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Summary

A quantitative–structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80
1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of
the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The
resulting QSAR model (R2

CV = 0.8160; SPRESS = 0.5680) proved to be very accurate both in training and predictive stages.

Introduction

Novel medicines are typically developed using a trial-and-
error approach which is costly and time-consuming. The
application of quantitative–structure activity relationship
(QSAR) methodologies to this problem has the potential to
greatly decrease the time and effort required to improve cur-
rent medicines in terms of their efficacy or to discover new
ones. A successful QSAR model generates statistically signif-
icant relationships between chemical structure and biological
activity [1].

Human immunodeficiency virus type 1 (HIV-1) is the
primary cause of AIDS (acquired immunodeficiency syn-
drome), which is one of the main medical and social prob-
lems in our epoch. HEPT 1-(2-hydroxyethoxy-methyl)-6-
(phenylthio) thymine derivatives (Scheme 1) are the first non
nucleoside reverse transcriptase inhibitor (NNRTI) analogues
shown to have both potent anti-HIV activity and inhibit HIV-1
at nanomolar concentration [2]. The design of new HEPT
derivatives requires a more detailed knowledge of the mech-
anism of reverse transcriptase (RT) inhibition by this class of
compounds. QSAR is a powerful approach to discern chem-
ical properties of compounds that are required for specific
biological activity [3, 4].

In the past, numerous attempts have been made to pre-
dict the molar concentration of a drug required to achieve
50% protection of MT-4 cells against the cytopathic effect

of HIV-1 [5]. Luco et al. [6] used multiple linear regression
(MLR) and partial least squares (PLS) methods but no exter-
nal data sets were used to validate the models. Subsequently
Jalali-Heravi and Parastar [7] used Luco’s MLR model in
order to test it with external data and furthermore they intro-
duced a new MLR model and a new non-linear model based
on artificial neural networks (ANN). Using Principal Com-
ponent Analysis (PCA) and 36 derivatives, Alves et al. [8]
presented a discussion for the significance of each variable
to anti-HIV activity. Bazoui et al. [9] used MLR and ANN
computational techniques but no external compounds were
used to validate the models. Douali et al. [10–12] introduced
a QSAR model using ANNs and a part of Luco’s data set.
The predictive ability of the models was tested with the use of
leave-one-out (LOO) procedure. Gupta et al. [13] predicted
the anti-HIV activity using an eccentric adjacency index. Us-
ing a different data set from Luco et al. [6], Gayen et al.
[14] presented very good QSAR models based on the MLR
technique.

In this work we used a data set of 80 HEPT derivatives
[6, 7, 10] that has been reported in the literature as reliable.
37 topological and structural descriptors were considered.
Among them, the most statistically significant descriptors
were selected, using a rigorous variable selection method.
The result of this study was the development a new linear
QSARs model containing 5 variables. In order to validate the
proposed methodology, we used two validation strategies:
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Table 1. Topological and structural descriptors

Descriptor ID Description Notation Description Notation

1 Reciprocal of the standard shadow area

shadow on YZ plane

1/S [7] 2 Connectivity index 4χ N
p [6]

3 Ratio of the partial charges on the most

positive and the most negative atoms

POS/NEG [7] 4 Molecular Volume Vx [6]

5 Heat of Formation �H f (kcal/mol) [7] 6 Verloop steric parameter B1-3R1 [6]

7 Square of the number of SP3 carbon

atoms on the R2 substituent

(NCSP3-R2)2 [7] 8 Taft steric constant for ortho

substituents

Es-2R1[6]

9 Cub of summation of the positions of R1

on the C-6 aromatic ring constant

(NS-R1)3 [7] 10 Connectivity index ◦�χ (R3) [6]

11 Number of hydroxyl groups on the R3

substituent

NOH-R3 [7] 12 Connectivity (chain) index 6χν
ch [6]

13 Hansch constant �π (πR1+πR2) [6] 14 Indicator parameter (takes the value 1

or 0 for the presence or absence of a

six membered saturated ring in R3)

Ich-R3 [6]

15 Connectivity level (dividing the value of

the 1χ (R2) index by the number of

atoms involved in their calculus)

1χ N (R2) [6] 16 Indicator parameter (takes the value 1

or 0 for the presence or absence of a

substituent at 4 – position of the C–6

aromatic ring

I-4R1 [6]

