
Northumbria Research Link

Citation: Li, Weixian, Logenthiran, Thillainathan, Phan, Van Tung and Woo, Wai Lok (2019)

A Novel Smart Energy Theft System (SETS) for IoT based Smart Home. IEEE Internet of

Things Journal, 6 (3). pp. 5531-5539. ISSN 2327-4662 

Published by: IEEE

URL:  https://ieeexplore.ieee.org/document/8661504

<https://ieeexplore.ieee.org/document/8661504>

This  version  was  downloaded  from  Northumbria  Research  Link:

http://nrl.northumbria.ac.uk/id/eprint/38304/

Northumbria University has developed Northumbria Research Link (NRL) to enable users

to access the University’s research output. Copyright © and moral rights for items on

NRL are retained by the individual author(s) and/or other copyright owners.  Single copies

of full items can be reproduced, displayed or performed, and given to third parties in any

format or medium for personal research or study, educational, or not-for-profit purposes

without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic

details are given, as well as a hyperlink and/or URL to the original metadata page. The

content must not be changed in any way. Full items must not be sold commercially in any

format or medium without formal permission of the copyright holder.  The full policy is

available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been

made available online in accordance with publisher policies. To read and/or cite from the

published version of  the research,  please visit  the publisher’s website (a subscription

may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


1

A Novel Smart Energy Theft System (SETS) for
IoT based Smart Home

Weixian Li, Member, IEEE, Thillainathan Logenthiran, Senior Member, IEEE, Van-Tung Phan, Senior

Member, IEEE, and Wai Lok Woo, Senior Member, IEEE

Abstract—In the modern smart home, smart meters and
Internet of Things (IoT) have been massively deployed to replace
traditional analogue meters. It digitalises the data collection and
the meter readings. The data can be wirelessly transmitted that
significantly reduces manual works. However, the community
of smart home network is vulnerable to energy theft. Such
attacks cannot be effectively detected since the existing techniques
require certain devices to be installed to work. This imposes a
challenge for energy theft detection systems to be implemented
despite the lack of energy monitoring devices. This paper develops
an energy detection system called Smart Energy Theft System
(SETS) based on machine learning and statistical models. There
are 3 stages of decision-making modules, the first stage is the
prediction model which uses multi-model forecasting System.
This system integrates various machine learning models into
a single forecast system for predicting the power consumption.
The second stage is the primary decision making model that
uses Simple Moving Average (SMA) for filtering abnormally. The
third stage is the secondary decision making model that makes
the final stage of the decision on energy theft. The simulation
results demonstrate that the proposed system can successfully
detect 99.96% accuracy that enhances the security of the IoT
based smart home.

Index Terms—Smart homes, Smart grid, Internet of things,
Energy theft, Machine learning techniques

I. INTRODUCTION

In the modern smart grid, massive deployment of advanced

metering infrastructures (AMI) facilitate the efficient and

reliable information exchange. The AMI can be divided into

different sectors depending on the location which is crucial

to end consumer. AMI includes smart meters and Internet of

Things (IoT) monitoring devices that were able to collect data

in large volumes and fast speed.

Smart home innovators today focus on system development,

system architecture, communication protocols, and forecasting

tools [1], [2]. These innovations provide home consumers with

a better technology in terms of energy monitoring, control, and

reliability. For example, Demand Side Management System

(DSMS) was introduced to better manage and control power

consumption for the smart homes [3]. This power conservation

concept increased the research on improving DSMS methods

like load-shifting, dynamic price management, forecasting

demand, and demand response systems [4]–[6].

These advancements improved through the use of machine

learning and statistical modelling. Algorithms such as Simple
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Moving Average (SMA), Multi-Layer Perceptron (MLP),

Recurrent Neural Network (RNN), Long Short Term Memory

(LSTM), and Gated Recurrent Unit (GRU) have been used

in the energy efficiency sector [7]–[10]. However, it is still

vulnerable to malicious behaviour such as energy theft.

Energy theft has been a rising issue for various countries

around the world. Despite this, only a few preventive energy

theft methods were created to combat the issue. Zhou, Y. et

al. proposed a dynamic programming algorithm for leveraging

probabilistic detection of energy theft in the smart home [11].

This proposed method requires the deployment of Feeder

Remote Terminal Unit (FRTU) on top of a smart meter which

incurs high costs for consumers. Additionally, it works only

under the assumption that a smart meter is available.

