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The identification and analysis of repetitive patterns are active areas of biological and computational research. Tandem repeats in
telomeres play a role in cancer and hypervariable trinucleotide tandem repeats are linked to over a dozen major neurodegenerative
genetic disorders. In this paper, we present an algorithm to identify the exact and inexact repeat patterns in DNA sequences based
on orthogonal exactly periodic subspace decomposition technique. Using the new measure our algorithm resolves the problems
like whether the repeat pattern is of period P or its multiple (i.e., 2P, 3P, etc.), and several other problems that were present
in previous signal-processing-based algorithms. We present an efficient algorithm of O(NLw logLw), where N is the length of
DNA sequence and Lw is the window length, for identifying repeats. The algorithm operates in two stages. In the first stage, each
nucleotide is analyzed separately for periodicity, and in the second stage, the periodic information of each nucleotide is combined
together to identify the tandem repeats. Datasets having exact and inexact repeats were taken up for the experimental purpose.
The experimental result shows the effectiveness of the approach.

Copyright © 2007 Ravi Gupta et al. This is an open access article distributed under the Creative Commons Attribution License,
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1. INTRODUCTION

A direct or tandem repeat is the same pattern recurring on
the same strand in the same nucleotide order, for exam-
ple, TGAC recurs as TGAC. Tandem repeats play significant
structural and functional roles in DNA. They occur in abun-
dance in structural areas such as telomeres, centromeres, and
histone binding regions [1]. They also play a regulatory role
near genes and perhaps even within genes. Both degenera-
tive diseases and cancer correlate to regions containing tan-
dem repeats. Over a dozen of human degenerative diseases
[2, 3], such as Huntington’s disease, fragile X syndrome, my-
tonic dystrophy, and others, are associated with hypervari-
ability of tandem repeats. Short tandem repeats are used as
convenient tool for genetic profiling of individuals [4]. Thus,
identification and analysis of repetitive DNA is an active area
of biological and computational research.

The main objectives of repetitive pattern identification
algorithms are to identify its periodicity, its pattern structure,
its location and its copy number. The algorithmic challenges
for repeat pattern identification problem are lack of prior
knowledge regarding the composition of the repeat pattern
and presence of inexact and hidden repeats. Inexact repeats
are formed due to mutations of exact repeats and are thought

to be representation of historical events associated with se-
quence. Thus, it is important for any repetitive pattern iden-
tification algorithm to identify inexact in addition to exact
repeat structures in a DNA sequence.

In this paper, we have presented a novel SP-based ap-
proach for identifying exact and inexact tandem repeats in
DNA sequences. In past, several algorithms and measures
based on heuristic, combinatorial, dynamic programming,
and SP approaches [5–13] have been proposed for finding
tandem repeat structure in DNA sequences. SP-based algo-
rithms for identifying tandem repeats have their own advan-
tages because of its sensitivity towards detection of inexact
repeats and application of faster signal processing tool like
DFT. These algorithms also provide an easy solution to bi-
ologist or noncomputer experts because unlike non-SP algo-
rithms which require a number of error tolerances parame-
ters like match, edit distance, Hamming distance, and several
other parameters which are very difficult to understand for
any normal user, the SP-based algorithms require mainly one
parameter which acts as a threshold for identifying repeats.

Previous SP solutions to repeat pattern identifica-
tion problem include the application of discrete Fourier
transform (DFT) [11, 12] and the application of short-time
periodicity transform (STPT) [13]. In [11], DFT is used as
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a preprocessing tool for identifying the significant periodic
regions through a sliding window analysis, and then an ex-
act search method is used for finding the repetitive units.
In [12], instead of a product spectrum a sum spectrum was
proposed as a measure for identifying repeats. The product
spectrum is especially sensitive to the presence of inexact re-
peats. An STPT-based approach for finding tandem repeats
in DNA sequence is presented in [13]. Both DFT- and STPT-
based techniques suffer from one major disadvantage while
detecting inexact repeats. They cannot tell whether a repeat
is of period P or its multiple, that is, 2P, 3P, and so on. In
addition to this, the STPT-based algorithm has several other
drawbacks which are discussed in the later section of this pa-
per.

