verify this, we kept

Fig. 2. The success rates of GSC with 43 (}) and 49 (Œ) test cases,
and our previous GSC33 (■) with 43 test cases are plotted against the
number of predictions (NP). The success rate is defined in Methods. It
reflects the average ability of a method in ranking the first hit. Hits are
predictions with interface RMSD less than 2.5 Å (see Methods for more
details). The difference between the current GSC and our previous
implementation is described under ZDOCK in Methods.

Fig. 3. The success rate (a) and hit count (b) of PSC are plotted
against rotational sampling interval � at different NP values: 1,000, 500,
200, 100, 50, 20, and 10. We perform a uniform rotational sampling. The
angular distance between any orientation and its nearest orientation,
computed using the formula in Lattman45,46 is � or smaller.
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the best translational orientation per rotation and counted
the total number of hits among all resulting structures. We
discovered that total numbers of hits averaged over the
benchmark are linearly correlated with total numbers of
rotations with a correlation coefficient of 0.9999. This also
implies that the number of non-hits increases linearly with
total number of rotations. Thus, finer sampling increases
signal and noise at the same rate. Despite this, Figure 3(b)
indicates PSC is capable of ranking many more hits at the
top for smaller �. Thus, finer rotational sampling (� � 6°)
is recommended if ZDOCK is used as a pre-screening
method, since more hits will be retained for further
optimization. It is somewhat surprising that � � 20°
performed well in success rate [Fig. 3(a)], as it appears to
be too coarse. In this work, we have used � � 15° for
comparing GSC and PSC calculations since it is rapid to
compute and the conclusion should remain valid for other �.

For eight test cases, PSC did not find any hits within
1,000 at � � 15°. One possible explanation is insufficient
sampling. Indeed, for 1A0O, we obtained 2 hits at � � 6°.
However, for two other test cases (1IAI and 1EO8), even
though we found one hit at � � 15°, we found no hit at
� � 6°.

Comparison of PSC and GSC

Table I compares the performance of PSC and GSC.
Judged by the number of hits identified in the top 1,000
predictions, PSC found more hits than GSC for 34 test
cases, fewer for 6 test cases, and they tied for 9 test cases.
The probability of obtaining such improvement by chance
(P value) is less than 3 � 10�5, computed using the sign
test.49 Judged by the rank of the first hit, PSC performed
better than GSC for 32 test cases, worse for 9 test cases
and the same for 8 test cases, corresponding to a P value of
3 � 10�4. PSC was able to retain at least one hit in the top
1,000 for 41 test cases, compared to 30 by GSC. The
improvement of PSC over GSC is seen across all three
categories of test cases, although it is more apparent for
enzyme/inhibitor and antibody/antigen than for others.

To compare GSC and PSC further, we plot success rate
and hit count vs. number of predictions (NP) in Figure 4.
Across all NP values, PSC has a higher success rate than
GSC [Fig. 4(a)]. When each method is allowed to make only
one prediction per test case, PSC succeeds for 6 test cases,
3 times as many as GSC. Figure 4(b) indicates that PSC
retains many more hits than GSC throughout the entire
NP spectrum. On average, PSC detect 2.2 times as many
hits as GSC. For NP � 20, the ratio is increased to 2.8.

In order to investigate if PSC is more tolerant of
conformational changes than GSC and, therefore, more
successful for unbound docking, we performed bound
docking for all co-crystal complexes. Surprisingly, PSC did
much better than GSC for bound docking as well, both in
success rate and in hit count, across all NP values. The
improvement is of the same magnitude for bound docking
as for unbound docking. This indicates that PSC is a better
measure of shape complementarity than GSC in a broad
sense.

DISCUSSION

We present a novel shape complementarity scoring
function PSC, which is conceptually simple and rapid to
compute. We have thoroughly analyzed the impact of two
parameters of PSC on algorithm performance, the distance
cutoff for including favorable atom pairs and the sampling
density for the rotational search. Two components are
important in evaluating docking algorithms: the ability to
rank hits at the top and the number of hits given some
number of predictions. We propose success rate and hit
count for evaluating these two components. We show that
rotational intervals � from 20° to 8° perform similarly in
terms of success rate, and � � 4° and 6° has a worse
success rate than coarser intervals, especially at high NP.
However, finer � consistently generates more hits.

