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Abstract—This paper discusses the design of a novel dual
(solar+electromagnetic) energy harvesting powered communica-
tion system, which operates at 2.4 GHz ISM band, enabling
the autonomous operation of a low power consumption power
management circuit for a wireless sensor, while featuring a very
good “cold start” capability. The proposed harvester consists of
a dual port rectangular slot antenna, a 3D printed package, a
solar cell, an RF-dc converter, a power management unit, a micro-
controller unit, and an RF transceiver. Each designed component
was characterized through simulation and measurements. As
a result, the antenna exhibited a performance satisfying the
design goals in the frequency range of 2.4 to 2.5 GHz. Similarly,
the designed miniaturized RF-dc conversion circuit generated a
sufficient voltage and power to support the autonomous operation
of the bq25504 power management unit for RF input power levels
as low as -12.6 dBm and -15.6 dBm at the “cold start” and “hot
start” condition, respectively. The experimental testing of the
power management unit utilizing the proposed hybrid energy
harvester confirmed the reduction of the capacitor charging
time by 40% and the reduction of the minimum required RF
input power level by 50% compared with the one required for
the individual RF and solar harvester under the room light
irradiation condition of 334 lx.

Index Terms—Energy harvesting, RF circuits, solar cell, recten-
nas, 3D printing, additive manufacturing, Internet-of-Things,
wireless sensors, hybrid system, power management, autonomous
RF system

I. INTRODUCTION

NOW-A-DAYS, the desire for a smart society that utilizes

technologies such as large-scale sensor networks [1],

the Internet of Things (IoT) [2], and smart skins [3], [4]

is continuously growing. One of the most pressing issues is

the lack of a sustainable power supply that could enable the

autonomous operation of these sensors and devices (motes).

Conventional autonomous devices heavily rely on primary bat-

teries, which can power the devices for only a certain amount
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of time. Once the sensor devices use up the stored energy

in their batteries, the batteries need a replacement at a cost

that increases significantly as the number of sensor devices

in the system increases. To avoid this maintenance cost issue

and achieve completely self-sustainable low-cost ubiquitous

systems for the IoT and smart cities, research communities

have devoted a considerable interest in ambient energy harvest-

ing technologies. To maintain an effective operation of truly

autonomous systems, this technology set harnesses energy

from numerous ambient power sources such as solar, heat,

vibration, and electromagnetic waves using transducers and

stores it in energy storage components such as secondary

batteries and capacitors [5]–[7]. Among the ambient energy

sources, radio frequency (RF) energy is a highly attractive

energy source because of its almost ubiquitous availability,

especially in urban areas as well as the low cost and size of

transducers [8], [9]. However, compared to the energy density

of other energy sources, that of RF energy is typically very

low [5]. Therefore, RF energy harvesters cannot directly drive

devices that require relatively high power and voltage such

as micro-controllers, especially from a “cold start” condition.

Since low energy density levels cause a low RF-dc conversion

efficiency, RF energy harvesting is even more challenging to

be practically exploited [10]–[12].

A. Additive manufacturing techniques for ambient energy har-

vesting modules

To overcome the low-energy-density problem in RF energy

harvesting, researchers have strived in the last several decades

to improve the performance of RF energy harvesters. In the

process, additive manufacturing technology has emerged as an

alternative to conventional fabrication techniques such as etch-

ing and milling [13]–[15]. Specifically, additive manufacturing

technology including inkjet printing, 3D printing, and screen

printing has proven to be a very efficient solution for low-cost

RF circuit patterning associated with an inherently high 2D/3D

resolution and a wide variety of printable materials [16]. In the

field of electrical engineering, the inkjet-printing technology

has already enabled the easy realization of high-resolution

conductive traces that can support the operation of circuits up

to the sub-terahertz frequency range on a variety of substrates

including flexible materials such as paper, plastic, and liquid

crystal polymer (LCP) [17], [18]. In addition to conductive

materials, various dielectric materials and semi-conductive ma-

terials can be printed using inkjet-printing technology, which
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allows for the full printing of most basic circuit components

such as capacitors, inductors, antennas, diodes, and so on [19]–

[21]. Another additive manufacturing technique, which has

recently attracted the attention of the research community, is

3D printing, especially the fused deposition modeling (FDM)

technology [22], [23]. The wide variety of printable materials

for these additive manufacturing techniques has also enabled

the easy fabrication of both transducers and energy storage

components for ambient harvesting from most energy sources.