The contribution of this paper is in providing a novel SP
application in the area of DNA sequence analysis. An exactly
periodic subspace decomposition (EPSD) [14] based mea-
sure for identifying repeats is presented in this paper. EPSD
technique, unlike the Fourier transform, is obtained by tak-
ing projection onto exactly periodic orthogonal multidimen-
sional subspaces. By having subspaces of dimensions larger
than one, the exactly periodic subspace (EPS) can better cap-
ture, in one coefficient, the periodic energy than the Fourier
transform. Hence, the new measure of the algorithm is more
sensitive than previous techniques for identifying repeats.

In addition to identification of exact repeats, the pro-
posed measure is useful in identifying inexact and other hid-
den repeat patterns unannotated by GenBank database. The
EPSD-based approach also helps in identifying whether a
particular pattern is due to period P or its multiple. Thus the
ambiguity that is present in [11–13] is taken care by our al-
gorithm. The algorithm proposed in this paper first analyzes
four nucleotide sequences separately and later on the results
obtained are processed together to locate the tandem repeats.
The algorithm presented runs in O(NLw logLw), where N is
the length of the DNA sequence and LW is the length of the
window. Experiments were performed on various types of
data sets. The data sets include the genes of degenerative dis-
ease having long exact tandem repeat; inexact, complex, and
hidden repeats. Comparison with other techniques shows the
effectiveness of our approach.

The paper is organized as follows. Section 2 initially pro-
vides a mathematical formulation of repeat pattern iden-
tification problem and later on briefly describes the EPSD
technique. Section 3 presents a repeat pattern detection al-
gorithm for identifying various repeat patterns present in
the DNA sequence. In Section 4, the algorithm is applied on
some actual DNA sequence and experimental result is pre-
sented. Conclusion and future work follow in Section 5.

2. MATHEMATICAL FORMULATION OF TANDEM
REPEAT PATTERN IDENTIFICATION

The standard representation of genomic information by se-
quences of nucleotide symbols in DNA, RNA, or amino
acids limits the processing of genomic information to pat-
tern matching and statistical analysis. Providing mathemat-
ical representation to symbolic DNA sequences opens the
possibility to apply signal processing techniques for the anal-

ysis of genomic data [15] and reveals features of genomes
that would be difficult to obtain by using standard statisti-
cal and pattern matching techniques. The arbitrary assign-
ment of a number to each symbol would impose a math-
ematical structure not present in the original data. Thus, a
nucleotide mapping should be chosen such that it preserves
the biological features and does not introduce any artifact
into the mapped signal. For our algorithm, we have selected
binary indicator sequence [16] representation for the DNA
sequence. This mapping helps in formulating the tandem re-
peat identification problem analogous to period detection in
signal processing.

2.1. Numerical representation of DNA sequences

Consider a DNA sequence S[n] = s1s2 · · · sL of length L, con-
sisting of a sequence of a series of four nucleotides symbols
{A,C,G,T}. The binary indicator sequences are obtained as
follows:

SΩ[n] =

⎧

⎨

⎩

1, if S[n] = Ω where Ω ∈ Σ
(

= {A,C,G,T}
)

,

0, otherwise.

(1)

2.2. Definitions of different repeats in DNA sequences

Definition 1. A subsequence S′[n] = sisi+1 · · · si+l−1 of S[n] is
an exact tandem repeat (ETR) of period “p” and repeat pat-
tern α = r1r2 · · · rp (where “i” is the starting position and “l”
is the length of ETR), if the following conditions are satisfied.

(1) ⌊l/p⌋ ≥ 2, where ⌊l/p⌋ is the count for pattern (α),
that is, number of times α has occurred in subsequence
S′[n]. The count of repeat pattern (α) should at least be
equal to two.

(2) Λ = {r1, r2, . . . , rp}, where Λ ⊆ Σ and |Λ| ≥ 1.
(3) S∆[n] is p-periodic for all∆ ∈ Λ, where i ≤ n ≤ i+l.

For example, if S[n] = GGCATACTACGACGACGCCG,
then S′[n] = ACGACGACG, i = 9, p = 3, l = 9, ⌊l/p⌋ = 3,
α = ACG, Λ ≡ {A,C,G}, and SA[n], SC[n], SG[n] are 3-
periodic sequence.

Definition 2. A subsequence S′′[n] = sisi+1 · · · si+l−1 of S[n]
is an inexact tandem repeat (InTR) of period “p” and con-
sensus repeat pattern α = r1r2 · · · rp (where “i” is the start-
ing position and “l” is the length of InTR), if the following
conditions are satisfied.