17 Molar Refractivity MR 18 Diameter Diam

19 Partition Coefficient (Octanol Water) ClogP 20 Molecular Topological Index TIndx

21 Principal Moment of Inertia Z PMIZ 22 Number of Rotatable Bonds NRBo

23 Principal Moment of Inertia Y PMIY 24 Polar Surface Area PSAr

25 Principal Moment of Inertia X PMIX 26 Radius Rad

27 Connolly Accessible Area SAS 28 Shape attribute ShpA

29 Total Energy TotE 30 Sum of Valence Degrees SVDe

31 LUMO Energy LUMO 32 Total Connectivity TCon

33 HOMO Energy HOMO 34 Total Valence Connectivity TVCon

35 Balaban Index BIndx 36 Wiener Index WIndx

37 Cluster Count ClsC

Y-randomization and external validation using division of
the entire dataset set into training and test sets.

Materials and methods

Data set

In this QSAR study 80 of the 107 HEPT derivatives of the
Luco and Fereti [6] data set were used. The biological activ-
ities of these 80 compounds were reported in the same paper
[6]. In order to model and predict the specific activity (the
molar concentration of a drug required to achieve 50% pro-
tection of MT-4 cells against the cytopathic effect of HIV-1),
37 physicochemical constants, topological and structural de-
scriptors (Table 1) were considered as possible input candi-
dates to the model. The first 16 descriptors were collected
from the literature [6, 7] and the rest of them were calculated
with ChemSar which is included in Chemoffice.

The objective of this work was to determinate a subset
of variables which afford the most significant linear QSAR
models linking the structure of these compounds with their
anti-HIV activity.

Stepwise multiple regression

As mentioned in the introduction, the ES-SWR algorithm
[15] was used to select the most appropriate descriptors.

Scheme 1. HEPT Derivatives

ES-SWR is a popular stepwise technique which combines
Forward Selection (FS-SWR) and Backward Elimination
(BE-SWR). It is basically a forward selection approach, but
at each step it considers the possibility of deleting a variable
as in the backward elimination approach, provided that the
number of model variables is greater than two. The two basic
elements of the ES-SWR method are described next in more
details.

Forward selection

The variable considered for inclusion at any step is the one
yielding the largest single degree of freedom F-ratio among
the variables that are eligible for inclusion. The variable is
included only if this value is larger than a fixed value Fin.
Consequently, at each step, the jth variable is added to a k-size
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model if

Fj = max j

(
RSSk − RSSk+ j

s2
k+ j

)
> Fin (1)

In the above inequality RSS is the residual sum of squares
and s is the mean square error. The subscript k+j refers to
quantities computed when the jth variable is added to the k
variables that are already included in the model.

Backward elimination

The variable considered for elimination at any step is the
one yielding the minimum single degree of freedom F-ratio
among the variables that are included in the model. The vari-
able is eliminated only if this value does not exceed a speci-
fied value Fout. Consequently, at each step, the jth variable is
eliminated from a k-size model if

Fj = min j

(
RSSk− j − RSSk

s2
k

)
< Fout (2)

The subscript k − j refers to quantities computed when the
jth variable is eliminated from the k variables that have been
included in the model so far.

Cross-validation technique

In order to explore the reliability of the proposed method we
also used the cross-validation method. Based on the cross-
validation technique, a number of modified data sets are cre-
ated by deleting in each case one (LOO) or a small group
(leave-some-out) of objects [16]. For each data set, an input-
output model is developed, based on the utilized modelling
technique. Each model is evaluated, by measuring its accu-
racy in predicting the responses of the remaining data (the
ones that have not been utilized in the development of the
model). In particular, the LOO procedure was utilized in this
study, which produces a number of models, by deleting each
time one object from the training set. Obviously, the num-
ber of models produced by the LOO procedure is equal to
the number of available examples n. Prediction error sum
of squares (PRESS) is a standard index to measure the ac-
curacy of a modelling method based on the cross-validation
technique. Based on the PRESS and SSY (Sum of squares of
deviations of the experimental values from their mean) statis-
tics, the R2

CV and SPRESS values can be easily calculated. The
formulae used to calculate all the aforementioned statistics
are presented below (Equations 3 and 4):

R2
CV = 1 − PRESS

SSY
= 1 −

n∑
i=1

(yexp−ypred)2

n∑
i=1

(yexp−ȳ)2

(3)

SPRESS =
√

PRESS

n
(4)

Y- randomization test

This technique ensures the robustness of a QSAR model [17,
18]. The dependent variable vector (biological action) is ran-
domly shuffled and a new QSAR model is developed using the
original independent variable matrix. The new QSAR mod-
els (after several repetitions) are expected to have low R2 and
R2

CV values. If the opposite happens then an acceptable QSAR
model cannot be obtained for the specific modeling method
and data.