Liu, Y. and Hu, S. proposed a detection technique that

has a detection accuracy of 92.55% on average [12]. This

proposed detection technique integrated Bollinger-bands-based

detection with the partially observable Markov-decision process

(POMDP). However, it does not reflect on all conditions

of a house environment. Firstly the house demand data has

consistent energy consumption throughout the entire 24 hours.

It does not include any zero energy consumption for a particular

hour. Another condition on the Bollinger Band method, the

deviation can only be done in a consistent range of energy

usage. However, if the range of energy usage became large, the

Bollinger Band method could not be used due to its deviation.

This paper proposes a novel idea of Smart Energy Theft

System (SETS) for the smart home. This energy theft detection

algorithm is more efficient and reliable compared to previous

methods. As a result of a non-intrusive method of data

collection, the energy monitoring system was implemented

in a real house in Singapore. The collected data includes Time

series data power consumption from a non-controlled real-life

house environment.

The remaining paper is organised as follows: Section II

presents background information about the foundation of the

Smart Energy Theft System (SETS). Section III shows the

proposed methodology for Smart Energy Theft System (SETS).

Section IV provides the simulation results of the proposed

system. Finally, the paper is concluded in section V.

II. BACKGROUND INFORMATION

A. Smart Homes

Smart Homes are created through implementation of Internet

of Things (IoT) and smart meters [13]–[16]. In order to

monitor and control the Advanced Metering Infrastructure



2

(AMI), Energy Management System (EMS) was an essential

integration of the system infrastructure [17]–[20].
Demand Side Management System (DSMS) is included

as a function of EMS [21]. Its functionality focuses mainly

on managing the demand response and loads. It collects the

demand information to dictate the optimal power usage such

as implementing load-shifting to enable the use of electricity

markets during peak and off-peak hours.
It allows users to conveniently dictate their smart appliances

within the home area by using mobile devices. More advanced

and developed systems could further analyse the data collected

and make its own decision for the smart homes to operate in

a cost-effective and energy-efficient method based on users’

consumption patterns.

B. Energy Theft

Energy theft has become a serious issue in the smart

grid community [22]. It has caused massive losses for many

countries that exceed billions of dollar. Nowadays, a smart

meter will be placed at the end of every distribution network

to record power consumption and generates the energy reports

remotely. An example of the home distribution network is

shown in Fig.1.

Fig. 1: Home distribution network

Energy theft methods involve hacking smart home appliance

and most commonly direct hooking on other households

electricity supplies. Other methods involved are tampering

with the smart meter’s software, mechanism, and manipulating

data through cloud storage [23]. Thus, attackers can reduce

their own electricity usage by manipulating other households

through tampering and hacking to increase their electricity

usage as the aggregate bill for all customers in the community

remains the same [24]. Fig.2 shows an example of energy theft

situation.

Fig. 2: Energy theft situation

The example shows that through energy theft, the higher

consumption household can reduce their own power consump-

tion through tapping on another household. It increases the

electricity bills for the other household victim while reducing

the energy theft culprit bills.

III. PROPOSED SMART ENERGY THEFT SYSTEM (SETS)

Fig. 3 shows the overall design of the proposed Smart Energy

Theft System (SETS) for the smart homes. SETS is designed

for detecting energy theft and alerting the consumers. It collects

information from monitoring devices and analyses the data to

detect energy theft.

Fig. 3: Overall SETS architecture

The overall architecture comprises the following modules:

• Data Collection Module

• Prediction Model

• Primary Decision Making Model

– Continuous Hour Model

– Same Day and Hour Model

• Secondary Decision Making Model

– Power Consumption Model

The data collection module collects the data for SETS. The

first stage of SETS is the prediction model. The prediction

model uses Multi-Model Forecasting System that comprises

different machine learning methods: Multi-Layer Perceptron

(MLP), Recurrent Neural Network (RNN), Long Short Term

Memory (LSTM), and Gated Recurrent Unit (GRU). It predicts

and compares the actual data to detect abnormally. Second

stage of SETS is the primary decision making model. This

stage uses a statistical model called Simple Moving Average

(SMA) to filter the abnormally from the first stage.

Third stage of SETS is the secondary decision making

model. This stage further filter from the second stage and

decides whether energy theft had occurred. After taking the
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final decision, the whole process will be repeated for the next

incoming data. SETS is best implemented with an independent

hardware system directly at the smart meters, this is because any

interferences for energy theft regardless of tampering hardware

or manipulation of data can be detected. It is more accurate

compared to just monitoring the data from cloud or operator’s

database as many other factors may affect the analysis.

