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ABSTRACT Deep embedding learning aims to learn discriminative feature representations through a deep 

convolutional neural network model. Commonly, such a model contains a network architecture and a loss 

function. The architecture is responsible for hierarchical feature extraction, while the loss function 

supervises the training procedure with the purpose of maximizing inter-class separability and intra-class 

compactness. By considering that loss function is crucial for the feature performance, in this paper we 

propose a new loss function called soft margin loss (SML) based on a classification framework for deep 

embedding learning. Specifically, we first normalize the learned features and the classification weights to 

map them into the hypersphere. After that, we construct our loss with the difference between the maximum 

intra-class distance and minimum inter-class distance. By constraining the distance difference with a soft 

margin that is inherent in the proposed loss, both the inter-class discrepancy and intra-class compactness of 

learned features can be effectively improved. Finally, under the joint training with an improved softmax 

loss, the model can learn features with strong discriminability. Toy experiments on MNIST dataset are 

conducted to show the effectiveness of the proposed method. Additionally, experiments on re-identification 

tasks are also provided to demonstrate the superior performance of embedding learning. Specifically, 

65.48% / 62.68% mAP on CUHK03 labeled / detected dataset (person re-id) and 74.36% mAP on VeRi-

776 dataset (vehicle re-id) are achieved respectively. 

INDEX TERMS Soft margin loss, deep embedding learning, feature representation, person re-identification, 

vehicle re-identification. 

I. INTRODUCTION 

Deep embedding learning focuses on learning discriminative 

representations from input data, whose fundamental purpose 

is to pull similar samples close and push dissimilar samples 

away. This intuitive but practical principle enables 

embedding learning to be widely applied in various fields 

including person re-identification [1], [2], [3], vehicle re-

identification [4], [5], face recognition [6], [7], [8], [9], etc. 

In general, a deep embedding learning framework comprises 

two basic components: network architecture and loss 

function. The network architecture usually consists of 

cascaded deep convolutional neural networks which can 

extract highly abstract representations of the input images 

through its strong non-linear transformation ability and map 

them into an embedding space. Then the loss function is used 

to enhance the discriminability capacity of learned features in 

the embedding space by constraining their intra-class and 

inter-class relationships. Since existing deep models have 

enough power to extract informative features of input images, 

the loss functions play a critical role in discriminative 

embedding learning. 

Most of loss functions used in embedding learning directly 

constrain the distance between samples [3], [7], [10], [11]. 

An intuitive and typical loss function is contrastive loss [10] 

which pulls a pair of samples together if they belong to the 

same class and pushes them away by a margin if they come 

from different classes. Another extensively used loss function 

is triplet loss [3], [7]. It also adopts a margin to decrease the 

distance between an anchor and a positive sample and 

increase the distance between the anchor and a negative 
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sample. As a predefined margin is involved in the expression 

of loss function, it is tricky to select an optimum margin 

parameter for both contrastive loss and triplet loss in the 

training procedure. Recently, loss functions that used for 

classification tasks are gradually applied to guide embedding 

learning via the form of classification. The most 

representative loss functions are the several variants of 

softmax, such as L-Softmax [12], A-Softmax [9], ArcFace 

[6], and so on. They have been proved to be practical and 

effective for embedding learning. However, the softmax 

based loss functions only try to separate the features of 

different classes from the training set instead of learning 

discriminative features directly. Thus large intra-class 

variations cannot be handled well in the training process. 

Therefore, to alleviate these problems in the discriminative 

embedding learning, we present a novel loss function named 

soft margin loss (SML) in this paper. We first normalize the 

learned features and classification weights thus these vectors 

are mapped into the hypersphere. By regarding the 

classification weights as class centers, the intra-class distance 

can be calculated as the distance between the center and the 

feature, and the inter-class distance can be calculated as the 

distance between different class centers. A simple 

diagrammatic illustration is shown in the left of Figure 1, 

where the solid dots denote the normalized features and the 

hollow dots denote the normalized classification weights 

(a.k.a., the class centers). Different classes are represented 

with different colors. Theoretically, the learned features are 

well separable once the maximal intra-class distance is 

smaller than the minimal inter-class distance, and the 

discriminability power of learned features will be enhanced 

as the difference of these two distances decreases. Therefore, 

we select the difference of the maximal intra-class distance 

and the minimal inter-class distance as a constraint objective 

in our loss. Then we constrain the distance difference with a 

soft margin in our proposed loss whose general formulation 

and the curve characteristic are shown in the right of Figure 1. 

