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ABSTRACT Shots are the basic units for analyzing and retrieving video, and also the essential elements

in creating video datasets. The traditional methods of shot detection exhibit unsatisfactory performance

for being too sensitive to motion or too much time-consuming. This paper proposes an automatic shot

detection method, by employing the fast feature descriptor of Oriented FAST and Rotated BRIEF (ORB)

fused with Structural Similarity (SSIM). Firstly, ORB descriptor is used to preselect candidate segments

with a high tolerance for rapidly extracting the features of twenty-frame intervals in video sequences. Then,

the cut transition is detected by comparing ORB features, fused with SSIM, of consecutive frames in the

candidate segment. Finally, the gradual transition is detected by determining the maximum amount of the

continuous increasing/decreasing interframe differences in the candidate segment without cut transition.

Experimental result indicates that the proposed method can achieve an F1-Score of 92.5% and five times of

real-time speed with one CPU on 106049 test frames from the Open-video project, YouTube, and YOUKU.

In addition, the proposed method can outperform the existing shot detection methods, including the rule-

based and learning-based methods, by testing on the video sequences from the Open-video project and RAI

dataset.

INDEX TERMS Shot detection, SSIM, ORB descriptor, cut transition, gradual transition.

I. INTRODUCTION

Techniques for intelligent service based on big data have been

rapidly developed, and the video information plays an impor-

tant role in those systems, such as autopilot system [1], [2]

and smart city [3]–[5]. This leads to video information over-

load. Therefore, effectively organizing, extracting and query-

ing visual information need to be solved urgently [6]–[9].

Content-based video retrieval has attracted a lot of attention

recently [10], [11], especially moving from theory to practice

due to the advances of large structured multimedia datasets.

Shots are the basic units of video, which can serve as the

basis for the succeeding video content analysis and retrieval.

Before being interpreted, stored and retrieved based on con-

tent, video data should be segmented effectively. Therefore,

shot detection is an important part for video information anal-

ysis [12]. There are two types of transitions between shots:

CT (Cut Transition) and GT (Gradual Transition). CT is an

abrupt transition from one shot to another. GT may have

many forms, such as dissolve, fade-in/out, and wipe. During

the past decades, many shot detection algorithms have been
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presented [13]–[15] to detect CT as well as GT. The tradi-

tional rule-based shot detection methods are divided into two

typical categories: shot detection methods based on color and

shot detection methods based on texture.

Color is the first visual character being used in shot detec-

tion [16], [17]. Many color-based shot detection methods

have been developed. Generally, the simplest way is to use

the absolute value of the histogram to measure the distance

between two consecutive frames to realize shot detection.

Some other color-based methods which calculate the dis-

tance, such as accumulated histogram, center distance in

color space HSI or MTM, or the weighted distance of his-

togram, intersecting method etc., have also been proposed.

In [17], the normalized HSV color histogram is utilized to

detect the differences between frames and the SVD is per-

formed to speed up shot detection. Nevertheless, the color-

based shot detection methods can easily result in error shot

detection: entirely different frames with similar histograms

are mistaken for belonging to the same shot, because of losing

the local information.

As for the texture-based approach, the texture features

of frames are extracted by a co-occurrence matrix based

on space information, and obtained by computing a joint
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frequency a distribution of two gray-scale pixels with a

distance (△x, △y). A variety of gray co-occurrence matrix

statistics can be used to measure the texture features, includ-

ing angular second moment, entropy, correlation, etc. Those

features will be normalized to calculate the distance between

two frames [18]. A hybrid shot detection method is presented

by using texture, color, edge, and motion as feature vectors to

achieve excellent accuracy [19]. However, the computational

burden is very high. Other traditional shot detection methods

include methods based on shape [20] and spatial relations.

Actually, several different features are usually fused to cal-

culate the difference between frames. Nevertheless, each of

these methods demonstrates unsatisfactory performance for

being sensitive to motion, having high computational cost or

lacking local information.