A drastic improvement was observed when we compared
PSC to GSC; the latter has been the usual way of evaluat-
ing shape complementarity in all grid-based docking algo-
rithms. PSC consistently ranked hits higher than GSC,
produced many more hits, and the improvement was seen
across all numbers of predictions and in all categories of
the benchmark. The chief difference between PSC and
GSC is the way they score the favorable component of
shape complementarity. PSC rewards all atom pairs within
a certain distance cutoff, while GSC rewards all grid points
simultaneously occupied by ligand surface atoms and the

Fig. 4. The performances of PSC (F and solid line) and GSC (Œ and
dashed line) for unbound docking are compared according to success
rate (a) and hit count (b).
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solvent accessible surface of the receptor. At first, the
distinction appears subtle. We realized its implications
only after comparing the top ranked structures by both
methods. In Figure 5, the interface of the most favorable
orientation for test case 1AVW according to PSC (a) is
compared with that according to GSC (b). For clarity, only
atoms within 4 Å of the other molecule are drawn. It is
apparent that the PSC interface is much more contiguous
than the GSC interface, and there are many cavities in the
GSC interface. Upon visual inspection, one would easily

conclude that the PSC structure has much better shape
complementarity than the GSC structure. This pattern is
seen for all test cases in the benchmark. In Figure 6, we
provide an intuitive explanation for the above difference. A
contiguous interface [Fig. 6(a)] is compared with a disjoint
one [Fig. 6(b)] with the same number of atoms. PSC would
score the contiguous interface with 7 atom pairs while the
disjoint interface with only 3 atom pairs (each atom pair is
indicated by a line). On the other hand, GSC would score
the two interfaces equally [Fig. 6(c) and (d)] (grid points in

Fig. 5. The binding interface of the best prediction of 1AVW according to PSC is plotted in (a), compared to
the binding interface of the best prediction by GSC (b). The interface is composed of all atoms that are within 4
Å away from the other molecule.

Fig. 6. Schematic illustration to compare PSC (a, b) and GSC (c, d) scores for continuous (a, c) and disjoint
(b, d) interfaces. For simplicity, the interfaces are composed of the same number of receptor atoms (top; dark
disks) and ligand atoms (bottom; light disks). Each line in a and b indicates one atom pair. In c and d, stars
indicate solvent accessible surface of the receptor, and grid points occupied by both stars and ligand atoms are
counted to compute the GSC score.
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the solvent accessible area of the receptor are marked by
stars).

Interestingly, the formulation of PSC is similar to
Atomic Contact Energies (ACE) and the formulation of
GSC is similar to Atomic Solvation Parameter (ASP)-
based potentials. ACE and ASP have atom type specific
scores while PSC and GSC treat all atom types equally.
ACE and PSC are based on atom pairs, while ASP and
GSC compute surface areas or grid points buried upon
complex formation. Different variations of contact ener-
gies have been extensively used in protein structure
prediction.50–54 The implementation of ACE by Zhang et
al. has been shown to work particularly well for calculat-
ing desolvation, both in folding and binding.55–58 ASP-
based potentials date back to the work by Eisenberg and
McLachlan59 and have found many applications in calcu-
lating desolvation energies of protein complexes. No major
discrepancy between the performance of ACE and ASP has
been reported, and total atom pairs and buried surface
areas have been shown to correlate extremely well for
protein homodimers.60 Pioneering work by Janin and
colleagues used both solvent accessible area and atom
pairs within a distance cutoff to define three types of atoms
at protein interfaces61,62 clearly demonstrating the valid-
ity of both PSC and GSC approaches. Thus, the vast
improvement of PSC over GSC for protein docking may
seem surprising. However, it is important to keep in mind
that most docked structures are false positives, many of
which contain cavities at the binding interface, such as the
structure shown in Figure 5(b). The simple formulation of
PSC rewards contiguous interfaces, where one atom can
make contacts with multiple atoms of the other molecule.
As a result, PSC is particularly effective in eliminating
cavity-containing false positives.