 

FIGURE 1.  The illustration of our proposed soft margin loss. Left: A 
diagrammatic demonstration of the maximal intra-class distance (d) and 
the corresponding minimal inter-class distance (D) in a 2-D embedding 
space. Right: the general formulation and variation curve of the 
proposed soft margin loss. Best viewed in color. 

From the loss curve, we can find that the proposed soft 

margin loss has some superiorities for embedding learning. 

On the one hand, the proposed loss strictly penalizes the 

embedding distances when the difference of the maximal 

intra-class distance and the minimal inter-class distance is 

larger than zero. On the other hand, our loss still provides the 

constraint power with a soft margin when the difference is 

smaller than zero. Compared with some fixed margin-based 

losses, our proposed loss is more flexible in feature learning 

and its parameter setting of the model training is less 

empirical. Under the constraint of the soft margin loss, the 

within-class compactness and between-class discrepancy of 

learned features are effectively improved, which is favorable 

to discriminative embedding learning. 

We organize the rest paper as follows: Section II gives an 

introduction of some related works about loss function in the 

field of deep embedding learning. Section III describes the 

proposed soft margin loss in detail and introduces the joint 

training scheme with the improved softmax. Section IV 

demonstrates the effectiveness and superiority of the soft 

margin loss via MNIST experiments and some re-

identification experiments. After that, Section V compares 

our loss with some similar works. Finally, Section VI draws 

some conclusions about our works. 

II. RELATED WORKS 

In recent years, embedding learning has attracted a great 

interest in the computer vision community and has been 

extensively applied in many popular fields including person 

re-identification, vehicle re-identification, image retrieval and 

face recognition, etc. The key idea of embedding learning is 

to learn a satisfactory embedding space where the intra-class 

compactness and inter-class separability are as large as 

possible. In the discriminative embedding learning, many 

works [3], [7], [9], [10], [12], [13], [14] focus on the design 

of loss function which can provide a powerful and clear 

supervision for discriminative feature learning. In this section, 

we will give a view of some loss functions that are frequently 

used for embedding learning. 

Metric loss: In deep learning framework, the metric loss is 

usually used to constrain the distances between learned 

features. It accords with the aim of embedding learning 

which keeps semantically related images close and unrelated 

images far away in the embedding space. Therefore, various 

metric losses [1], [3], [7], [10], [11], [15] are extensively 

applied in embedding learning. 

One of the most concise and intuitive metric losses is the 

contrastive loss [10]. It takes a couple of images as the inputs 

and pulls the distance between the images if they belong to 

the identical class or pushes them away by a margin if they 

come from different classes. For example, Varior et al. [11] 

applied the contrastive loss in a gated siamese convolutional 

neural network for person re-id task. Similarly, Taigman et al. 

[16] used the contrastive loss in the face verification with a 

siamese network. Although the contrastive loss is verified to 

be effective in many tasks, the number of pairwise 

comparison will be tremendous as the scale of dataset grows 

up, which makes the model training inefficient. Besides, the 

d 
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margin parameters need to be tuned and chosen 

experimentally for different tasks. 

Another widely used metric is the triplet loss [3], which 

takes a triplet as the input that comprises an anchor image, 

positive image and negative image. Instead of directly 

constraining the distance between two images, the triplet loss 

constrains the distance between a positive pair to be smaller 

than the distance between a negative pair by a predefined 

margin. In this way, the triplet loss can handle triplet images 

in each iteration and the introduced margin can impose 

relatively slack but flexible restrictions among the triplet 

samples. The triplet loss is extensively used for embedding 

learning due to its inherent merits. For example, Schroff et al. 

[7] and Cheng et al. [15] used the triplet loss to learn a 

discriminative embedding for face recognition and person re-

identification respectively. Hermans et al. [3] adopted a hard 

sampling mining technique in the triplet loss and verified its 

effectiveness for person re-identification tasks. Motivated by 

the triplet loss, Chen et al. [1] put forward a novel quadruplet 

loss in which an anchor image, a positive image and two 

negative images are used to compute the loss. It considers not 

only a relative distance but also an absolute distance between 

the positive pair and negative pair. The quadruplet loss can 

improve the performance by learning features with a larger 

between-class discrepancy and a smaller within-class 

variation, which is beneficial to discriminative embedding 

learning. 