In recent years, some learning-basedmethods are proposed

to detect transitions via convolutional neural network (CNN).

[21] presents a shot detection technique based on spatio-

temporal CNN architecture, which analyzes both spatial and

temporal information of video sequences through CNN, with

a large training dataset containing more than 3.5 million

frames. Similarly, [22] generates a transition dataset with

1 million frames and proposes a shot detection CNN model,

which runs the input frames through 3D convolutions and is

fully convolutional in time. However, there are two significant

limitations in learning-based methods: running on expen-

sive GPU and constructing the large-scale training dataset.

In other words, the efficiency and accuracy of learning-based

shot detection methods are largely determined by the per-

formance of graphics hardware and the size of the training

dataset.

To reduce computational burden and overcome the hard-

ware constraints as mentioned above, this study presents a

new shot detection method by integrating Oriented FAST

and Rotated BRIEF (ORB) [23] descriptor and Structural

Similarity (SSIM) [24]. ORB descriptor is used to extract

the candidate segments rapidly and coarsely with a much

less computational burden. Cut transition and gradual tran-

sition are successively detected in each candidate segment by

matching ORB and SSIM features of corresponding consec-

utive frames. Experiments on video sequences from Open-

video project [15], [25], RAI dataset [26], YouTube and

YOUKU show that the proposed method outperforms the

existing shot detectionmethods. Themain contribution of this

study can be summarized as follows:
• Achieving high accuracy as well as efficiency by match-

ing ORB features fused with SSIM in twenty-frame

intervals.

• Designing a GT model based on the regularity of grad-

ual transition between two shots.

• Presenting the look-back mechanism to improve the pre-

cision rate for both CT and GT detection.

II. FUSED SHOT DETECTION METHOD

The proposed shot detection method consists of three mod-

ules: the candidate segment preselection module, the cut

transition detection module, and the gradual transition detec-

tion module. The candidate segment preselection module

is responsible for quickly selecting candidate segments

that may transition, the latter two modules are respon-

sible for detecting cut transition and gradual transition,

respectively. If the cut transition detection module fails

to obtain cut transition, the gradual transition detection is

involved to detect gradual transition. Otherwise, the pro-

gram goes back to the candidate segment preselection mod-

ule directly. As depicted in the upper part of Fig. 1, ORB

descriptor is utilized to preselect the candidate segments

in video sequences by employing the candidate segment

preselection module, which can extract the features from

twenty-frame intervals very fast. Then, in the following cut

transition detection module, CT is detected by comparing

ORB features fused with SSIM of consecutive frames in

the candidate segment. If there is no CT, the last module

in Fig. 1 will be employed to detect GT in the candidate

segment.

A. CANDIDATE SEGMENT PRESELECTION MODULE

It is reasonable to suppose that there is at most one transition

in twenty-frame intervals of the video sequence. Accord-

ingly, the proposed method takes 20 frames as a segment

to preselect candidate segments, which may include one CT

or one GT. In the candidate segment preselection module,

ORB descriptor is used to extract the feature of the last

frame of 20 frames in each segment. ORB [23] is a fast

and robust visual feature detector, which is based on FAST

keypoint detector [27] and BRIEF feature descriptor [28].

ORB descriptor is widely used in image matching [29] and

SLAM systems [30], [31].

The proposed candidate segment preselection module is

performed with the following four steps: (1) extracting fea-

ture, (2) finding two nearest match points for each keypoint,

(3) counting good match points, and (4) selecting candidate

segments.

(1) Extracting feature: the feature of the last frame of each

segment is extracted via ORB descriptor. A large number of

key points and their feature descriptions are obtained by the

fast detector.

(2) Finding two nearest match points: k-nearest neighbors

algorithm is used to find two nearest match points (kp′
1and

kp′
2) from the last frame of the previous segment for each

keypoint (kp) in the current frame.