Estimation of the predictive ability of a QSAR model

According to Tropsha et al. [18] the predictive power of a
QSAR model can be conveniently estimated by an external
R2

CVext (Eq. 5).

R2
CVext = 1 −

test∑
i=1

(yexp−ypred)2

test∑
i=1

(yexp−ȳtr)2

(5)

where ȳtr is the averaged value for the dependent variable
for the training set.

Furthermore Tropsha et al. [18, 19] considered a QSAR
model predictive, if the following conditions are satisfied:

R2
CVext > 0.5 (6)

R2 > 0.6 (7)(
R2 − R2

o

)
R2

< 0.1 or

(
R2 − R′2

o

)
R2

< 0.1 (8)

0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15 (9)

Mathematical definitions of R2
o, R

′2
o , k and k′ are based on re-

gression of the observed activities against predicted activities
and the opposite (regression of the predicted activities against
observed activities). The definitions are presented clearly in
ref. 19 and are not repeated here for brevity.

Defining model applicability domain

In order for a QSAR model to be used for screening new com-
pounds, its domain of application [18, 20] must be defined
and predictions for only those compounds that fall into this
domain may be considered reliable. Extent of Extrapolation
[18] is one simple approach to define the applicability of the
domain. It is based on the calculation of the leverage hi [21]
for each chemical, where the QSAR model is used to predict
its activity:

hi = xT
i (X T X )xi (10)

In Equation (10) xi is the descriptor-row vector of the query
compound and X is the k×n matrix containing the k descriptor
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values for each one of the n training compounds. A leverage
value greater than 3k/n is considered large. It means that the
predicted response is the result of a substantial extrapolation
of the model and may not reliable.

Results and discussion

For the selection of the most important descriptors, the
aforementioned stepwise multiple regression technique was
used. In order to automate the above procedure, we devel-
oped in-house a software that realizes the ES-SWR algo-
rithm. More specifically the algorithm was programmed in
the MATLAB programming language and is quite generic,
so that it can accept a practically unlimited number of
descriptors.

The produced MLR models were studied thoroughly as
new descriptors were selected by the aforementioned variable
selection method. The most significant descriptor according
to the ES-SWR algorithm is the connectivity index 4χ N

p fol-

lowed by the connectivity (chain) index 6χ v
ch, and the num-

ber of hydroxyl groups on the R3 substituent NOH-R3. The
connectivity index 4χ N

p describes the shape characteristics
of the entire module, which according to Luco et al. [6] is
the most important variable. The connectivity (chain) index
6χν

ch encodes information about the number and type of six-
membered rings present in the module. NOH-R3 is a simple
topological descriptor and indicates the number of hydroxyl
groups on the R3 substituent. The MLR model that consists
of only the three most significant descriptors is already quite
accurate and attractive as well, since all three descriptors are
topological indices, they are calculated rapidly and have a
clear physical meaning.

However, the performance of the MLR model was im-
proved substantially, by including the next two most signif-
icant descriptors: HOMO energy and Lipophilicity (ClogP).
Molecular orbital (MO) surfaces visually represent the var-
ious stable electron distributions of a molecule. According
to Frontier Orbital Theory, the shapes and symmetries of the
highest-occupied and lowest-unoccupied molecular orbitals
(HOMO and LUMO) are crucial in predicting the reactiv-
ity of a species and the stereochemical and regiochemical
outcome of a chemical reaction. All the structures before
the calculation of the HOMO Energy were fully optimized
using the AM1 basis set. Lipophilicity is known to be im-
portant for absorption, permeability, and in vivo distribu-
tion of organic compounds [21, 22] and has been used as
a physicochemical descriptor in QSARs with great success
[1, 24].