Classification loss: Although it is widely used in 

classification tasks, the classification loss (e.g., softmax loss 

or its variants) has been demonstrated to be effective for 

embedding learning. Therefore, various works tried to 

improve the original softmax loss for discriminative 

embedding learning. For example, Liu et al. [12] proposed L-

Softmax to improve the discriminability of learned features 

by adding an angle margin in the original softmax loss. 

Based on L-Softmax, Liu et al. [9] proposed A-Softmax for 

discriminative embedding learning by normalizing the 

weights and imposing an angular margin. To further 

efficiently enlarge the inter-class distance and decrease the 

intra-class distance, Wang et al. [8] and Deng et al. [6] both 

normalized the features and classification weights, then 

proposed LMCL (large margin cosine loss) and ArcFace 

(additive angular margin loss) respectively to learn more 

discriminative embeddings for face recognition. 

Combination of various losses: By considering the great 

successes of the metric loss and classification loss in 

embedding learning, many research works [13], [14], [17], 

[18] tried to combine these various losses for discriminative 

embedding learning. For instance, Choi et al. [17] proposed a 

joint training scheme of an angular margin contrastive loss 

and softmax loss to obtain discriminative deep features for 

image classification. Luo et al. [18] introduced a framework 

for person re-identification where the triplet loss and softmax 

loss are used together to improve the discriminability of 

learned features. Wen et al. [14] learned discriminative face 

representations with the joint optimization of a center loss 

and softmax loss in which the center loss is applied to further 

shrink the intra-class variation of each class. By considering 

the within-class variation and between-class relationship 

simultaneously, He et al. [13] put forward a triplet-center 

loss which combines the center loss with triplet loss, and 

used a joint training scheme with softmax loss for 3D object 

retrieval. 

III. PROPOSED METHODS 

In this section, we firstly review the original softmax loss 

function and its improved version which is beneficial to 

discriminative feature learning. After that, we detail our 

proposed soft margin loss. Finally, we present the joint 

training scheme of the improved softmax loss and the soft 

margin loss in our method. 

A. PRELIMINARIES 

A typical softmax loss comprises a softmax activation and 

cross-entropy loss. Softmax loss converts the model output 

into the class predictions by the softmax activation and 

calculates the loss via the cross-entropy. The original 

softmax loss can be expressed as: 
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where i is the index of a sample in a batch of training data, 

and if  indicates the deep feature of i-th sample whose class 

label is iy . jW  and jb  represent the j-th weight column 

vector in the last fully connected (FC) layer and 

corresponding bias respectively. C is the class number, and n 

is the size of the batch. 

Some works [6], [8] have shown that better model 

performance can be obtained by eliminating the bias item and 

the magnitude influences of both the features and 

classification weights. Specifically, the logit [19] item 
T
j i jW f b is transformed as cos( )j i jW f   with ignoring 

the bias jb . j  is the angle between jW  and if . By fixing 

the weight 1jW   and the embedding feature jf s  with 

L2 normalizations respectively, the logit item can be 

simplified as cos( )js  , where s  serves as a scale factor 

that controls the range of the feature space. Finally, the 

improved softmax can be expressed as follows: 
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With the normalizations of classification weights and 

features, the classification scores only depend on the angle 

between the feature and corresponding classification weight. 

Thus the learned features are angularly separable in the 

hypersphere. In this paper, we name the improved softmax 
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expressed in equation (2) as normalized softmax loss (NSL) 

to distinguish the original softmax loss. 

B. THE PROPOSED SOFT MARGIN LOSS 

Softmax loss can learn a fine embedding space for input 

images. However, once the images are well classified in the 

embedding space, softmax loss lacks a distinct and strong 

supervision to continuously pull the similar images close and 

push the dissimilar images away. So it is hard for the model 

to mine enough discriminative information of input images. 

Therefore, we propose the soft margin loss for discriminative 

embedding learning. Concretely, we first normalize the 

features and classification weights as the same processing in 

the NSL. After that, we regard the normalized classification 

weights in the last FC layer as the center of each class. In this 

way, the intra-class distance could be represented as the 

cosine distance between the center and the feature coming 

from the same class, and the inter-class distance can be 

represented as the cosine distance between the different 

centers. To constrain the intra-class and inter-class distance 

strictly, we use the difference of the maximal intra-class 

distance and the minimal inter-class distance as the constraint 

objective of the proposed loss. Finally, the specific 

formulation of the soft margin loss is given by: 
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where   is a moderating factor to adjust the strength of the 

soft margin. 