(3) Counting goodmatch points: the number of goodmatch

points is counted by calculating the ratio of the two nearest

match points. The number of good match points is counted

based on each keypoint. For each keypoint, it is counted as

follows:

NFF ′ =







NFF ′ + 1
dis1

dis2
< 0.75

NFF ′ otherwise
(1)

where F and F ′ are respectively the last frames of the current

segment and the previous segment. NFF ′ is the number of
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FIGURE 1. Execution flowchart of the fused shot detection method. (a) Candidate segment preselection module, (b) Cut
transition detection module, and (c) Gradual transition detection module.

good match points from two frames in 20-frame intervals,

dis1 is the distance between kp and the best nearest match

point kp′
1, and dis2 is the distance between kp and the second-

best nearest match point kp′
2.

(4) Selecting candidate segments: if NFF ′ is less than the

threshold TC , the current segment is selected as one of the

candidate segments. A large number of segments without

transition might be discarded in this step.
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The candidate segment preselection threshold TC is rel-

ative to the number of keypoints extracted via ORB and

the resolution of video sequence. When the number of key-

points and the resolution of video sequences are equal to

300 and 320 × 240, respectively, the value of TC should

be small enough to consider the frames with few corners

and is set to 10 empirically. After preselection, the candidate

segments with a potential cut transition or gradual transi-

tion are selected from the video sequence. Meanwhile, ORB

descriptor will produce a certain amount of wrong detected

segments with fast motion, which is mistaken as a transition.

In the followingmodules, cut transition and gradual transition

are successively detected in each candidate segment. The

following pseudo code (Algorithm 1) gives the brief imple-

mentation of the candidate segment preselection module.

Algorithm 1 Candidate Segment Preselection

1: frame0 = Startframe;

2: ORB_descriptor(frame0);

3: for frame = Startframe + 20; frame < Endframe;

frame+ = 20 do

4: ORB_descriptor(frame);

5: NFF ′ = Match(frame0, frame);

6: if NFF ′ < TC then

7: CT_detection(frame);

8: end if

9: frame0 = frame;

10: end for

B. CUT TRANSITION DETECTION MODULE

By comparing the eigenvalues of two consecutive frames in

each candidate segment extracted by ORB descriptor, the first

frame of each potential cut transition which is considered to

be the beginning of a shot is obtained, while the quantity

of good match points in its previous frame is less than the

threshold TO. Similar to TC , TO is relative to the number of

keypoints extracted via ORB and the resolution of the video

sequence, which is set to 45 when the number of keypoints

and the resolution are equal to 300 and 320×240. How-

ever, a certain amount of wrong detected cut transitions may

appear simultaneously. Because the visual feature detected by

ORB is based on keypoints, the continuous dark frames are

regarded as new cut transitions as shown in Fig. 2a. Another

case is that there are big foreground objects in the video

sequence.When the objects aremoving in consecutive frames

as shown in Fig. 2b, the proposed cut transition detection

algorithm has failed because the pair of keypoints could

not match well. Therefore, the detected cut transitions are

refined by applying SSIM to remove the wrong detected cut

transitions.

To overcome the difficulty mentioned above, SSIM is

introduced to address the first frames of the potential cut

transitions detected by calculating the difference of ORB

features between the consecutive frames. SSIM [24] is a

novel image quality assessment approach for evaluating the

FIGURE 2. Wrong detected cut transitions by ORB descriptor.(a)Cut
transitions detected in the continuous dark frames,(b)Cut transitions
detected in the consecutive frames with big foreground object.

difference between the reference and distorted images. In this

study, SSIM is employed to measure the structural similarity

between the first frame of each detected CT and its previous

frame.