Adding more descriptors to the 5-parameter model, did
not improve significantly the prediction abilities of the mod-
els, in terms of R2

CV. For brevity, the remaining analysis will
be focused on the 5-parameter model. Nevertheless, the rest
of the models can be available to the interested readers. In
order to avoid internal correlations, we performed a correla-

Table 2. Correlation matrix of the 5 selected descriptors

4χ N
p

6χν
ch NOH-R3 HOMO CLogP

4χ N
p 1,00

6χν
ch 0,428 1,00

NOH-R3 −0,336 −0,373 1,00

HOMO 0,190 −0,103 0,098 1,00

CLogP 0,754 0,612 −0,606 0,028 1,00

tion analysis on the five selected descriptors and the results
are presented in Table 2. All the values deviate from unity
considerably so there is no significant correlation between
the five independent variables.

The full linear equation for the prediction of the anti-HIV
activity log1/c is the following:

log 1
c = 66.30 4χ N

p − 28.80 6χv
ch − 5.25∗10−1NOH-R3

+ 5.66∗10−1HOMO + 3.49 ∗ 10−1CLogP − 6.98

R2 = 0.841 F = 77.99 RMSE = 0.531 R2
CV = 0.816

SPRESS = 0, 568n = 80

(11)

In order to further explore the prediction ability of the selected
descriptors, the data set of 80 1-[2-hydroxyethoxy-methyl]-
6-(phenylthio)thymine (HEPT) derivatives was divided into
a training set of 60 compounds, and a validation set of 20
compounds. The selection of the derivatives in the training
set was made according to the structure and the scale of the
biological action, so that representatives of a wide range of
structures (in terms of the different substituents, atoms and
action) were included. According to Golbraikh and Tropsha
[25] this approach is correct since representative points of the
test set must be close to those of training set and vice versa.
The compounds that constituted the training and validation
sets are clearly presented in Table 3. The validation examples
are marked with a .

Using the five descriptors, we developed a new MLR
equation based on only the 60 training examples.

log 1
c = 67.10 4χ N

p − 25.40 6χν
ch − 5.29∗10−1NOH-R3

+ 6.18∗10−1HOMO + 3.66∗10−1CLogP − 6.81

R2 = 0.838 F = 55.99 RMSE = 0.560 R2
CV = 0.804

SPRESS = 0.616 n = 60
(12)

This equation was used to predict the HIV-activity for the val-
idation examples. The results are presented in the last column
of Table 3 and correspond to an R2 value of 0.904. The resid-
ual plot for the predicting set is presented in Figure 1. The
results illustrated once more that the linear MLR technique
combined with a successful variable selection procedure are
adequate to generate an efficient QSAR model for predicting
the HIV-activity of different compounds.
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Table 3. Training and test set