A. Data Collection Module

Demand Side Management System (DSMS) collates the

information from various real-time monitoring smart devices

in the house. The data collection module for setting up Smart

Energy Theft System (SETS) is to get the real-time monitoring

ready. Data collection module used a set of smart plugs called

Aeon Labs Z-Wave UK Plug-in Switch plus Power Meter

and the main controller was a VeraEdge Home Controller.

Connectivity for data collection is shown in Fig. 4.

Fig. 4: Data collection system architecture

This system was placed on a Singapore smart home for

collecting data through a non-invasive method of energy

monitoring.

B. SETS

SETS detects unexpected energy theft from any form of

malicious attack. This proposed system is designed with the

following stages:
1) Stage 1: Prediction model: Multi-Model Forecasting

System: The Prediction Model forecast the next 24 hours

by using Multi-Model Forecasting System. Measured data is

used for predictions and comparison to determine the energy

theft situation.
a) Stage 1: Multi-Model Forecasting Systems and Algo-

rithms: The Multi-Model Forecasting System uses different

machine learning methods and utilises the most accurate model

through the state of prediction model decision making condition

sp(n). The forecasting systems Multi-Layer Perceptron (MLP),

Recurrent Neural Network (RNN), Long Short Term Memory

(LSTM), and Gated Recurrent Unit (GRU) are used at this

stage and a brief description is as follows:

• Multi-layer perceptron (MLP)

Artificial neural networks (ANN) are often called neural

networks or multi-layer perceptron (MLP) to represent the

most useful type of neural network. It is inspired by the

biological architecture of the brain which can be used to

solve difficult computational tasks. The goal is developing

robust algorithms and data structures that can be used to

solve difficult problems [25].

Fig. 5: MLP network diagram

Fig.5 shows the network of a typical MLP. The formula-

tions [26] of the MLP are defined as follows:

H(out(nk)) =

n
∑

i=1

n=k
∑

j=1

(Xn.Wnk) (1)

Yn = σ(
n
∑

i=1

n=k
∑

j=1

(H(out(nk)).βnk)) (2)

Where, Xn : Input data, Yn : Prediction output, H(out(nk))

: Hidden layer output, Wnk : Input-to-hidden layer weights,

βnk : Hidden-to-output layer weights, and σ : Activation

function.

By using the hidden layer function, the best set of results

can be found in the network. The power of MLP prediction

capability comes from the ability to learn from training

data and relating the best testing data to the given output

data in a hierarchical or multi-layered structure of the

network. It uses supervised learning technique called

backpropagation for training the network. Due to its

popular ability to solve difficult problems, a variety of

MLP was created to optimise the result for different types

of issue.

• Recurrent Neural Network (RNN)

RNNs are a type of artificial neural network that was

designed to learn patterns in data sequences such as

numerical time series data, images, and text. It is a

powerful type of neural network that has been used

in industries such as sensors, the stock market, and

government agencies.

Fig.6 shows the RNN full network (unfolded) which is the

complete sequence of the network. For example, if there is

a sequence of three numerical values, the network would

unfold into a three-layer neural network that supports a

layer for each numerical value.
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Fig. 6: Recurrent neural network and unfolding sequence

diagram

The computational formulas [27] in an RNN happens as

follows:

st = σ(st−1.W + xt.U + b) (3)

ot = st.V (4)

Where, t : Time step, xt : Input data, ot : Predicted

output, st : Hidden state, U : Input-to-hidden weights, W

: Hidden-to-hidden weights, V : Hidden-to-output weights,

b : Bias value, and σ : Activation function.

Hidden state st is considered the memory of the network;

it captures information about the situation in all previous

time steps which was the main feature of an RNN. ot is

the output predicted solely based on the current memory

at time step t. RNN weights U , V , W are constant

throughout the process, unlike traditional neural network

where it is different at each layer. This reduces the number

of parameters required to be learnt by performing the same

task at each time step but with different inputs.

• Long Short Term Memory (LSTM)

One of the appeals of RNNs is the idea that they might be

able to connect previous information to the present task.

In cases where the gap between the relevant information

and the place which is required was small, RNNs is able

to learn and utilise the past information [28]. However, if

the gap is huge, RNN is unable to link the information

for the learning process to kick in.

In order to solve long-term dependency issues, a special

kind of RNN called Long Short Term Memory (LSTM)

networks were created. It was introduced by Hochreiter &

Schmidhuber [29] which was then popularised and refined

by many people in various industries as it works extremely

well on a variety of problems. Fig. 7 shows how each

block of LSTM network interacts with each other.