SSIM consists of three items: luminance comparison,

contrast comparison, and structure comparison. The lumi-

nance comparison between the two consecutive frames is

defined by:

l
(

f , f ′′
)

=
2µf µf ′′ + C1

µ2
f + µ2

f ′′ + C1

(2)

where f is one of the local windows (blocks) of the first frame

in the potential CT detected by ORB and f ′′ is the corre-

spondingwindow in the previous frame of the first frame. The

constantC1 is used to avoid zero denominators. The same rule

holds in contrast comparison and structure comparison [23].

µf and µf ′′ are the mean intensities of the first frame and the

previous frame, respectively. µf is defined as below:

µf =
1

N

N
∑

i−1

fi (3)

fi is the i
th pixel of the local window.N is the number of pixels

in the local window. In [23], it is verified that the local SSIM

index is superior to global SSIM index.

Next, the contrast comparison between the two corre-

sponding windows in the consecutive frames is defined by:

c
(

f , f ′′
)

=
2σf σf ′′ + C2

σ 2
f + σ 2

f ′′ + C2

(4)

where σf is the standard deviation and employed as an esti-

mate of the contrast:

σf =

(

1

N − 1

N
∑

i=1

(

fi − µf

)2

)

1
2

(5)

Further, the structure comparison between the two corre-

sponding windows in the consecutive frames is defined as:

s
(

f , f ′′
)

=
σff ′′ + C3

σf σf ′′ + C3
(6)
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where σff ′′ is the covariance of f ′ and f ′′, which is utilized to

measure the structure similarity, and defined as below:

σff ′′ =
1

N − 1

N
∑

i=1

(

fi − µf

) (

fi
′′

− µf ′′

)

(7)

To integrate the three items, eqs. (2), (4) and (6) are com-

bined, with C3 = C2/2. Further, the structure comparison

between the two corresponding windows in the consecutive

frames is defined as:

SSIM
(

f , f ′′
)

= l
(

f , f ′′
)

· c
(

f , f ′′
)

· s
(

f , f ′′
)

(8)

SSIM
(

f , f ′′
)

=

(

2µf µf ′′ + C1

) (

2σff ′′ + C2

)

(

µ2
f + µ2

f ′′ + C1

) (

σ 2
f + σ 2

f ′′ + C2

) (9)

Finally, the mean of SSIM is used to evaluate the overall

frame similarity as below.

MSSIMFF ′′ =
1

M

M
∑

j=1

SSIM
(

fj, fj
′′
)

(10)

where F and F ′′ are respectively the first frame in the poten-

tial cut transition and its previous frame, andM is the number

of local windows in the current frame.

As mentioned above, CT is firstly detected by comparing

ORB features between two consecutive frames in the can-

didate segments. If the number of good match keypoints in

the consecutive frames is less than the threshold TO, structure

similarity between the consecutive frames will be calculated

to refine the result of CT detection. Here, the threshold of

structure similarity, TS , is set to 0.7 to achieve high recall rate

with a higher tolerance. In order to improve precision rate,

the confidence coefficient of the current frame F (CCF ) is

developed by calculating the differences between the actual

values and the thresholds, and being normalized to range from

0 to 1. The confidence coefficient is defined by:

CCF =
TO − NFF ′′

TO
+
TS −MSSIMFF ′′

TS
(11)

where NFF ′′ is the number of good match keypoints between

the current frame and its previous frame. CCF ranges from

0 to 2, which represents the confidence to be the first frame

of CT for the current frame. Looking back in corresponding

previous frames is considered based on CCF . The purpose

here is to avoid wrong detection when the difference between

the current frame and its consecutive frame is caused by the

previous transition. The look-back mechanism is defined as:

Nlb =



















NULL CCF ≤ 1

2 × FR 1 < CCF ≤ 1.5

1 × FR 1.5 < CCF ≤ 1.7

0 otherwise

(12)

Nlb is the number of look-back frames for finding the exis-

tence of the previous transition. FR is the frame rate of

the video sequence. A detailed description of the look-back

mechanism is given below:

(1) If CCF of the current frame is less than 1, it is deter-

mined that the current frame is not the first frame of CT, and

Nlb need not be assigned.