A/A R1 R2 R3 X Experimental Values Predicted Values

1 2-Me Me CH2OCH2CH2OH O 4.15 4.999

2 2-NO2 Me CH2OCH2CH2OH O 3.85 4.985

3 2-OMe Me CH2OCH2CH2OH O 4.72 5.327

4 3-Me Me CH2OCH2CH2OH O 5.59 5.201

5a 3-Et Me CH2OCH2CH2OH O 5.57 – 5.234

6 3-t-Bu Me CH2OCH2CH2OH O 4.92 4.822

7 3-CF3 Me CH2OCH2CH2OH O 4.35 4.435

8a 3-F Me CH2OCH2CH2OH O 5.48 – 4.973

9 3-Cl Me CH2OCH2CH2OH O 4.89 5.187

10a 3-Br Me CH2OCH2CH2OH O 5.24 – 5.236

11 3-I Me CH2OCH2CH2OH O 5.00 5.326

12 3-NO2 Me CH2OCH2CH2OH O 4.47 4.179

13 3-OH Me CH2OCH2CH2OH O 4.09 4.720

14 3-OMe Me CH2OCH2CH2OH O 4.66 4.804

15 3,5-Me2 Me CH2OCH2CH2OH O 6.59 6.271

16 3,5-Cl2 Me CH2OCH2CH2OH O 5.89 6.235

17a 3,5-Me2 Me CH2OCH2CH2OH S 6.66 – 6.295

18 3-COOMe Me CH2OCH2CH2OH O 5.10 4.838

19 3-COMe Me CH2OCH2CH2OH O 5.14 4.670

20a 3-CN Me CH2OCH2CH2OH O 5.00 – 4.782

21 H CH2CH=CH2 CH2OCH2CH2OH O 5.60 5.315

22a H Et CH2OCH2CH2OH S 6.96 – 5.742

23 H Pr CH2OCH2CH2OH S 5.00 5.488

24 H i-Pr CH2OCH2CH2OH S 7.23 6.891

25 3,5-Me2 Et CH2OCH2CH2OH S 8.11 7.261

26 3,5-Me2 i-Pr CH2OCH2CH2OH S 8.30 8.379

27a 3,5-Cl2 Et CH2OCH2CH2OH S 7.37 – 7.235

28 H Et CH2OCH2CH2OH O 6.92 5.719

29a H Pr CH2OCH2CH2OH O 5.47 5.465

30 H i-Pr CH2OCH2CH2OH O 7.20 6.863

31 3,5-Me2 Et CH2OCH2CH2OH O 7.89 7.237

32 3,5-Me2 i-Pr CH2OCH2CH2OH O 8.57 8.351

33 3,5-Cl2 Et CH2OCH2CH2OH O 7.85 8.088

34 4-Me Me CH2OCH2CH2OH O 3.66 4.588

35a H Me CH2OCH2CH2OH O 5.15 – 4.632

36 H Me CH2OCH2CH2OH S 6.01 4.654

37 H I CH2OCH2CH2OH O 5.44 4.822

38 H CH=CH2 CH2OCH2CH2OH O 5.69 5.648

39a H CH=CHPh CH2OCH2CH2OH O 5.22 – 5.553

40 H CH2Ph CH2OCH2CH2OH O 4.37 5.629

41 H CH=CPh2 CH2OCH2CH2OH O 6.07 6.386

42 H Me CH2OCH2CH2Me O 5.06 5.114

43a H Me CH2OCH2CH2Ac O 5.17 – 4.491

44 H Me CH2OCH2CH2OCOPh O 5.12 5.754

45 H Me CH2OCH2Me O 6.48 5.876

46 H Me CH2OCH2CH2Cl O 5.82 5.528

47 H Me CH2OCH2CH2N3 O 5.24 – 5.279

48 H Me CH2OCH2CH2F O 5.96 5.476

49 H Me CH2OCH2CH2Me O 5.48 5.822

50 H Me CH2OCH2Ph O 7.06 – 6.522

51 H Et CH2OCH2Me O 7.72 6.828

52 H Et CH2OCH2Me S 7.58 6.848

53 3,5-Me2 Et CH2OCH2Me O 8.24 – 8.366

54 3,5-Me2 Et CH2OCH2Me S 8.30 8.387

55 H Et CH2OCH2Ph O 8.23 7.427

56 3,5-Me2 Et CH2OCH2Ph O 8.55 8.740

57 H Et CH2OCH2Ph S 8.09 – 7.453

58 3,5-Me2 Et CH2OCH2Ph S 8.14 8.766

(Continued to next page)
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Table 3. Continued

A/A R1 R2 R3 X Experimental Values Predicted Values

59 H i-Pr CH2OCH2Me O 7.99 8.117

60 H i-Pr CH2OCH2Ph O 8.51 – 8.426

61 H i-Pr CH2OCH2Me S 7.89 8.143

62 H i-Pr CH2OCH2Ph S 8.14 8.455

63 H Me CH2OMe O 5.68 6.278

64 H Me CH2OBu O 5.33 5.755

65 H Me Et O 5.66 6.666

66a H Me Bu O 5.92 – 5.748

67 3,5-Cl2 Et CH2OCH2Me S 7.89 8.458

68 H Et CH2O-i-Pr S 6.66 6.437

69a H Et CH2O-c-Hex S 5.79 – 5.755

70 H Et CH2OCH2-c-Hex S 6.45 5.734

71 H Et CH2OCH2C6H4(4-Me) S 7.11 7.094

72 H Et CH2OCH2C6H4(4-Cl) S 7.92 7.118

73a H Et CH2OCH2CH2Ph S 7.04 – 6.985

74 3,5-Cl2 Et CH2OCH2Me S 8.13 8.651

75 H Et CH2O-i-Pr O 6.47 8.159

76 H Et CH2O-c-Hex O 5.40 6.424

78 H Et CH2OCH2CH2Ph O 7.02 5.664

77a H Et CH2OCH2-c-Hex O 6.35 – 5.565

79 H c-Pr CH2OCH2Me S 7.02 7.266

80 H c-Pr CH2OCH2Me O 7.00 7.075

a The test set.
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Figure 1. Residuals Plot for Test Set.