Our proposed soft margin loss has three superior 

properties. First, since the features and classification weights 

are normalized into the hypersphere, the intra-class and inter-

class distances are irrelevant to the magnitudes of both 

features and classification weights. Thus the soft margin loss 

calculated by these distances can efficiently guide the 

embedding learning. Second, the soft margin loss can 

generate a strict penalty when the difference of the maximal 

intra-class distance and the minimal inter-class distance is 

larger than zero. It means that the soft margin loss can help 

the model learn a correct classification quickly at the initial 

training stage. Third, even if the distance difference is 

smaller than zero, the proposed loss still provides a soft 

margin to help the model mine the discriminative 

information from the input data. On the one hand, this soft 

margin can help discriminative embedding learning via 

further improving the within-class compactness and between-

class discrepancy. On the other hand, the softness of the 

margin can provide flexibility during the model training 

procedure compared with a fixed margin. Therefore, the 

proposed soft margin loss could be used for discriminative 

embedding learning. 

C. JOINT TRAINING 

The classification loss can learn a fine embedding space but 

lacks a distinct and strong supervision signal to continuously 

enlarge between-class discrepancy and shrink within-class 

compactness. The metric loss can be used for discriminative 

embedding learning but encounters the low convergence 

problem. Therefore, in this paper, we introduce a joint 

training scheme to combine the normalized softmax loss and 

the proposed soft margin loss. Thus the final loss 

representation is: 

 NSL SMLLL L  , (4) 

where   is a parameter to balance the normalized sofrmax 

loss and the soft margin loss. Different from most joint 

training schemes that directly use softmax loss, our method 

applies the normalized softmax loss in the joint training. 

Since the features and classification weights are regulated by 

the L2 normalization, the normalized softmax loss is only 

relevant to the angles between the features and classification 

weights. Therefore, the optimization targets of these two 

losses are consistent during the training procedure. 

IV. EXPERIMENTS 

In this section, we first carry out some toy experiments based 

on MNIST dataset to intuitively show the superiority of the 

proposed loss by comparing with the original softmax loss 

and the normalized softmax loss. Subsequently, we further 

demonstrate the effectiveness of our method on re-

identification tasks, including person re-identification and 

vehicle re-identification. Both of them can be regarded as an 

image retrieval problem [20], which retrieves similar images 

to a query image among a large dataset. 

A. TOY EXAMPLES ON MNIST 

MNIST dataset [21] is the most popular hand-written digit 

benchmark dataset. It includes a total of 70000 images of 10 

types of numbers from 0 to 9, where 60000 images are used 

for training and the rest 10000 images are used for testing. 

For convenience, we use a concise CNN model to conduct 

the MNIST experiments with the original softmax, the 

normalized softmax and the normalized softmax with soft 

margin loss respectively. All model parameter settings are 

the same except the loss function used in the network. To 

intuitively demonstrate the effects of three different losses, 

we visualize the learned features by setting their dimension 

as 2 and projecting them into 2-D embedding space. The 

results are illustrated in Figure 2. The first row denotes the 

features without normalization and the second row represents 

the corresponding features with normalization. 

From the feature distributions in Figure 2, we can see that 

the features learned by the original softmax are well 

separable in the embedding space while they have poor intra-

class compactness. For the features learned by the 

normalized softmax, we can find that the intra-class 

compactness has been improved greatly since the features 

and classification weights are normalized into hypersphere. 

In spite of the satisfactory feature embedding characteristics, 

preferable intra-class compactness can be obtained by adding 
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the soft margin loss to the normalized softmax. From the 

results trained by the normalized softmax with soft margin 

loss, we can obviously observe that the intra-class variance 

becomes smaller than that of the normalized softmax, which 

means that the feature discriminations are further 

strengthened. 

  

   
(a) Original Softmax                       (b) Normalized Softmax              (c) Normalized Softmax with SML 

FIGURE 2.  Experimental results based on MNIST dataset with original softmax, normalized softmax and normalized softmax with soft margin loss 
(SML) respectively. The first row represents the data distributions of original features in 2-D embedding space and the second row represents the 
corresponding normalized features. From the results, we can see that the features learned by original softmax have less within-class compactness 
while the normalized softmax can effectively improve the within-class compactness by normalizing the features and classification weights. On the 
basis of the normalized softmax, the soft margin loss constrains both the within-class compactness and between-class discrepancy of features 
simultaneously thus the learned features are more discriminative. Best viewed in color. 