(2) Otherwise, if CCF is greater than 1.7, the current frame

is identified as the first frame of a new shot directly. The rest

of the fames in the segment are no longer considered.

(3) In other cases, the current frame is identified as the first

frame of a new shot only when there is no transition in the

previous Nlb frames.

As indicated in Fig. 1, the current frame is not identified as

the first frame of CT in the following three cases: (1) NFF ′′ is

greater than TO, (2) SSIM is greater than TS , and (3) there is a

transition in corresponding previous frames. After traversing

all frames in the segment, if there is no CT, GT will be

detected from the candidate segment in the following gradual

transition detection odule. The following Algorithm 2 shows

a pseudo code of the CT detection algorithm.

Algorithm 2 CT Detection

1: for i = 1; i < 20; i+ + do

2: frame1 = frame+ i;

3: ORB_descriptor(frame1);

4: NFF ′′ = Match(frame1 − 1, frame1);

5: if NFF ′′ < TO then

6: MFF ′′ = MSSIM (frame1 − 1, frame1);

7: if MFF ′′ < TS then

8: if Look_back = False then

9: CT Exist;

10: Break;

11: end if

12: end if

13: end if

14: end for

15: if i = 20 then

16: Gt_detection(frame);

17: end if

C. GRADUAL TRANSITION DETECTION MODULE

Each candidate segment without CT may have potential GT.

When the gradual transition occurs, the previous shot gradu-

ally changes to the next shot. The frames in GT have the fea-

tures of both previous and next shots. In theory, the similarity

with the previous shot is decremented frame by frame. At the

same time, the similarity with the next shot is incremented

frame by frame. In the proposed gradual transition detection

module, the previous and following 10th frames are employed

to replace the previous and next shots.

Fig. 3 shows the gradual transition model, which illus-

trates the change rule of the structural similarities with the

previous and following 10th frames for each frame in GT.

WhenGT occurs, structural similarities between the frames in

the candidate segment and their previous 10th frames have a

continuous decreasing tendency. Meanwhile, structural simi-

larities between the frames in the candidate segment and their

following 10th frames have a continuous increasing tendency
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FIGURE 3. Gradual transition model.(a)Changing tendency of SSIM,(b)Frames in candidate segment.

as demonstrated in Fig. 3a. The first row in Fig. 3b exhibits

Frames 1341 to 1350, and the second one shows Frames

1351 to 1360, which belong to the candidate segment with

a gradual transition.

The proposed gradual transition detection module is per-

formed with the following four steps: (1) expanding search

range, (2) calculating SSIM, (3) obtaining maximum amount,

and (4) looking back.

(1) Expanding search range: A gradual transition may

happen across multiple segments. Therefore, before detect-

ing a gradual transition, the search range is expanded by

adding previous and following 10 frames of current candidate

segment.

(2) Calculating SSIM: The similarity between each frame

in the range and its previous/following 10th frame, SPi/SFi,

is calculated.

(3) Obtaining maximum amount: The maximum amounts

of frames with the continuously decreasing SPi and increas-

ing SFi are obtained simultaneously, after traversing all

frames in the range.

(4) Looking back: Look-back mechanism is also con-

sidered based on the maximum amounts. If the maximum

amounts are large enough, the existence of GT is deter-

mined directly. Otherwise, looking back to the corresponding

previous frames is performed to ascertain a previous GT

when both of the maximum amounts are greater than

the amount threshold Ta. The GT detection algorithm

(Algorithm 3) is simply described by the pseudo code as

shown below.