B. Multi-energy source hybrid energy harvesting

Numerous renewable ambient energy sources, such as solar,

heat, vibration, and electromagnetic waves, exist in nature.

Each ambient energy source exhibits different characteristics,

and they all have both advantages and disadvantages. In reality,

when autonomous systems completely rely on ambient energy

sources, the major challenges associated with harvesting a

single source of energy can cause critical issues for device

operation. For example, an autonomous system relying exclu-

sively on the energy harvested by a photovoltaic panel (e.g. a

solar panel) will fail in the absence of light. Instead of relying

on a single source, energy harvesting of multiple sources can

be complementary and enable truly autonomous operation, as

mentioned in [5]. Among various ambient energy sources,

solar energy has been one of the most commonly sought-after

because of the large power density available for harvesting

during the daytime (ca. 100mW · cm−2). Niotaki et al. have

reported on a hybrid RF/solar energy harvester, which can

significantly increase the total available power available in a

system [24]. As another example, Georgiadis et. al and De

Denno et al. have demonstrated a hybrid solar/EM energy

harvesting system which extends the operation range of a

passive RFID tag [25], [26]. The power conversion efficiency

of electromagnetic energy contained in the solar spectrum to

electricity depends on the level of illumination, the photoactive

material and device architecture used. At low irradiance levels,

like the ones found indoors (ca. 100 µW · cm−2), the perfor-

mance of a photovoltaic device becomes limited by increased

power losses that arise as the value of the devices shunt

resistance becomes comparable to that of the characteristic

resistance of the cell; defined as the ratio between the open

circuit voltage and the short-circuit current. Among current

photovoltaic technologies, those based on organic semiconduc-

tors shown in [27], [28] are particularly suitable for low-light

level operation. In addition, organic photovoltaic devices are

compatible with all-additive manufacturing methods such as

ink-jet printing [29] and are therefore attractive for integration

with RF energy harvesting modules to increase the available

power per unit area [30]–[32].

C. Challenges in ambient RF energy harvesting

Regardless of the typically low energy density of ambient

RF, RF energy harvesting is an attractive research topic for

various reasons. First, RF energy can inherently penetrate most

walls, even opaque walls, so it is potentially more widespread

available than other ambient energy sources. In addition, RF

energy harvesters can operate at any time of the day and

with any topology. Finally, their miniaturized form factor,

their small physical dimensions, and light weight enable us

to easily carry or wear them. On the other hand, the typically

low ambient RF energy density can be highly problematic,

especially when the RF energy harvester is integrated with

entirely autonomous systems because of their minimum input

power and voltage requirements. As a general trend, Schottky

diodes have been mainly used for RF energy harvesting

because of their low threshold voltage and fast switching

speed. However, Hemour et al. [33] have reported that the

performance of off-the-shelf Schottky diodes are reaching the

maximum theoretical RF-dc conversion efficiency because of

inevitable series resistance, junction capacitance, and high

junction resistance associated with their operation principle,

especially with low RF input power. Therefore, several studies

have recently applied special types of diodes such as the

backward tunnel (Esaki) diodes and the metal-insulator-metal

(MIM) diodes to rectify extremely low RF input power of

below 1 µW [33], [34]. Another strategy is to maximize the

available RF input power using multi-band frequencies by

introducing an ultra wide band (UWB)/ multi-band antenna

and a wide band matching circuit topology in the rectenna

[8], [35]–[37].

Recently, sub-threshold operation of a switching transistor

has been studied actively and it has been proven that some

transistors can operate even below 0.4V in the field of research

[38], [39]. However, most off-the-shelf circuit components

require relatively high operation voltage. For example, a

typical transistor gate-source voltage requires at least 0.5V for

switching operation and ICs such as micro-controllers require

an even higher operation voltage above 1.5V [12], [40], [41],

whereas typical voltages from the rectifier with RF input power

under -20 dBm are below 0.3V [42]. To overcome this low-

voltage issue, researchers have developed dc-dc converters

with low input voltage operation capabilities. Carlson et al.