From our observations in the MNIST experiments, some 

conclusions can be drawn. First of all, it is practicable to use 

the classification loss for the embedding learning. However, 

the features learned by softmax loss are less discriminative 

because the original softmax mainly focuses on the 

separability of learned features. Second, the normalized 

softmax improves the discriminability of feature embedding 

by regulating the magnitudes of both features and 

classification weights as constants. In this way, the model 

only focuses on the cosine distances between features during 

the training procedure. Thus the learned features are more 

discriminative than that learned from the original softmax. 

Third, on the basis of the normalized softmax, the proposed 

soft margin loss explicitly constrains the inter-class and intra-

class distances between features. Therefore, with the joint 

training of the normalized softmax loss and the proposed soft 

margin loss, the learned features can obtain powerful 

discriminability. Based on the experimental results on 

MNIST as well as above analysis, the proposed soft margin 

loss shows its superiority and latent capacity for 

discriminative embedding learning. 

B. EXPERIMENTS ON RE-IDENTIFICATION TASKS 

1) DATASET DESCRIPTIONS 

CUHK03 [22] is an extensively used person re-id dataset 

which is collected by 5 pairs of cameras in CUHK campus. 

CUHK03 contains 14096 images of 1467 person identities. 

For practical applications, CUHK03 dataset provides not 

only manually cropped pedestrian images, but also 

automatically detected bounding boxes. However, the dataset 

is originally designed for a single-shot situation which cannot 

comprehensively evaluate the performance of person re-id 

tasks. Therefore Zhong et al. [23] introduced a new protocol 

for training/testing. Specifically, 767 person identities are 

allocated to the training set and the rest 700 person identities 

are used as the testing set. We use the new protocol of 

CUHK03 in our experiments. During the training procedure, 

we rescale the input images to 288×144 and randomly crop 

them to 256×128. Then the images are horizontally flipped 

with the probability 0.5. As most re-id tasks do, we 

normalize the image RGB channels by subtracting (0.485, 

0.456, 0.406) and dividing (0.229, 0.224, 0.225), respectively. 

Moreover, a random erasing operation [24] is used on the 

training images as a kind of data augmentation trick to 

enhance the robustness of the model. In the testing phase, the 

images are resized to 288×144. The same normalization 

operation is done before the images are fed into the testing 

network. It is worth noting that the final feature embedding is 

the average of features from the original image and its 

horizontally flipped version. 

VeRi-776 [25] is a large scale publicly available vehicle 

dataset built from the VeRi dataset [26], which is collected in 

a real-world traffic scene by 2 to 18 cameras at different 

viewpoints, illuminations, resolutions and occlusion 

conditions. After the expansion from the VeRi dataset, VeRi-

776 contains 776 different vehicles, including 37781 pictures 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3036185, IEEE Access

6 VOLUME XX, 2017 

of 576 vehicles in the training set and 11579 pictures of 200 

vehicles in the testing set. Different from the preprocessing 

of the person re-identification task, the training vehicle 

images are rescaled to 288×288 and cropped to 256×256 

randomly. Then the same horizontal flipping operation, 

normalization and random erasing trick are conducted 

sequentially. For testing, the vehicle images are resized to 

256×256. Similarly, the features that learned from the 

original image and the horizontally flipping image are 

averaged as the final embedding. 

2) NETWORK ARCHITECTURE 

We construct our model based on ResNet-50 [27] which is 

pretrained on ImageNet [28]. Concretely, we modify the 

structure of ResNet-50 to make it meet the requirements of 

our method. For example, the last FC layer of ResNet-50 is 

removed and the stride of the last layer is reduced to 1 from 2. 

Furthermore, we add some layers behind the ResNet-50 for 

performing re-id tasks efficiently. Specifically, a global 

average pooling (GAP) layer is attached to ResNet-50 for 

integrating the feature maps with averaging operation. The 

next is a batch normalization (BN) layer which is used for 

accelerating the model convergence. Then a FC layer is 

applied to compress the feature dimension from 2048 to 1024. 

Through another batch normalization layer, the learned 

features and their corresponding classification weights are 

normalized in an L2 layer. The whole network architecture is 

illustrated in Figure 3. During the training procedure, the 

normalized softmax loss will be calculated by feeding the 

features to a classification layer (a FC layer), and the soft 

margin loss will be computed with normalized features and 

classification weights. 

 

FIGURE 3.  The network architecture for our re-id experiments, where the backbone is constructed with ResNet-50. Then some auxiliary layers 
including GAP layer, BN layer, FC layer and L2 layer are added behind the ResNet-50. In the training stage, the model is trained by the normalized 
softmax loss (NSL loss) and the soft margin loss (SML loss). In the testing stage, the last fully connected layer is removed so the network becomes a 
feature extractor which can automatically extract features from input images. 