Algorithm 3 GT Detection

1: for i = 1; i < 20; i+ + do

2: frame2 = frame+ i;

3: M_Previous_Shot = MSSIM (frame2− 10, frame2);

4: M_Next_Shot = MSSIM (frame2, frame2 + 10);

5: C_d = Count(continuously decreasing

M_Previous_Shot);

6: C_i = Count(continuously increasing

M_Next_Shot);

7: end for

8: if Max(C_ d) > Ta and Max(C_ i) > Ta then

9: if Look_back = False then

10: GT Exist;

11: end if

12: end if

In order to improve the recall rate, ORB features of ten-

frame intervals are extracted to detect GT in the search range

when no GT is identified by comparing SSIM of ten-frame

intervals. GT detection by use of ORB follows the same steps

mentioned above.

III. RESULTS AND DISCUSSION

A. IMPLEMENTATION DETAILS

The performance of our method is compared with two rule-

based shot detection algorithms [17], [19] and two learning-

based shot detection algorithms [21], [22], in terms of

Precision (P), Recall (R) and F-Measure (F1) [32]. In the
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TABLE 1. Characteristics of nine video sequences used in the experiment.

experiments, our method is evaluated on the video sequences

from the Open-video project [15], [25], RAI dataset [26],

YouTube and YOUKU, implementing in Python 3.7 with a

3.0 GHz CPU and 8 GB RAM.

The Precision, Recall, and F-Measure of each approach are

calculated, respectively, by employing eq. (13).

P =
TP

TP+ FP

R =
TP

TP+ FN

F1 =
2 × P× R

P+ R
(13)

In this study, TP (True Positive) is the number of cor-

rectly detected shots. FP (False Positive) is the number of

shots being mistaken for an independent shot which actually

belongs to the previous shot. FN (False Negative) represents

the number of shots that are missed detected. F1 is a combi-

nation of precision and recall.

B. COMPARISON WITH RULE-BASED METHODS

The test video sequences consist of six videos D1-D6 from

the Open-video project [15], [25], show [33], cartoon [34],

and news video (the beginning of [35]). Table 1 illustrates

characteristics of the nine video sequences. The videos from

the Open-video project have been used to validate the perfor-

mance of methods in [17] and [19]. The other three videos are

introduced to measure the accuracy of the proposed method

on the videos with different resolution and frame rate.

Table 2 shows the comparative result of the proposed

method with other two rule-based shot detection methods

[17], [19] by testing on four video sequences, which have

been reported in these two studies. As shown in Table 2,

the proposed method outperforms the other two methods in

four of six items, including the average values of P, R, F1

for cut transition and gradual transition. Especially for CT

detection, the proposed method achieves an average F1-score

of 95.0 percent. However, the precision values of both CT and

GT detected by the proposed method on D2 video sequence

are lower than those using other sequences. Due to the high

sensitivity of SSIM to local change, the proposed method

yields a certain number of wrong detections. Fig. 4 shows

a wrong detected GT in consecutive frames which have an

obvious local change in luminance, contrast, and structure

caused by the flame flickering in the twenty-frame inter-

vals. Furthermore, there are only a few corner features in

these frames, leading to the failure of identification by ORB

descriptor.

The work of [19] also gives the detection results on other

two video sequences provided by the Open-video project.

Table 3 illustrates the comparative result of detection results

on overall transitions employing six test sequences between

the proposed method and the method proposed in [19]. Com-

pared with the method in [19], the average of all precision

values for the proposed method is less than 0.9 percent.

However, the recall average of the proposed method is greater

than that of the method in [19] by 4.5 percent, and its

F1 average is 1.6 percent greater. Although the performance

of the proposed method is not significantly better than that

of the method in [19], the computational cost of the pro-

posed method is much lower, which will be discussed later.

Table 4 presents processing time, P, R, F1 of the fused

shot detection method testing on all video sequences listed

in Table 1. Seven of nine precise values are greater than

90 percent, and the average is 92.2 percent. Eight of nine

recall values are greater than 91 percent, and the average

is 93.2 percent. The average value of F1 is 92.5 percent.