(1) ⌊l/p⌋ ≥ 2.
(2) Λ = {r1, r2, . . . , rp}, where Λ ⊆ Σ and |Λ| ≥ 1.
(3) S∆[n] is nonperiodic, for at least one ∆ ∈ Λ, where
i ≤ n ≤ i + l.

(4) For all ∆ ∈ Λ, p-period measure of S∆[n] ≥
threshold.

For example, if S[n] = GGCATACACAGACACGCCGGCG,
then S′′[n] = ATACACAGACAC, i = 4, p = 2, l = 12, α =
AC, Λ ≡ {A,C}, and SA[n] is 2-periodic sequence (not nec-
essarily exact).
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From the above formulation, we notice that the repeat
identification in DNA is analogous to period detection in sig-
nals. So, the knowledge of periodicity in the binary signals
(i.e., SΩ[n]) helps in identifying tandem repeats in the DNA
sequence. Thus, the main objective of SP algorithm for this
problem is to develop a good measure for identifying periods
in the binary signals.

In [11], Sharma et al. proposed a DFT-based algorithm
(SRF) for identifying tandem repeats in DNA sequence based
on sum spectra. The sum spectra measure is obtained by
summing up the spectra of each binary subsequence. How-
ever, in case of InTR, not all the binary subsequences are
exactly periodic, and hence the sum spectra measure is not
effective when InTR are to be identified in DNA sequences.
Also, it cannot tell whether the repeat pattern is of period P,
2P, or its multiple.

A STPT-based periodicity explorer (PE) algorithm is pro-
posed in [13] for identifying tandem repeat. The PE algo-
rithm has several shortcomings. The nucleotide mapping in
[13] was taken as follows: A = 1 + j, C = −1 + j, G = −1− j,
and T = 1 − j, where j =

√
−1. Let the two DNA se-

quences be ACATACAC and ACAGACAC. The projection
of the DNA sequences onto the periodic subspace P2 (where
P is the set of all periodic sequences) is given by {(1 + j),
(−0.5+0.5 j), (1+ j), (−0.5+0.5 j), (1+ j), (−0.5+0.5 j), (1+ j),
(−0.5 + 0.5 j)} and {(1 + j), (−1 + 0.5 j), (1 + j), (−1 + 0.5 j),
(1 + j), (−1 + 0.5 j), (1 + j), (−1 + 0.5 j)}, respectively. And
the periodogram coefficient values for the DNA sequence for
projection on P2 subspace are 0.75 and 0.895, respectively.
By comparing the two DNA sequences, we observe that even
though the two DNA sequences have equal degree of period 2
component (differ just by one symbol from becoming ETR),
the projection of DNA sequences are different and also the
periodogram coefficient obtained are different. This shows
that the periodogram coefficient cannot act a good estimator
for measuring periodicity.

The PE algorithm is designed to be executed separately
for every period because the periodicity transform provides
nonorthogonal decomposition of the signal. This means that
the run time of the PE algorithm is O(NWPmax), where N
is the length of analyzed DNA sequence, W is the window
size, and Pmax is the maximum period. Also, like STPT, it
cannot tell whether the tandem repeat present in the DNA
sequence is of period P or multiple of P (i.e., 2P, 3P, etc.).
Thus, we need an SP algorithm which can take care of the
shortcomings present in previous approaches for identifying
different types of repeat present in DNA sequences. In the
algorithm proposed later on in this paper, a novel signal pro-
cessing measure based on EPSD [14] technique is provided
for identifying ETR and InTR in DNA sequence and over-
comes the shortcomings in previous algorithms.

2.3. Exactly periodic subspace decomposition

The exactly periodic subspace decomposition (EPSD) tech-
nique was proposed by Muresan and Parks [14]. The EPSD
technique generates orthogonal subspaces that correspond to
periods ranging from 1 up to the maximum expected sub-
period of the input signal S. The energy of the expected sub-

periods is obtained by taking orthogonal projections of S
onto these different orthogonal subspaces. The key idea be-
hind the EPSD technique is the concept of exactly periodic
signals (EPS). The definition of exactly periodic signal is
given as follows.

Definition 3. A signal S is of exactly period P if S is in ΦP

(where ΦP is the subspace of the signal of period P) and the
projection of S onto subspace ΦP′ for all P′ < P (where ΦP′

is the subspace of signal of period P′) [14].