Fig. 7: LSTM network diagram

Fig.8 shows the details of the LSTM block [28]. In Fig.

8, each line carries an entire vector, from the output of

one node to the inputs of the others. The grey circles

represent pointwise operations, similar to vector addition,

while the orange boxes are learned neural network layers.

Lines (vector transfer) denote content going to different

locations.

Fig. 8: LSTM block diagram

The computational formulas [30], [31] in an LSTM block

are defined as follows:

ft = σ(Wf .[ht−1, xt] + bf ) (5)

it = σ(Wi.[ht−1, xt] + bi) (6)

Ḉt = tanh(Wc.[ht−1, xt] + bc) (7)

Ct = ft.Ct−1 + it.Ḉt (8)

ot = σ(Wo.[ht−1, xt] + bo) (9)

ht = ot.tanh(Ct) (10)

Where, t : Time step, xt : Input value, ht : Output value,

ot : Output gate, ft : Forget gate, it : Input gate, Ct : Cell

state, Ḉt : Candidate value, Wo : Output gate weights,

Wi : Input gate weights, Wf : Forget gate weights, Wc :

Cell state weights, bo : Output gate bias value, bi : Input

gate bias value, bf : Forget gate bias value, bc : Cell state

bias value, and σ : Gate state.

There are three gates in the block that manage the block

state and output:

– Forget Gate ft: decides the information to throw in

the block.

– Input Gate it: decides which input values to update

the memory state.

– Output Gate ot: decides the output depending on the

input and memory state.

Each block represents a mini-state machine where gates

have weights that are learned during the training procedure
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[32]. This allows the creation of large LSTM to address

complex sequence problems and achieve optimal results.

• Gated Recurrent Unit (GRU)

A variation of the LSTM is the Gated Recurrent Unit

(GRU) which was introduced by Cho, et al. [30]. This

system has a single update gate which combines the input

and output gate. It also merges the hidden and cell state

which makes a simplified model than a standard LSTM

model. Fig. 9 shows the details of the GRU model [28].

Fig. 9: GRU block diagram

The GRU layer is derived from the LSTM layer which

results in similar equations:

zt = σ(Wz.[ht−1, xt]) (11)

rt = σ(Wr.[ht−1, xt]) (12)

h
˘
t = tanh(W.[rt.ht−1, xt]) (13)

ht = (1− zt).ht−1 + zt.h
˘
t (14)

Where, t : Time step, xt : Input value, ht : Output value,

rt : Reset gate, zt : Update gate, h
˘
t : Candidate value,

Wr : Reset gate weights, Wz : Update gate weights, W :

Candidate gate weights, and σ : Gate state.

The reset gate determines the new input and previous

memory combination and the update gate determines the

amount of previous memory to be kept. The idea of using

a gating mechanism is similar to LSTM with an objective

to learn long-term dependencies. The key differences are:

– GRU has two gates while LSTM has three.

– GRU does not have output gate and internal memory.

– GRU trains faster due to lesser parameters.

GRU and LSTM models had solved the long term

dependencies issues but the trade-off of both system are

not fully explored [32].

• State of Prediction Model (sp(n)) The State of Prediction

Model (sp(n)) determines the abnormally for energy theft

in stage 1. The following formulas were used for this

stage:

– The number of hidden layer [33] :

nh =
(ni + no)

2
+
√
nt (15)

Where, nh : Number of the hidden layer, ni : Number

of the input layer, n0 : Number of the output layer,

and nt : Number of the training sets.

– The Mean Absolute Percentage Error (MAPE):

MAPEn =
100

n

n
∑

i=1

|Ai − Fi

Ai

|, where Ai 6= 0

(16)

Where, n : Number of data, Ai : Actual output data,

and Fi : Forecast output data.

– The Absolute Percentage Error (APE):

APEn = 100(|An − Fn

An

|), where An 6= 0 (17)

where APEn= Absolute Percentage Error for n.

– The state of prediction:

sp(n) =

{

0, if APEn ≤ MAPEn

1, otherwise
(18)

Where, sp(n) : State of prediction model decision

making condition.

b) Stage 1: Procedures: The following steps are taken

for this stage:

• Step 1: Pre-process the data to accumulative data.

• Step 2: Using prediction model to predict the data.

• Step 3: Using Mean Absolute Percentage Error (MAPE)

to dictate the best prediction model.

• Step 4: Use the updated MAPE to compare with Absolute

Percentage Error (APE) for every hour.

• Step 5: If sp(n) = 1 then go to the next stage, otherwise

go to the next iteration.