3) EXPERIMENTAL SETTINGS 

All experiments are conducted in the Pytorch [29] framework 

with an NVIDIA GTX 1080 Ti GPU. Except for the tiny 

difference in the data preprocessing, we keep all the network 

parameters same in the person and vehicle re-identification 

tasks, which can illustrate the generalization ability of our 

proposed method. 

In many re-identification datasets, the available images of 

each class are usually quite different in the number. 

Therefore, the model may tend to overfit the class with 

abundant images and ignore the class with few images. 

Therefore, we use a balanced sampling scheme [2] in which 

the sampled classes and corresponding images are stationary 

in each mini batch. Specifically, P classes are randomly 

selected without replacement in each epoch. Then for every 

class, we randomly select K images for training. The images 

will be replaced if the number of images is less than K. So, 

there are always P*K images in a mini batch, and we set P 

and K as 16 and 4 respectively in the experiments. 

Besides, we adopt Adam [30] optimizer to update model 

parameters during the training. We set the total epoch as 150 

and use a warm-up strategy [2] during the initial 20 epochs. It 

means that the learning rate will increase continuously from a 

small value. Concretely, the learning rate linearly increases 

from 10
-5

 to 10
-3

 in the first 20 epochs. Since the model may 

tackle different tasks (e.g., person or vehicle re-identification 

tasks), a relatively small learning rate is beneficial for the 

model to obtain a well initial state in different tasks. After the 

warm-up stage, the learning rate remains at 10
-3

 until 90th. 

Then the learning rate is decayed by 0.1 at 90th and 130th 

separately to fine-tune the parameters. 

Moreover, we apply a hard mining strategy in our method 

which can enhance the generalization ability of the learned 

model. More specifically, we sort a batch of samples 

according to the predictions of the normalized softmax in 

descending order, and take the first 80% of the samples to 

update the parameters of our model. Besides, the scale 

parameter s in normalized softmax is 14, the moderating 

factor   in the proposed soft margin loss is 0.2 and the 

balance weight   for soft margin loss is set as 1.0. 

4) EXPERIMENTAL RESULTS 

In re-identification tasks, cumulative match characteristic 

(CMC) and mean average precision (mAP) are two widely 

used evaluation metrics. CMC gives the average probability 

that the image which matches with a specific query image 

arises in the first-k candidates of the gallery set. However, 

when there are multiple matching images in gallery (e.g., 

person re-identification task), CMC metric will be deficient 

and cannot evaluate the method comprehensively. Therefore, 

many re-id tasks use mAP evaluation which considers all true 

matches and returns the mean average precision. In our 

BN FC BN L2 

 

ResNet-50 

SML loss 

FC 
NSL loss 

Inputs 

GAP 
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experiment, we report values of CMC at Rank-1 and mAP 

for the person and vehicle re-identification tasks. 

The experimental results and comparisons with 

corresponding state-of-the-art works on person and vehicle 

re-identification tasks are given in Table 1 and Table 2 

respectively. In both re-id tasks, the models trained by the 

normalized softmax are treated as the baseline model. 

TABLE 1.  The results of our method and some state-of-the-art works 
on CUHK03 dataset.  

Methods 
Labeled Detected 

mAP Rank-1 mAP Rank-1 

DaF [31] 31.5 27.5 30.0 26.4 

PAN [32] 35.0 36.9 34.0 36.3 

SVDNet [33] 37.83 40.93 37.3 41.5 

DPFL [34] 40.5 43.0 37.0 40.7 

HA-CNN [35] 41.0 44.4 38.6 41.7 

MGCAM-Siamese [36] 50.21 50.14 46.87 46.71 

MLFN [37] 49.2 54.7 47.8 52.8 

PCB+RPP [38] - - 56.7 62.8 

Baseline 63.34 64.43 60.36 61.43 

Ours 65.48 67.86 62.68 64.21 

In the results of person re-identification task, we can find 

that the proposed method outperforms the baseline in 

CUHK03 labeled version and detected version. For example, 

in the labeled version, our proposed method has improved 

performance by +2.14% and +3.43% on mAP and Rank-1. In 

detected version, our method brings +2.32% and +2.78% 

improvements on mAP and Rank-1. Besides, we also make a 

comparison between the proposed method and some state-of-

the-art works such as SVDNet [33] and PCB+RPP [38], etc. 