PSC is particularly good at finding concave-matching-
convex interfaces, since they tend to result in more atom
pairs than flat interfaces. The schematic illustration in
Figure 1(b) shows that grid points at the bottom of the
receptor binding pocket have the highest score (5). The
active site of an enzyme is typically a deep pocket. This has
contributed to PSC’s outstanding performance for enzyme/
inhibitor complexes. Out of the total 23 such complexes in
the benchmark, PSC ranked a hit as the best structure for
five complexes and in the top 10 for ten complexes.
However, sometimes this property can be a drawback,
especially when multiple binding sites exist and the one
not being utilized is a large pocket. The glycerol-kinase/
GSF-III complex (PDB code 1GLA) is an example. Not a
single hit was retained by PSC in the top 1,000, even when
bound structures were used. Visual inspection indicates
that numerous false positives involve the deep funnel-like
active site of glycerol kinase, which is unfortunately not
the binding site for GSF-III. If biological information is
available to indicate that the active site is not the binding
site, we can easily block the center of the active site prior to
the docking calculation, which frequently enables the
identification of the true binding site.

For eight test cases, PSC failed to find any hits in the top
1,000. This does not pose a severe concern since shape

complementarity is only one of the components of the
scoring function. The improvement of PSC over GSC
should set a solid foundation for additional terms such as
desolvation and electrostatics. Somewhat unexpected, how-
ever, is that PSC did not find any hits in the top 1,000
orientations starting from the bound structures of three
complexes: the glycerol-kinase/GSF-III complex men-
tioned above plus two electron transfer complexes 2PCC
and 1MDA. Careful examination of the latter two com-
plexes indicates that they have unusually poor shape
complementarity (Fig. 7), with binding site similar to
Figure 5b. It is apparent that there are large cavities at the
binding site of both complexes (perhaps important for the
electron transfer function), while other test cases are much
better packed, with binding sites similar to Figure 5(a).

One might suspect the docking performance to be corre-
lated with the extent of conformational change upon
binding (indicated by the RMSD between co-crystal and
unbound structures). We did not discover any correlation
between the initial RMSD and the ranks of first hits or the
hit counts in the top 1,000 predictions, for PSC or GSC.
Similarly, we investigated whether the performance of
PSC differs between unbound/unbound and unbound/
bound test cases. There are 23 unbound/bound test cases
in our benchmark. Intuitively, they may be easier to dock
than unbound/unbound test cases since one of the starting
structures is identical to the bound conformation. We
performed the Mann-Whitney U-test on the hit counts in
the top 1,000 predictions calculated using PSC. Briefly, all
test cases were ranked in the ascending order according to
the hit count. The average rank of hit count for unbound/
bound test cases was 26.15, only slightly better than that
for unbound/unbound test cases (23.98). The two-tailed
probability of obtaining this or more extreme differences
by chance, calculated using the Mann-Whitney U-test, is
0.60. We have also performed the same test using the
ranks of first hits, and obtained a probability of 0.75. Thus,
the performance of PSC does not differ statistically be-
tween the two classes of test cases.

In our previous study, we showed that GSC can be
combined with desolvation and Coulombic electrostatics to
achieve substantially improved results.33 Similarly, desol-
vation and electrostatics can greatly improve upon PSC.
The PSC-desolvation-electrostatitics-combined scoring
function achieves higher success rate and hit count on the
benchmark than the GSC-desolvation-electrostatics-com-
bined scoring function, and a major improvement is ob-
served for antibody/antigen test cases (Chen et al., forth-
coming). Although the addition of other energy terms can
further improve upon PSC, we believe that what we have
learned from PSC has its own significance for two reasons.
First, shape complementarity is the basic component of all
scoring functions in protein docking. Some algorithms
even use shape complementarity as the only component in
their scoring functions.21,22,29 The method by Ten Eyck
and colleagues uses GSC and continuum electrostatics,
which is more elaborate than the Coulombic electrostatics
in ZDOCK. We believe that these algorithms can benefit
from PSC. Second, the improvement of desolvation and
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electrostatics over PSC is largely in the range of small NP.
An initial-stage docking algorithm such as ZDOCK must
ultimately be combined with a refinement algorithm. If the
refinement algorithm can handle a few thousand predic-
tions, PSC is a competitive initial-stage scoring function.
In fact, one of the best ZDOCK-refinement combinations
we have developed uses PSC as the only component of the
scoring function in ZDOCK.

In summary, we have developed a novel shape comple-
mentarity scoring function PSC. Careful analysis of PSC
and comparison with the widely used alternative GSC
indicate a drastic improvement of PSC over GSC. Since
shape complementarity is the most basic ingredient of
scoring functions for protein docking, our findings have
important implications on the future development of dock-
ing algorithms.
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