[43] reported a dc-dc boost converter that generates the output

voltage of 1V from the input voltage as low as 20mV, with

the power consumption of 1.6 µW. However, the voltage regu-

lator requires at least 0.6V of start up voltage in a capacitor to

initially start the operation of the circuit oscillators. Another

example is a self-powered dc-dc converter reported by Adami

[44], which can generate the output voltage of 1V from an

input voltage close to 100mV without any external power

supply, but it requires at least 10 µW of input dc power and

reported dc-dc conversion efficiency is below 25% because of

inevitable power loss associated with the self-oscillation. To

satisfy both of these power and voltage requirements, reported

RF power sensitivity is -13 dBm for 1V and -7 dBm for

3V of output voltage. These facts imply that adding solar

cells, which generate a nearly constant voltage under sufficient

illumination conditions can enable the “cold start” start-up

operation of a dc-dc converter allowing RF energy harvesters

to then scavenge low power energy. At the same time, RF

energy harvesters continuously generate energy during the

night time when solar cells cannot generate any power.

To sufficiently address the main challenges of RF energy

harvesting, by taking advantage of the unique features of ad-

ditive manufacturing, one possible solution is the combination
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of multiple source ambient energy harvesting. In particular,

this research proposes the hybridization of RF and solar

energy harvesters in modules/topologies that can be fabricated

utilizing additive manufacturing technology. The following

sections of the paper deal with an overview of the proposed

hybrid RF solar energy harvesting system, the design and

preliminary measurements of the antenna and the rectifier,

the preliminary module-level operation results and the hybrid

harvester benchmarking in comparison to previously reported

RF/solar energy harvesters, while the paper closes with the

conclusions.

II. HYBRID RF SOLAR ENERGY HARVESTING SYSTEM

As a proof-of-concept prototype that can be easily im-

plemented in a compact form factor, this research utilized

a TI bq25504 ultra low power boost converter with battery

management IC, which has a self-powered dc-dc converter for

“cold start” operation and a high efficiency dc-dc converter

with maximum power point tracking for “hot start” operation

[45]. Fig. 1 shows the block diagram of an autonomous hybrid

RF solar powered sensor device (mote). The device consists

of a dual port antenna both for harvesting and communication

at the 2.4GHz ISM band, a solar cell, a matching circuit,

an RF-dc conversion circuit, a bq25504 power management

unit (PMU), a capacitor/battery for energy storage, a MOSFET

switch, an MSP430 micro-controller unit (MCU) [41], and a

CC2500 transceiver for communications [46].

Fig. 1. Block diagram of a hybrid RF solar powered autonomous mote.

III. ANTENNA DESIGN AND MEASUREMENT

This proposed system uses the 2.4GHz ISM band for

both energy harvesting and communications. Therefore, the

antenna requires a dual port configuration with a high two-

port isolation. In addition, circular polarization is suitable for

RF energy harvesting as it allows the rectenna to capture

signals with arbitrary linear polarization. In this scenario, a

properly excited rectangular shorted slot antenna [47], [48]

was identified as a strong candidate which also exhibits a

good impedance and polarization bandwidth. The biggest

novelty and challenge in designing the antenna for our energy

harvesting capable mote is to feature a simultaneous two-

port operation; one port for energy harvesting and another

port for communication while sharing the same rectangular

slot. The design and location of the feeding transmission

lines as well as the size and height of the ground plane

are critical to realize a good matching for both ports and

a simultaneous high isolation between the two ports. Since

the rectangular shorted slot antenna is an omnidirectional

antenna, a reflector was placed on the bottom of the package

in order to increase the gain. The package was printed utilizing

a 3D printer to precisely control the distance between the

ground of the antenna and the reflector. The antenna was

designed utilizing HFSS and fabricated on a 0.762mm FR4

substrate with dielectric constant of 4.4 and loss tangent of

0.002 utilizing an LPKF ProtoMat S60 mechanical milling

machine. Fig. 2 shows the side and top view of the rectangular

shorted antenna and Table I summarizes the antenna design

parameters. In this research, port1 is for harvesting and port2 is

for communication. Fig. 3 shows the pictures of the prototype

of the solar antenna, i.e., an antenna with an embedded solar

cell. The package was created utilizing a fused deposition

modeling (FDM) printer with polylactic acid (PLA) based-

material. For an initial simulation, the dielectric constant of

3.1 and the loss tangent of 0.01 [49] were adopted. However,

Meriakri et al. [50] have reported a wide variation of dielectric

constant of PLA material (2.76 to 15.7) which can cause a shift

in the fabricated antenna operation frequency.