Compared with PCB+RPP, our results increase by +5.98% 

on PCB+RPP mAP (56.7%) in detected version. 

TABLE 2.  The results of our method and some state-of-the-art works 
on VeRi-776 dataset. 

Methods 
VeRi-776 

mAP Rank-1 

XVGAN [39] 24.65 60.20 

VAMI [40] 50.13 77.03 

PROVID [41] 53.42 81.56 

SDC-CNN [42] 53.45 83.49 

JFSDL [5] 53.53 82.90 

Hard-View-EALN [4] 57.44 84.39 

RAM [43] 61.5 88.6 

QD-DLF [44] 61.83 88.50 

Baseline 73.00 94.87 

Ours 74.36 94.99 

For the vehicle re-id task, we compare the current state-of 

the-art methods with our proposed approach, and the total 

results are recorded in Table 2. Obviously, compared to the 

baseline, the proposed soft margin loss brings improvements 

on both mAP and Rank-1. In specific, there are +1.36% and 

+0.12% increase on mAP and Rank-1 respectively. Besides, 

our method surpasses the most competitive method QD-DLF 

by +12.53% and +6.49% on mAP and Rank-1. The results 

show that the proposed soft margin loss is also effective in 

the vehicle re-identification. 

TABLE 3.  Comparisons between our method and two fix margin based methods on CUHK03 and VeRi-776 datasets. 

Methods m 

CUHK03 labeled CUHK03 detected VeRi-776 

mAP Rank-1 mAP Rank-1 mAP Rank-1 

NSL+Triplet 

0.01 63.29 64.86 60.91 61.79 73.63 94.76 

0.1 63.32 65.29 59.81 62.07 73.31 94.58 

0.3 63.53 65.57 60.29 60.86 73.41 94.40 

0.5 63.74 65.43 61.67 62.93 73.74 93.98 

1.0 65.76 67.71 62.77 64.14 74.43 94.28 

1.5 65.76 67.71 62.77 64.14 74.43 94.28 

LMCL 

0.01 63.12 63.71 61.42 63.36 73.04 94.40 

0.1 63.55 66.50 62.54 63.64 74.92 95.11 

0.3 63.32 64.64 60.71 62.00 75.32 94.87 

0.5 62.15 64.21 58.49 60.43 75.13 94.93 

1.0 61.86 63.50 58.46 59.79 74.54 95.17 

1.5 61.92 63.36 60.22 62.21 74.62 94.76 

Ours - 65.48 67.86 62.68 64.21 74.36 94.99 

 

5) COMPARISONS WITH FIXED MARGIN 

In the proposed loss, we use the “soft” margin to guide the 
training procedure. Here, we try to compare our method with 

fixed margin based loss functions. We choose the triplet loss 

and LMCL [8] for comparative experiments, since the two 

losses are both margin based methods and they represent the 

typical metric loss and classification loss in recent researches. 

For the triplet loss, its formulation is given by: 

    
1

1
max 0, max , min ,

i

C

TRI i j k j
k jy j

j

L f W W W m
C 

      . (5) 
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The definition of intra-class and inter-class distances is same 

with that in the soft margin loss. For fair comparison, we 

jointly optimize the normalized softmax and the triplet loss 

for model training. The total loss can be expressed as 

NSL TRIL L L , Where   is the weight parameter and is 

set as 1 for simplicity. For LMCL with margin m, it can be 

represented as: 

 

(cos )

(cos ) cos( )
1

1
= log

yi

y ji

i

s mn

LMCL
Cs m s

i
j y

e
L

n e e



 

 

  










. (6) 

We keep all the previous experimental settings unchanged 

and substitute the soft margin loss with the triplet loss and 

LMCL. The comparative results with different margins are 

recorded in Table 3. From the results, we can see that the 

mAP values of “NSL+Triplet” on CUHK03 and VeRi-776 

datasets change a lot along with margin m. Besides it exhibits 

a saturation pheromone when m exceeds a large value, e.g. 

m >1.0. LCML has not obvious improvements on CHHK03 

while obtains better accuracy on VeRi-776 with different 

margins. By comparison, our proposed soft margin loss can 

achieve preferable results without a margin parameter, which 

is close to the best performance from the margin based 

methods. 

6) PARAMETER ANALYSIS 

The parameter   denotes the weight of the soft margin loss 

in the joint training scheme. To observe how   impacts the 

model performance, we keep   as 0.2 and vary   from {0.1, 

0.2, 0.5, 1.0, 1.5, 2.0, 5.0} for both CUHK03 and VeRi-776. 