2) Stage 2: Primary Decision Making Model: This stage

uses Simple Moving Average (SMA) to determine the energy

theft predictions.
a) Stage 2: Algorithms: The following formulas are used

for this stage:

• The Simple Moving Average (SMA):

SMA(n) =
1

n

n
∑

i=1

xi (19)

Where, n: The number of hours for SMA and x: The

variable for the hour in the list.

• The Maximum SMA difference algorithm:

SMA(md) = max
i∈n

f(|SMA(i) − SMA(i−1)|),

where n 6= 0
(20)

Where, SMA(md): Maximum of the SMA difference

between before and after.

• The state of hours:

sh(n) =

{

0, if (SMAn − SMAn−1) ≤ 3
4SMA(md),

1, otherwise
(21)
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Where, sh(n) : State of hours algorithm decision making

condition.

b) Stage 2: Procedures: The following steps are taken

for this stage:

• Stage 2.1: Continuous Hour Model:

– Step 1: Calculate Simple Moving Average (SMA)

using 24 hours period.

– Step 2: Find the difference between the SMA calcu-

lation for the last hour and the current hour after 25

hours of measured data.

– Step 3: Use the Maximum SMA difference algorithm

and proceed to the state of hours algorithm.

– Step 4: If sh(n) = 1 then start the Same Day and

Hour Model, otherwise go to the next iteration.

• Stage 2.2: Same Day and Hour Model:

– Step 1: Rearrange the data according to the day and

hour.

– Step 2: Calculate SMA using 4 hours of data from

the same day and hour from different dates.

– Step 3: Find the difference between the SMA calcu-

lation for the last point and the current point after 5

points of measured data.

– Step 4: Use the Maximum SMA difference algorithm

and proceed to the state of hours algorithm.

– Step 5: If sh(n) = 1 then go to the next stage,

otherwise go to the next iteration.

3) Stage 3: Secondary Decision Making model: This stage

uses the user’s history to find the occasional maximum power

usages.
a) Stage 3: Algorithms: The following formulas are used

for this stage:

• The Maximum wattage:

P(md) = max
i∈n

f(|P(i)|) (22)

Where, P(md): The maximum power from the list of

measurement.

• The state of energy theft:

sets(n) =

{

0, if 3
4P(md) ≤ Pn ≤ P(md)

1, otherwise
(23)

Where, sets(n) : State of energy theft algorithm decision

making condition.

b) Stage 3: Procedures: The following steps are taken

for this stage:

• Step 1: Find the Maximum watt and proceed to the state

of energy theft algorithm.

• Step 2: If sets(n) = 1 then possible energy theft, otherwise

unexpected high consumption usage from consumers.

• Step 3: Proceed to next iteration.

After all the stages are completed, it will move to the next

period and repeat the process from stage 1. However, SETS

requires at least 5 weeks of non-malicious data collection at

every hour in order for the system to learn from the historical

data. This learning will be constantly updated for real-time

monitoring and it can increase its accuracy with more data

coming in.

IV. SIMULATION STUDIES AND RESULTS

A. Experiment Setup and Data Collection

The Aeon Labs Z-Wave UK Plug-in Switch plus Power Meter

were installed on every available energy consumption devices

in the experimental house. Then, the data was collected through

a centralised smart device called VeraEdge Home Controller.

Fig. 10 shows the demand data collected from the experimental

house. The data collected from 04/12/2016 – 02/04/2017 were

in kilowatt (kW) and timestamp (DD/MM/YYYY HH:MM).

Fig. 10: Plot of experimental house demand data

B. Smart Energy Theft System (SETS) Results

The SETS was tested using simulated energy theft scenarios.

The scenario was created by randomly stealing energy on 50

different periods. Fig.11, 12, 13, and 14 show the respective

prediction results for MLP, RNN, LSTM, and GRU.

Fig. 11: MLP prediction result

Fig. 12: RNN prediction result
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Fig. 13: LSTM prediction result

Fig. 14: GRU prediction result

Table I shows the MAPE results for different forecasting

systems. The best MAPE result was 0.18% which was

considered most suitable method as compared to other methods

tested.

TABLE I: SETS: Prediction model MAPE results

Prediction model MLP RNN LSTM GRU

MAPE(%)-Train 33.99 2353.23 5.48 11.20
MAPE(%)-Test 0.18 68.83 0.81 1.32

Fig.15 shows the stage 2 alert system for Smart Energy

Theft System (SETS). These results were obtained after the

data processed through stage 2 in SETS.