The proposed model (Eq. 12) passed all the tests for the
predictive ability (Eqs. 6–9):

R2
CVext = 0.827 > 0.5

R2 = 0.904 > 0.6(
R2 − R2

0

)
R2

= −0.0975 < 0.1

or

(
R2 − R′2

0

)
R2

= −0.0695 < 0.1

k = 1.0443 and k′ = 0.9543

The model was further validated by applying the Y-
randomization. Several random shuffles of the Y vector were
performed and the results are shown in Table 4. The low
R2 and R2

CV values show that the good results in our origi-
nal model are not due to a chance correlation or structural
dependency of the training set.

Finally the extent of extrapolation method was applied
to the compounds that constitute the test set. The leverages
for all 20 compounds were computed and are presented in
Table 5. Two compounds (69 and 77) were found to fall
slightly outside from the domain of the model (warning lever-
age limit 0.3). Both compounds contain cyclohexyl groups.
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Table 4. Results of the Y-randomization test

Iteration R2 R2
CV

1 0.073 0.00

2 0.045 0.00

3 0.039 0.00

4 0.072 0.00

5 0.047 0.00

6 0.085 0.00

7 0.103 0.00

8 0.073 0.00

9 0.078 0.00

10 0.194 0.00

The proposed model, due to the high predictive ability, can
therefore act as a useful aid to the costly and time consuming
experiments for determining the molar concentration of a
drug required to achieve 50% protection of MT-4 cells against
the cytopathic effect of HIV-1. The model can also be used to
screen existing databases or virtual libraries to identify new
potentially active compounds. In this case, the applicability
domain will serve as a valuable tool to filter out “dissimilar”
compounds.

We first tried to identify descriptors trends which lead
to improved anti-HIV activity through modifications of the
database compounds (Vanyur et al., 26) Based on the pro-
posed QSAR equation we can make the following remarks
regarding the importance of the descriptors and their ef-
fects on the anti HIV-activity: As mentioned before, our
study agrees with the result of Luco et al. [6] that connec-
tivity index 4χ N

p is the most important variable for predict-

ing the anti-HIV activity. As the value of descriptor 4χ N
p

increases so does the activity. An opposite effect on the
activity is caused by an increase in the number of ben-
zene rings (represented by 6χν

ch), so special care should be
taken when increasing the number of benzenes. Furthermore,
the QSAR equation (Eq. 12) clearly shows that the pres-
ence of –OH group at the R3 position decreases the activ-
ity. Finally, anti-HIV activity improves when lipophilicity
(CLogP) or the HOMO energy take higher values. LogP and
HOMO energy play a crucial role in distinguishing deriva-
tives with X=O and those with X=S since all other three de-
scriptors cannot recognize the difference between X=O and
X=S.

An attempt was made to screen virtual libraries in order to
identify novel potent compounds (Table 6). The introduction
of a phenyl substituent at R3 resulted in improved activi-
ties, although the leverages approached the limit (0.3) and
in several cases exceeded the limit (>0.3) of the domain of
applicability reducing the confidence of the predicted data.
Introduction of an alkyl or alkoxy spacer between the phenyl
substituent and the ring nitrogen at R3 reduced the activi-
ties but improved the predictability. A good balance between
activity and predictability was found with the introduction
of a benzyl group at R3. Furthermore the introduction of
sulfur (X=S) in nearly all cases resulted in better activity