The corresponding results are plotted in Figure 4. For 

CUHK03 labeled version, the value of mAP fluctuates with 

the increasing of   , and mAP achieves the largest value 

when   is 1.0. While for detected version, the mAP keeps a 

steady and slight increase. In the results of VeRi-776 dataset, 

we can see that the mAP increases gradually as   increases 

from 0.1 to 2.0 and declines when   larger than 2.0. 

 

FIGURE 4.  The mAP results corresponding to different values of   on 

both CUHK03 and VeRi-776 datasets. For CUHK03 dataset, the mAP 

value has fluctuation but steady raising with the increase of  . For 

VeRi-776 dataset, the value of mAP raises slightly along with the 

increase of  . 

 

FIGURE 5.  The mAP results corresponding to different values of   on 

CUHK03 dataset and VeRi-776 dataset respectively. For CUHK03 dataset, 
the value of mAP has descending trends on the whole when   is larger 

than 0.2. For VeRi-776 dataset, the value of mAP changes within a 
narrow range. 

We check the influences of the parameter   on the model 

performance with a similar manner. We set   as 1.0 and 

vary   from {0.01, 0.1, 0.2, 1.0, 1.5, 2.0} respectively. The 

corresponding mAP curves are shown in Figure 5. For 

CUHK03 labeled version, the best result is obtained when   

is 0.2. While in CUHK03 detected version, the mAP curve 

roughly shows a decline tendency except a surge where   is 

1.0. For VeRi-776, the mAP raises when   increases from 

0.01 to 0.05 but has an obvious decrease when   is larger 

than 0.5. 

V. DISCUSSION 

Here, we first discuss the relations between our proposed 

method with two similar loss functions, including ArcFace [6] 

and triplet-center loss [13]. ArcFace maps the features and 

classification weights into the hypersphere with the 

normalization operation. Then it constrains the angles 

between features and their corresponding weight by adding a 

fixed margin for discriminative embedding learning. The 

triplet-center loss combines the triplet loss and center loss to 

maximize the intra-class compactness and inter-class 

separability simultaneously, and it performs discriminative 

embedding learning with a joint training scheme of softmax 

loss. 

Compared to the abovementioned approaches, our 

proposed method has three following advantages. First, since 

the difference of maximal intra-class distance and the 

minimal inter-class distance is taken as one of the 

optimization objectives, the proposed soft margin loss can 

learn discriminative features without an empirically fixed 

margin. It is convenient and practicable for the soft margin 

loss to generalize itself in various applications. Second, in the 

soft margin loss, we treat the classification weights as the 
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feature centers when we calculate the inter-class distance and 

intra-class distance. This operation is reasonable in the 

methodology and costless in the calculation. Third, since the 

features and classification weights are normalized in the 

hypersphere, the soft margin loss and the normalized softmax 

have identical optimization goals in the embedding space, i.e., 

the angle between learned features and weights. Therefore 

the joint training with these two losses can effectively 

alleviate the problem of low convergence and benefit 

discriminative embedding learning. 

In this work, we design our loss function with the 

difference between the maximum intra-class distance and 

minimum inter-class distance for embedding learning. I think 

the discriminative power would be further enhanced if we 

consider an additional constraint on the intra-class 

compactness alone. So in the future research, we plan to 

explore new types of loss functions to improve the 

performance of deep embedding learning, and validate the 

methods on other related vision tasks, such as face 

recognition [8], texture classification [45], and so on. 

VI. CONCLUSIONS 

In this work, we propose a new loss function called soft 

margin loss for discriminative embedding learning. Specially, 

we first normalize the learned features and classification 

weights to map them into the hypersphere. With the 

normalization operation, the model prediction scores only 

depend on the angle between the feature and the weight, 

which is beneficial to the model convergence. Then the 

proposed soft margin loss is used to increase the between-

class discrepancy and shrink the within-class compactness by 

constraining the difference of the maximal intra-class 

distance and the minimal inter-class distance. Finally, the soft 

margin loss and the normalized softmax are joined together 

to supervise the model for achieving discriminative and 

robust feature embedding. The proposed method can 

efficiently optimize the intra-class and inter-class distances of 

learned features with a soft margin and help for 

discriminative embedding learning. Extensive experiments 

on toy examples and re-identification tasks (e.g., person and 

vehicle re-identification) are conducted to illustrate the 

effectiveness of our method. 
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