Thus, a signal of exactly period P is not exactly period
2P, 3P, and so forth, although it continues to be of period
2P, 3P, and so forth. Also, not every periodic signal is exactly
periodic, but every exactly periodic signal is periodic. Some
of the important properties of the EPSD technique are the
following.

(1) The EPSD technique completely decomposes the input
signal S ∈ R

n into exactly periodic orthogonal com-
ponents corresponding to each of the exactly periodic
signals of n and all possible factors of n.

(2) Unlike the STPT [13], the decomposition of the EPSD
technique is unique. Thus, the input signal can be
uniquely decomposed on the orthogonal subspaces.

(3) The EPSD of signal is achieved by taking projections
onto exactly periodic orthogonal multidimensional
subspaces of periods that divides n, whereas the dis-
crete Fourier transform is obtained by taking orthog-
onal projections onto one-dimensional (1D) complex
exponentials e j((2π)/N)k with frequencies (k/N), k =
0, . . . ,N − 1. The EPS is spanned by a collection of
Fourier exponentials, which is dictated by the period.
Thus, by having spaces of dimensions larger than one,
EPS can capture in one coefficient the periodic energy
better than the Fourier transform.

In [14], the EPSD technique was proposed to identify peri-
odic signal by considering the entire input signal, that is, it
provides information about the periods that are present in
complete input data sequence. However, in tandem repeat
identification problem, even though the core objective is to
identify periods in DNA sequences, there is one major dif-
ference. Instead of looking for periods that are present in
entire input DNA sequence, we have to look for local peri-
odic information because most of the tandem repeats that
are present in the DNA sequences are localized to small por-
tion of the complete genome. In addition, the tandem repeats
forms only small fraction of total genome. Thus, the main
objective of tandem repeat identification program is to pro-
vide the localized periodic information. We have adapted the
EPSD technique for our problem to provide a measure for
localized periodic information that is present in the mapped
DNA sequences.

Instead of analyzing the complete input DNA sequence
in one go, we divide the DNA sequence into a set of subse-
quences defined by a pointwise multiplication of the original
DNA sequence by a stationary window. The EPSD technique
is then applied to the resulting subsequences. Let the win-
dow be represented by Wi of length Lw and beginning at ith
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(1) Accept window size (Lw), maximum period (Pmax)
(2) for i = 1 to N + Lw − 1 do // N is the length of DNA sequence
(3) SW ,i[n] = SW ,i[n]− SW ,i[n], where SW ,i[n] = MEAN(SW ,i[n])
(4) αw,i[1, . . . ,Pmax] = EPSD(SW ,i[n],Pmax)

(5) πW ,i[1, . . . ,Pmax] = ‖αW ,i[1, . . . ,Pmax]‖2

‖SW ,i[n]‖2

(6) OUTPUT(pi,πW ,i[pi]), where πW ,i[pi] ← max(πW ,i[1], . . . ,πW ,i[Pmax])

Algorithm 1: Calculation of repeat coefficient for subsequences SA[n], SC[n], SG[n], ST[n].

element, where

Wi[n] =

⎧

⎨

⎩

1, n = i, i + 1, . . . , i + Lw − 1,

0, otherwise.
(2)

The localized portion of the sequence S, SW ,i is defined as

SW ,i[n] = S[n] ·Wi[n]. (3)

3. TANDEM REPEAT DETECTION ALGORITHM

The objectives of our proposed algorithm are to identify the
position, period, and the length of repeat patterns in DNA
sequences. For identifying repeats, the symbolic DNA se-
quences are first mapped into four digital signals and then
EPSD mathematical tool is applied. Later on, repeat coeffi-
cient measure is calculated for each window and the poten-
tial repetitive patterns are reported depending on the value
of input parameters provided by the user. The algorithm is
designed to identify tandem repeats from period 2 to maxi-
mum period (Pmax) provided by the user within an observa-
tion window of size Lw. The complete repeat detection pro-
cess is divided into three major steps. We describe next our
proposed algorithm.

Step 1 (nucleotide mapping of DNA sequence S[n] into four
nucleotide subsequences). The nucleotide mapping proce-
dure was discussed in the previous section. In this step, we
obtain four binary subsequences (SA[n], SC[n], SG[n], and
ST[n]) using (1) that act as input signals for our algorithm.