Table 5. Leverages for the test set

Compound Id Leverages

5 0.0554

8 0.0484

10 0.0493

17 0.0516

20 0.0686

22 0.0464

27 0.1491

29 0.0397

35 0.0506

39 0.0731

43 0.1548

47 0.1428

50 0.0521

53 0.0963

57 0.0526

60 0.1655

66 0.0624

69 0.3489

73 0.0639

77 0.3264

than the oxygen (X=O) analogues. Exceptions to the latter
were compounds where alkoxy chains were present at R3,
in these cases (A/A 23 to 38, Table 6) there was no signifi-
cant difference in activities between the oxygen (X=O) and
sulfur (X=S) species. R2 also played an important role in
increasing the activity, (see A/A 13 to 20, Table 6) and the
bulky i-Pr group showed better activity than sterically less
demanding n-Pr, Et and Me substituents. In this case the in-
troduction of i-Pr also resulted in a reduced confidence in
predictability since the limits of the domain of applicabil-
ity were being approached as the molecular weight of the
alkyl group increased. The effect of substitution at R1 was
more complex to analyse, however some observations can be
made. Firstly mono- or disubstitution with methyl or halo-
gen substituents was tolerated by the model whilst hydroxy
or amino substituents were not; in particular the dihydroxy
and diamino derivatives fell outside the domain of applica-
bility (see A/A 73 to 76, Table 6). Secondly disubstitution
generally gave better activities but at the expense of pre-
dictability. Finally no clear trend as to the preferred site of
substitution was evident and may possibly be substituent de-
pendant. Several interesting compounds (cf. A/A 20, 42 and
80, Table 6) were identified to have good activities (10.22,
10.48 and 10.15 respectively) and be comfortably within
the domain of applicability and these are worthy of further
study.

Conclusion

Our results lead to the conclusion that the anti-HIV activ-
ity of the HEPT derivatives can be successfully modelled
with physicochemical constants and structural descriptors.
The separation of the data into two independent sets (training



412

Table 6. Virtual screening results

A/A R1 R2 R3 X log (1/IC50) pred Leverages (limit 0.30)