The design goals of the antenna are the following: (1)

S11 and S22 below −13 dB (5%), (2) S21 below −13 dB

(5%), and (3) axial ratio below 3 dB in the frequency range

of 2.4 to 2.5GHz. To satisfy these design goals, the length

(L) of the sides of the square slot and the length of the gap

(G) were determined to obtain a resonance at 2.45GHz. In

terms of impedance matching, the length and the width of

the feeding signal lines can be adjusted to control the center

frequency of operation. In addition, the proposed antenna

design can adjust the center frequency of the two-port isolation

(the peak of transmission loss) almost independently from the

matching condition by varying the length of the square side

of the ground plane (Lin). As illustrated in Fig. 4, preliminary

simulations varied Lin from 42 to 48mm, while a value of

45mm was adopted for the initial antenna prototype. Fig. 5

(a) depicts the simulated (design and post fabrication) and

measured S11 and S22, respectively. From the measurement,

the antenna features the operation range of 2.28 to 2.55GHz,

and the simulation results match well with the measurement

results. However, as depicted in Fig. 5 (b), the frequency at

the peak of transmission loss (|S21|) was shifted to lower

frequency. During the fabrication, an extra PLA layer with

the thickness of 0.5mm was added below the top PCB as

a mechanical support of the antenna structure preventing the

top PCB from dropping in the middle of the box. This extra

thickness (TPE) was taken into account in the post-fabrication

simulation model. Also, as mentioned above, the dielectric

constant of the PLA material for the package can be higher

than the value used in the initial simulation. Therefore, the

post-fabrication simulation adopted the dielectric constant of 4,

and the simulation exhibited a good agreement with the mea-

surement. This fact implies that further accurate simulations

for the antenna design require the accurate characterization

of the 3D printed PLA material. Over all, the measured S-

parameters satisfied the design goals (1) and (2).
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Fig. 2. (a) Side and (b) top view of the prototype of the rectangular shorted
antenna.

Solar cell

Port1
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(a) (b)

Fig. 3. Prototype of the dual-feed rectangular shorted slot solar antenna with
a filexible film solar cell (a) top and (b) inside.

TABLE I
PRELIMINARY DIMENSIONS OF THE DUAL-FED

RECTANGULAR SHORTED ANTENNA.

Parameter Hin Hout HE Lin Lout EX EY

Length (mm) 18 20 14 45 47 10 5

Parameter LF1 LF2 L WF1 W50 SW SL

Length (mm) 13.35 7 11.81 31 1.46 0.9 3.1

Parameter G TP TPE

Length (mm) 1.6 1 0.5

2.2 2.3 2.4 2.5 2.6 2.7 2.8

Frequency (GHz)

-40

-30

-20

-10

0

S
2

1
 (

d
B

)

48mm

46mm

45mm

44mm

42mm

Fig. 4. Simulted S21 with respect to frequency with varied ground size.

In addition to the S-parameters, this study characterized

the other properties of the antenna through simulations and

measurements. Fig. 6 (a) and (b) show the simulated axial

ratio with respect to frequency at broadside (θ = 0◦) and θ

direction rotation angle at 2.45GHz, respectively. The axial

ratio is about 3 dB in the frequency range of 2.4 to 2.5GHz,

which almost satisfies the design goal (3). Also, Fig. 7
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Fig. 5. Measured and simulated (design and post fabrication) (a) S11, S22,
and (b) S21 of the dual-feed rectangular shorted slot antenna.

which plots simulated total realized gain as a function of

frequency yielding a value of 7.4 dB at the center frequency

of 2.45GHz. For the final prototype, a thin film solar cell,

which Section IV explains the detail, is placed on top of

the conductive area inside the slot without significantly dis-

turbing its radiation characteristics. Therefore, the radiation

patterns, depicted in Fig. 8, were also measured utilizing a

LabVIEW controlled automatic rotation setup and a vector

network analyzer (Anritsu 37369d). The measurement utilized

a broadband horn antenna (AINFO LB-20245) as a reference.

The measurements depicted on Fig. 8 show that the solar

cell does not have a significant effect on the performance of

the dual-feed rectangular antenna. Fig. 9 shows the side and

the top view of the rectangular shorted antenna for the final

prototype and Table II summarizes the final antenna design

parameters. For simplicity in measurements, SMA connectors

were connected to the edges of the antenna, but the final

prototype of the sensor device (mote) was designed to have

all electronics connected to the antenna on the bottom layer

near the center of the rectangular slot. Therefore, as shown in

Fig. 9 the design of the excitation lines were modified for the

final prototype. Fig. 10 shows the simulated S-parameters of

the final antenna design.
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TABLE II
DIMENSION OF THE RECTANGULAR SHORTED ANTENNA

FOR THE FINAL PROTOTYPE.