Fig. 15: SETS: Stage 2 alert notifications

In Fig.15, the alert notifications were made after processing

through stage 2. It filters the abnormally from stage 1 and

proceeded to stage 3 if it is not able to make a decision.

Fig.16 shows the stage 3 final stage alert system for Smart

Energy Theft System (SETS). These results were obtained after

the data processed through stage 2 and 3 in SETS.

Fig. 16: SETS: Stage 3 alert notifications

In Fig.16, the final stage alert notifications were made from

filtering stage 2 and using stage 3 algorithms. This results in

99.96% accuracy of classifications using SETS with all stages

implemented.

C. Discussion

Table II shows classification results for different cases with

the same energy theft scenario. The cases in Table II were done

by randomly stealing the energy of 50 different periods. These

conditions were maintained to present a fair environment for

the detection capability of Smart Energy Theft System (SETS).

TABLE II: Summary of classification results in different stages

SETS Case Studies Classification Accuracy (%)

Case 1: Stage 1 56.39
Case 2: Stage 2 99.46
Case 3: Stage 3 0.68

Case 4: Stage 1 & 3 56.87
Case 5: Stage 2 & 3 99.89
Case 6: Stage 1 & 2 99.89
Case 7: All Stages 99.96

Table III shows classification results for different sub-cases

with the same energy theft scenario.

TABLE III: Summary of classification results for sub-cases

SETS Sub-Case Studies Classification Accuracy (%)

Sub-Case 1: Stage 2.1 2.04
Sub-Case 2: Stage 2.2 19.39

Sub-Case 3: Stage 2.1 & 3 99.39
Sub-Case 4: Stage 2.2 & 3 99.32
Sub-Case 5: Stage 1 & 2.1 99.4
Sub-Case 6: Stage 1 & 2.2 99.4

Case 1, 2, and 3 were a single stage detection system. Case

4, 5, and 6 were 2 stages detection systems. Case 7 represents

the Smart Energy Theft System (SETS).

Case 1, 2, and 3 achieved classifications accuracy of 56.39%,

99.46%, and 0.68%. Among the single stage detection systems,

case 3 had the worst accuracy result while case 2 had the best

accuracy results. However for case 2, further findings were

found by separating stage 2 into stage 2.1 (Continuous Model)

and stage 2.2 (Same Day and Hour Model). Sub-cases 1 and

2 achieved just 2.04% and 19.39% respectively. Case 2 had

further demonstrated that by integrating the 2 models, it shows

tremendous improvements for detection techniques.

Case 4, 5, and 6 achieved classifications accuracy of 56.87%,

99.89%, and 99.89%. Among the 2 stages detection systems,

case 4 had the worst accuracy result while case 5 and 6 had

the best accuracy results. 2 stages integration results show

improvements compared to single stage detection systems.

Case 5 was further analysed in sub-case 3 and 4. Sub-case 3

had a 99.39% accuracy and sub-case 4 achieved 99.32%. Case
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6 was also further analysed in sub-case 5 and 6. Sub-cases 5

and 6 had both achieved 99.4%. Case 7 was done using SETS

to achieve a classification accuracy of 99.96%.
After reviewing all the cases, it shows significant increment

by integrating the different stages in SETS. By using a single

detection system, detection accuracy results like Case 1 and

3 would not be efficient enough for energy theft situations.

By integrating 2 detection systems, although case 4 was

still not efficient but case 5 and 6 had shown considerable

improvements on its classification accuracy. Ultimately, this

led to an integration of all 3 detection techniques with the best

classification accuracy among all cases.

V. CONCLUSIONS

In this paper, an innovative Smart Energy Theft System

(SETS) is proposed for energy theft detection. A Multi-Model

Forecasting System based on the integration of machine

learning models such as Multi-Layer Perceptron (MLP), Re-

current Neural Network (RNN), Long Short Term Memory

(LSTM), and Gated Recurrent Unit (GRU) was developed as

part of SETS. Additionally, a statistical model called Simple

Moving Average (SMA) was also further developed into SETS.

These algorithms enable SETS to efficiently detect energy

theft activities. The evaluation of its system carried out in

a Singapore home environment. Stage 1 has an energy theft

accuracy result of 56.39%, by adding stage 2 has 99.89%

and all 3 stages present the evidence of its energy detection

algorithm accuracy of 99.96%. In conclusion, SETS enhances

the security of the Internet of Things (IoT) based smart home

systems from energy theft and can be further implemented in

commercial and industrial sectors.
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