1 3,5-(Cl)2 Et Ph O 9.5820 0.3968

2 3,5-(Cl)2 Et Ph S 10.6013 0.2460

3 2-Me Me Ph O 7.7403 0.1813

4 2-Me Me Ph S 8.5856 0.1048

5 3-Me Me Ph O 7.7632 0.2396

6 3-Me Me Ph S 8.7188 0.1157

7 4-Me Me Ph O 7.1742 0.1347

8 4-Me Me Ph S 8.1109 0.0746

9 3,5 (Me)2 Me Ph O 8.8133 0.3334

10 3,5 (Me)2 Me Ph S 9.7612 0.1868

11 3,5 (Me)2 Et Ph O 9.5406 0.3988

12 3,5 (Me)2 Et Ph S 10.4847 0.2512

13 3,5 (Me)2 Me CH2Ph O 8.4658 0.1107

14 3,5 (Me)2 Me CH2Ph S 8.8250 0.1014

15 3,5 (Me)2 Et CH2Ph O 9.3378 0.1543

16 3,5 (Me)2 Et CH2Ph S 9.6970 0.1488

17 3,5 (Me)2 Pr CH2Ph O 8.9872 0.1095

18 3,5 (Me)2 Pr CH2Ph S 9.3470 0.1912

19 3,5 (Me)2 i-Pr CH2Ph O 9.8526 0.1931

20 3,5 (Me)2 i-Pr CH2Ph S 10.2207 0.2099

21 3,5 (Me)2 i-Pr CH2CH2Ph O 9.8746 0.2174

22 3,5 (Me)2 i-Pr CH2CH2Ph S 10.1117 0.2525

23 3,5 (Me)2 i-Pr OCH2Ph O 9.7923 0.1834

24 3,5 (Me)2 i-Pr OCH2Ph S 9.8080 0.1815

25 3,5 (Me)2 i-Pr OCH2Me O 10.0459 0.2063

26 3,5 (Me)2 i-Pr OCH2Me S 10.0639 0.1936

27 3,5 (Me)2 i-Pr CH2OMe O 10.0277 0.2449

28 3,5 (Me)2 i-Pr CH2OMe S 10.0539 0.2213

29 3,5 (Me)2 i-Pr CH2OEt O 9.6214 0.2026

30 3,5 (Me)2 i-Pr CH2OEt S 9.6490 0.1925

31 3,5 (Me)2 i-Pr CH2OPh O 9.8761 0.2040

32 3,5 (Me)2 i-Pr CH2OPh S 9.9068 0.2035

33 3,5 (Me)2 i-Pr CH2OCH2CH2OH O 8.7066 0.1655

34 3,5 (Me)2 i-Pr CH2OCH2CH2OH S 8.6856 0.1577

35 3,5 (Me)2 i-Pr CH2OCH2CH2OMe O 9.2237 0.1707

36 3,5 (Me)2 i-Pr CH2OCH2CH2OMe S 9.1986 0.1592

37 3,5 (Me)2 Et CH2OEt O 8.7727 0.1885

38 3,5 (Me)2 Et CH2OEt S 8.9276 0.1660

39 4-Ph Et CH2Ph O 8.7020 0.1674

40 4-Ph Et CH2Ph S 9.0633 0.2103

41 4-Ph Et Ph O 9.6316 0.2551

42 4-Ph Et Ph S 10.4771 0.2218

43 2-NH2 i-Pr CH2Ph O 8.1110 0.2869

44 2-NH2 i-Pr CH2Ph S 8.4838 0.1413

45 3-NH2 i-Pr CH2Ph O 8.5363 0.3815

46 3-NH2 i-Pr CH2Ph S 8.9027 0.2169

47 4-NH2 i-Pr CH2Ph O 9.0540 0.4448

48 4-NH2 i-Pr CH2Ph S 9.4257 0.2513

49 2-OH i-Pr CH2Ph O 8.1989 0.1886

50 2-OH i-Pr CH2Ph S 8.5728 0.0987

51 3-OH i-Pr CH2Ph O 8.5031 0.2365

52 3-OH i-Pr CH2Ph S 8.8729 0.1314

53 4-OH i-Pr CH2Ph O 7.9001 0.1590

54 4-OH i-Pr CH2Ph S 8.2718 0.0929

55 2-F i-Pr CH2Ph O 8.5049 0.1162

56 2-F i-Pr CH2Ph S 8.8718 0.1077

57 3-F i-Pr CH2Ph O 8.7381 0.1419

58 3-F i-Pr CH2Ph S 9.1120 0.1213

59 4-F i-Pr CH2Ph O 8.1364 0.0930

60 4-F i-Pr CH2Ph S 8.5090 0.1108

(Continued to next page)
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Table 6. Continued

A/A R1 R2 R3 X log (1/IC50) pred Leverages (limit 0.30)

61 2-Cl i-Pr CH2Ph O 8.9507 0.1524

62 2-Cl i-Pr CH2Ph S 9.3248 0.1939

63 3-Cl i-Pr CH2Ph O 8.9205 0.1181

64 3-Cl i-Pr CH2Ph S 9.2949 0.1521

65 4-Cl i-Pr CH2Ph O 8.3577 0.0945

66 4-Cl i-Pr CH2Ph S 8.7308 0.1662

67 2-Br i-Pr CH2Ph O 8.8951 0.1267

68 2-Br i-Pr CH2Ph S 9.2652 0.1839

69 3-Br i-Pr CH2Ph O 8.9465 0.1129

70 3-Br i-Pr CH2Ph S 9.3209 0.1616

71 4-Br i-Pr CH2Ph O 8.4096 0.0982

72 4-Br i-Pr CH2Ph S 8.7832 0.1842

73 3,5-(NH2)2 i-Pr CH2Ph O 8.9609 0.8533

74 3,5-(NH2)2 i-Pr CH2Ph S 9.3245 0.5330

75 3,5-(OH)2 i-Pr CH2Ph O 9.0008 0.4640

76 3,5-(OH)2 i-Pr CH2Ph S 9.3676 0.2598

77 3,5-(Br)2 i-Pr CH2Ph O 9.8257 0.1562

78 3,5-(Br)2 i-Pr CH2Ph S 10.2029 0.2571

79 3,5-(Cl)2 i-Pr CH2Ph O 9.7759 0.1523

80 3,5-(Cl)2 i-Pr CH2Ph S 10.1526 0.2236

81 3,5-(F)2 i-Pr CH2Ph O 9.4312 0.1927

82 3,5-(F)2 i-Pr CH2Ph S 9.8067 0.1545

and test) shows that our MLR model can predict external data
with great accuracy. The proposed method, due to the high
predictive ability, is a useful aid to the costly and time con-
suming experiments for determining anti-HIV activity. The
proposed models can be used to screen existing databases or
virtual libraries in order to identify novel potent compounds.
In this case, the applicability domain will serve as a valu-
able tool to filter out “dissimilar” compounds. An attempt in
this direction was carried out. Synthesis of the new proposed
molecules and their biological evaluation will show if this
procedure can be used as a general rational drug discovery
tool.
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