Although the method in [17] can achieve an obvious high

processing speed, approximately fifty times of real-time, its

accuracy of shot detection is much lower than the proposed

method. Themethod in [19] claimed that the processing speed

of shot detection is nearly two times of real-time with 3.6GHz

CPU. The third column in Table 4 shows faster processing

speed of the proposed method, which is higher than five

times of real-time. In summary, the proposed method outper-

forms the shot detection method of [19] in terms of speed

and accuracy.

C. COMPARISON WITH LEARNING-BASED METHODS

In this section, the proposed method is compared with the

learning-based shot detectionmethods in [21] and [22], which

detect the transitions via CNN. Table 5 shows the comparative

result of overall transition between the proposed method and

the method in [21], by testing on the video sequences also

from the Open-video project, which has been employed to

evaluate the accuracy of shot detection in [21]. The average of

all F1 values in the proposed method is 5 percent greater than

[21]. Remarkably, the F1 score of video 6011 in [21] is only

30.5 percent, which may be caused by the absence of similar

videos in the training dataset. In contrast, the F1 scores

obtained by the proposed method are approximately equal

to or greater than 85 percent except Video 50009, which has

violent tremors frequently.

Table 6 indicates the comparative result of overall transi-

tion detection between the proposed method and the method

in [22] on RAI dataset, which has been reported in [22].

We adopt the same expression as in [22]. The values of
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TABLE 2. Comparative result of CT and GT detections with different methods using four test sequences.

FIGURE 4. Wrong detected gradual transition with obvious local change.

TABLE 3. Comparative result of overall transition detection using
six test sequences.

TABLE 4. Performance of the fused shot detection method testing on
nine test sequences.

P, R, and F1 have no decimals. All of the P, R and F1 scores

in our method are greater than 80 percent. However, there are

some extremely low values below 70 percent in the results of

[22]. It provides further evidence that the learning-based shot

detection methods are not robust to unseen videos. Although

the shot detection method in [22] runs at 121 × real-time,

a high performance GPU is required.

D. DISCUSSION

In order to compare the efficiency and practicality of the

proposed method with other existing shot detection meth-

ods, Table 7 describes the pros and cons of the compared

methods. The proposed method has the advantages of other

TABLE 5. Comparative result of overall transition detection between the
method in [21] and the proposed method.

TABLE 6. Comparative result of overall transition detection between the
method in [22] and the proposed method.

shot detection methods while avoiding their disadvantages.

Although it is not the fastest detection method, it still

achieves 5 × real-time running on CPU, and has the highest

accuracy among the compared methods without the limita-

tions of hardware. As shown in Table 7, a few false positives
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TABLE 7. Comparative Analysis among the existing shot detection methods.

are caused by blur and flicker that reduce the precision of the

proposed method. As shown in Fig.4 above, a wrong detec-

tion may be caused by an obvious local change in luminance.

This can be considered as a topic for future research.

IV. CONCLUSION

This study proposes a device-independent shot detection

method with low computational burden by taking the advan-

tages of ORB descriptor and SSIM to achieve fast and accu-

rate shot detection. The proposed method consists of three

parts: the candidate segment preselection module, the cut

transition detection module, and the gradual transition detec-

tion module. In the candidate segment preselection module,

a lot of candidate segments with potential transitions are

quickly obtained by comparing ORB features of twenty-

frame intervals. Then, CT is detected in each candidate seg-

ment by comparingORB and SSIM features of corresponding

consecutive frames. Finally, GTs are detected in the candidate

segments without CT based on the gradual transition model.

The look-back mechanism is used in both CT detection and

GT detection to improve the precision. The experimental

result indicates that the proposed method can automatically

detect the shots from test video sequences with a significant

reduction in computational cost and achieve the prior perfor-

mance among the compared methods by using ORM fused

with SSIM.

In order to improve the performance of shot detection in

unstable scenes of video frames, i.e. blurred frames and flick-

ering light, the proposed method should be combined with

other feature extraction algorithm, such as color information,

shape features, and spatial location features etc. These issues

are the subjects of our future work.
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