Step 2 (calculation of tandem repeat coefficient for subse-
quences). For identifying the position of the tandem repeats
in DNA sequences, we use a sliding window-based approach.
The algorithm for calculating period with maximum energy
for the input DNA sequence of length N and input parame-
ters (Pmax, Lw) is provided (see Algorithm 1), where the value
of Pmax can vary from 2 to Lw/2. The prior knowledge of
maximum repeat pattern size restrict our search to pattern
size Pmax. However, if the user does not have prior knowl-
edge, then the value of Pmax can be fixed to Lw/2. In step (3) of
the algorithm, we remove the dc component (i.e., period-1)
from the input signal. This step helps in removing the repeats
that due to single base repeat pattern, for instance, repeat like
AAAAA in DNA sequence ACGACAAAAACAACG because
the repeat pattern of period 1 is of no interest. In step (4), the
energy of the input signal is decomposed on the subspaces
from 2 to Pmax using EPSD technique. The energies of the
subspaces are stored in the array αw,i. The array πW ,i, which

is calculated in step (5), measures the fraction of power of the
periodic subspaces from 2 to Pmax. The value πW ,i acts as an
indicator for identifying the local periodicities of the input
sequence and is said as tandem repeat coefficient. And finally
in step (6), we obtain a tuple 〈p,πW ,i[p]〉 for each window
where p is the periodic subspace that have maximum frac-
tion of power in the subsequence for the window positioned
at i. Algorithm 1 unlike the PE algorithm needs just a single
scan for identifying the period (≤ Pmax) of repeat patterns in
the input DNA sequence. This step is performed on all four
binary subsequences obtained from the previous step.

Step 3 (identification and characterization repeat from bi-
nary subsequences). In this step, we first identify the repeats
that are present in all four binary subsequences utilizing the
value of threshold parameter (τ) provided by the user and tu-
ple 〈pi,πW ,i[pi]〉 calculated in the previous step using EPSD
technique. A repeat is represented by tuple 〈Ω, i, l, p〉, where
Ω ∈ {A, C, G, T}, i is the starting position of the repeat (po-
sition of the window), l is the length of the repeat, and p is the
period of repeat. A repeat satisfies the following conditions:

(i) πW ,i,πW ,i+1, . . . ,πW ,i+l−1 ≥ τ (threshold);
(ii) pi = pi+1 = · · · = pi+l−1 = p.

After the repeats in each subsequences are identified, we pro-
cess all four subsequences together and classify the repeats
into ETR and InTR based on the definitions provided in pre-
vious section.

4. EXPERIMENTAL RESULTS

To demonstrate the capabilities of the repeat pattern identifi-
cation algorithm, experiments were performed on datasets of
some actual DNA sequences available at GenBank database.
The proposed algorithm was implemented in Matlab 7.0 for
Microsoft Windows � platform. The EPSD function was im-
plemented using the code available at http://dsplab.ece.cor-
nell.edu/about/about software.htm for noncommercial use.
The datasets were selected such that the experiment covers
exact and inexact (complex, dispersed, and hidden) repeat
patterns. Some of the typical results are provided in this sec-
tion. We also provide results obtained from other tandem re-
peat identification algorithm when applied to the DNA se-
quences considered for analysis.

DATASET 1

Myotonic dystrophy disease, the most common muscular
dystrophy in humans, is caused by an expansion of the CTG

http://dsplab.ece.cornell.edu/about/about_software.htm
http://dsplab.ece.cornell.edu/about/about_software.htm
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Figure 1: (a) The tandem repeat coefficient value of subsequences
SA[n], SC[n], SG[n], ST[n] and (b) the output period obtained for
subsequences SA[n], SC[n], SG[n], ST[n] for DNA sequence (Acces-
sion: XM 027572, length = 3436 base pair (bp)) with input param-
eters (window length = 80 and maximum period = 20).

repeat located in the 3′-UTR (untranslated region) of dys-
trophia myotonica protein kinase (DMPK) gene [17]. The
3′-UTR region is present after a coding region in a DNA se-
quence. For a normal person, the repeat number of CTG is
less than 35 and for a person suffering from myotonic dystro-
phy the CTG count is above 50 [3]. This dataset consists of
DNA sequence (GenBank: XM 027572, length = 3436 base
pairs (bp)) of Homo sapiens DMPK gene sequenced under
NCBI annotation project.

The DNA sequence is tested with input parameters for
window size (Lw) = 40 and maximum period (Pmax) = 10
and threshold (τ) = 0.95. The tandem repeat coefficients
obtained for subsequences SA[n], SC[n], SG[n], ST[n] are
shown in Figures 1(a) and 1(b); we provide the output pe-
riod obtained for the subsequences. The subsequences SC[n],
SG[n], and ST[n] have repeat coefficient value greater than
0.95 from 2876 to 2967 and the corresponding output pe-
riod is 3 (shown in Figure 1(b)). An exact trinucleotide tan-

Table 1: Repeat patterns identified in HSVDJSAT DNA sequence.

Program Consensus period Repeat region

Our algorithm
2(a),(c) 825–865

9(a),(c), 10(a),(c), 19(b),(d), 49(b),(d) 1177–1545

Hauth program 9, 10, 19, 37, 38, 48 1197–1538

TRF 4.0(e)

2(c) 826–856

10(c) 1199–1539

19(d) 1190–1539

49(d) 1195–1539

(a)Maximum period size (Pmax) ≤ 10, (b)Maximum period size (Pmax) > 10.
(c)Simple tandem repeat, (d)Multiperiod tandem repeat.
(e)Alignment parameter (match, mismatch, indel) = (2, 7, 7), minimum

alignment score = 30, and maximum period size = 50.

dem repeat pattern CTG of repeat length 62 (repeat num-
ber ≈ 21), beginning at 2890, was identified in the DNA se-
quence. The protein coding sequence for human DMPK gene
is 779–2668 bp. And as the identified tandem repeat lies after
2668 bp in DMPK gene sequence, this confirms the presence
of CTG repeat in 3′-UTR of human DMPK. Apart from ex-
act tandem repeats, weak patterns of period 3 were identified
for nucleotides C (beginning at 1864, length of 21) and G
(beginning at 2114, length of 63).

Experiment was also conducted using TRF 4.0 and PE for
a maximum period size equal to 10. TRF 4.0 with default in-
put parameters provides output consisting of tandem repeat
of pattern TGC starting at 2890 and repeat length 62. The PE
program provided output pattern of period 3 (TGC), period
6 (TGCTGC), and period 9 (TGCTGCTGC).

DATASET 2

The analysis of Homo sapiens, GeneBank Locus: HSVDJSAT
of length 1985 bp, is provided in this example. This DNA
sequence consists of simple and multiperiod tandem repeat
patterns. Periods of size 2, 9, 10, 19, and 48 were identified
in the DNA sequence. The details regarding the identified re-
peats are provided in Table 1. The consensus tandem repeat
patterns of size 2, 19, and 49 reported by our algorithm are:
AC, CTGGGAGAGGCTGGGATTG, CTGGGAGAGGCTG-
GGAGAG, GAGGCTGGGAGAGGCTGGGAGAG∗CTGG-
GAGAGGCTG∗GATTGCTGGGA (where ∗ represents any
of the four nucleotides, i.e., A, C, G, or T). Tests were also
performed by tandem repeat finder (TRF) 4.0 [5, 18] and
Hauth program [10] for identifying repeats. In [19], Hauth
reported the 49 period as period of 48 and missed the simple
repeat pattern of period 2. The TRF 4.0 program missed the
tandem repeat pattern of period size 9.

DATASET 3

The complete chromosome I sequence contains two floccula-
tion genes (FLO1 and FLO9), one at each end of the chromo-
some, that each contains a tandem repeat region having sim-
ilar 135 bp pattern [20]. The GeneBank details of the DNA
sequence and genes (FLO1 and FLO9) are as follows:

locus: NC 001133, total base pairs: 230208;
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Figure 2: (a) The tandem repeat coefficient value of subsequences
SA[n], SC[n], SG[n], ST[n] and (b) the output period obtained for
subsequences SA[n], SC[n], SG[n], ST[n] for DNA sequence (Acces-
sion: NM 001133, length = 230208 bp) with input parameters (win-
dow length = 600 and maximum period = 150).

organism: Saccharomyces cerevisiae (baker’s yeast);
gene: FLO1, region in DNA sequence: 24001–27969;
gene: FLO9, region in DNA sequence: 203394–208007.

The DNA sequence is processed by the algorithm with in-
put parameters, window size (Lw) = 600 and maximum pe-
riod (Pmax) = 150. The outputs (i.e., repeat coefficients and
maximum period) of the algorithm for the nucleotide sub-
sequences are provided in Figures 2(a) and 2(b). Two sharp
peaks are present in Figure 2(a). These peaks are due to pres-
ence of strong tandem repeats in the DNA sequence at these
positions. The first peak starts at 25 324 and lasts for 1842 bp.
The maximum period for this region as shown in Figure 2(b)
is 135. This tandem repeat region lies in gene FPO9. The sec-
ond peak starts at 204 207 and lasts for 2466 bp. This region
also has maximum period of 135 bp. However, the total num-
ber of copies for this tandem repeat is higher than the previ-
ous one. The result confirms the presence of strong tandem
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Figure 3: Tandem repeat coefficient value of subsequences SA[n],
SC[n], SG[n], ST[n] for DNA sequence (Accession: NM 001847,
length = 6574 bp) with input parameters (window length = 100 and
maximum period = 20).

repeats which are present in FLO1 and FLO9 genes of saccha-
romyces cerevisiae, chromosome I.

DATASET 4

The analysis of Homo sapiens collagen gene, GenBank acces-
sion no. NM 001847 of length 6574 bp containing weak tan-
dem repeat pattern is provided in this example. The tandem
repeat coefficient obtained for subsequences SA[n], SC[n],
SG[n], ST[n] for window size (Lw) = 100 and maximum pe-
riod (Pmax) = 20 is shown in Figure 3. In the figure, sub-
sequence SG[n] has significant repeat coefficient value from
250 to 4400, while for subsequence ST[n] the repeat coeffi-
cient is above (threshold = 0.7) from 2233 to 2326. However,
for other subsequences, that is, SA[n] and SC[n], the value
of repeat coefficient lies between 0.4 and 0.6. This shows the
presence of repetitive pattern involving nucleotide G and T.

Tests were also performed using PE and TRF program.
PE program gave tandem repeat of period 9 and multiple of
9 (i.e., 18, 27, etc.). This is due to problem with the PE algo-
rithm because it cannot distinguish whether a repeat is of pe-
riod p or its multiple. However, this problem did not appear
in our algorithm because of unique decomposition property
of EPSD technique. The TRF program provided two tandem
repeat region of period 9 starting at 963 and 1404. Both PE
and TRF fail to inform the user regarding hidden periodic-
ity of nucleotide G. This has happened because the TRF and
PE programs are designed only to detect tandem repeat and
not hidden periodicity of individual nucleotides in DNA se-
quences.

DATASET 5

In our last dataset, a human microsatellite repeat (Gen-
Bank Accession: M65145) is taken up for analysis. Figure 4
shows the periods identified in the DNA sequence. It is clear
that the DNA sequence contains two repeat regions of pe-
riod 2 and 11. The dinucleotide repeats of pattern TG occur
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Figure 4: Output period of subsequences SA[n], SC[n], SG[n], ST[n]
for DNA sequence M65145 with input parameters (window length
= 110 and maximum period = 11).

between positions 780 and 933 bp (GenBank annotation is
between 860 and 900 bp). And the 11-mer repeats are lo-
cated between 92 and 781 bp (unannotated by GenBank).
The analysis of the 11-mer repeat region of the DNA se-
quence reveals the dispersed (hidden repeat) copy of the 11-
mer TGACTTTGGGG. The TRF program was unable to de-
tect the 11-mer repeats in the DNA sequence. This clearly
shows the advantage of our algorithm in locating dispersed
or hidden periodic patterns.

5. CONCLUSION

A novel SP-based approach is presented in this work. It has
the potential to identify and locate exact and inexact repeat
pattern in DNA sequences. A new measure based on EPSD
technique is proposed in this paper. A DNA sequence is con-
verted into a digital subsequences and repeat coefficient mea-
sure is computed. The algorithm is designed to analyze each
nucleotide sequence separately, and later on result of indi-
vidual nucleotides are combine together to report repeats.
The algorithm runs in O(NLw logLw) and is computationally
faster than PE algorithm which runs in O(NLwPmax), where
N is the length of the analyzed DNA sequence, Lw is the win-
dow size, and Pmax is the maximum period to be identified.
Our algorithm also resolves the problems like whether the re-
peat pattern is of period P or its multiple (i.e., 2P, 3P, etc.)
and other issues related to detection of inexact tandem re-
peats that were present in previous signal-processing-based
algorithms. The experimental results and comparison with
other algorithms show the effectiveness of our algorithm. De-
sign of automatic selection of window size for different repeat
period can be taken up for future work.
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