Parameter Hin Hout Lin Lout LF1 LF2 L

Length (mm) 18 20 45 47 13.5 10 31

Parameter WF1 WF2 W50 SW SL TP G

Length (mm) 4 7 1.46 0.9 4.6 1 1.6

IV. RF-DC CONVERSION CIRCUIT DESIGN AND

MEASUREMENT

The solar cell selected for the proof-of-concept prototype

was the Power Film MP3-25 solar cell which has the dimen-
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Fig. 8. Measured and simulated normalized radiation patten of the rectangular
shorted antenna with and without the solar cell (a)φ = 0◦ and (b)φ = 90◦.
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Fig. 9. (a) Side and (b) top view of the rectangular shorted antenna for the
final prototype.

sions of 114mm x 24mm, short circuit current Isc = 48mA,

open circuit voltage Voc = 4.1V, and can provide up to 93mW

at 3V under 1 sun irradiance of 100mW · cm−2. Specifically

for the 3D printed prototype discussed in this paper, only one

fifth of the length of the solar module, which exhibits about

0.68V of open voltage and about 70.5 µW of maximum power

under a room light condition (334 lx = 49 µW · cm−2) with

a dc load resistance of 3.8 kΩ, was utilized in order to fit

within the conductive surface inside the dual-fed slot antenna,
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Fig. 11. (a) Circuit diagram of the hybrid RF solar harvester and (b) picture
of the complete harvester prototype.

as shown in Fig. 3 (a). The equivalent circuit model of the

solar cell was utilized to design the harvester circuit in ADS.

To begin with, this work initially characterized the RF-dc

conversion circuit independent from the solar cell.

The goal of the RF-dc conversion circuit design was to

produce sufficient voltage and power to drive the PMU.

Specifically, the bq25504 IC requires 330mV and 15 µW to

start up from a “cold state”, and it can sustain operation

for a minimum input voltage of 80mV. Also, the IC has

an integrated maximum power point tracking function which

optimally adjusts the load resistance value for the maximum

output power [45]. This work utilized a two diode RF rectifier
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Fig. 12. Measured and simulated (a) RF-dc conversion efficiency and (b) dc
output voltage with respect to frequency with optimal load resistance at -17
dBm RF input power.

(voltage doubler) circuit, which was necessary to accommo-

date a sufficiently high voltage to facilitate the start-up of the

dc-dc converter circuit, as shown in Fig. 11 (a). To simplify

the layout, the solar cell output was connected using a series

diode at the output of the RF rectifier circuit as depicted in

Fig. 11.

The matching circuit design was optimized to maximize

the dc output power for a given RF available input power

of -17 dBm. This is the minimum required RF input power

to generate the minimum dc input voltage (80mV) of the

PMU in the “hot state”, according to preliminary simulations

for different dc output current values from the solar cell,

corresponding to different solar light irradiation conditions.

Fig. 12 and Fig. 13 show the RF-dc conversion efficiency and

the output voltage of the rectifier prototype without connecting

a solar cell as a function of the frequency for an input RF

power level of -17 dBm and as a function of the power level of

the input (harvested) RF signals at the frequency of 2.45GHz,

respectively. In these figures, both “ideal” and “non-ideal” are

simulation results with ADS. “Ideal” simulations use ideal

lumped component models and “non-ideal” simulations use

non-ideal lumped component models, provided by Johanson

Technology for the components used in the prototype. For

these measurements, RF power was measured using an RF

power meter (NRP-Z211 from Rohde and Schwarz). The

aggregate dc output power (Pout) from the RF energy har-

vester and the solar cell was calculated using the following
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Fig. 13. Measured and simulated (a) RF-dc conversion efficiency and (b) dc
output voltage with respect to input power with optimal load resistance at
2.45GHz.

equation (1), where Vout is the measured output voltage and

Rload is the load resistance. The RF energy harvester exhibits

about 20 to 45% RF-dc conversion efficiency depending on

the RF input power in the range of -17 to 0 dBm.

Pout =
V 2

out

Rload

(1)

Next, the performance of the RF-dc conversion circuit

including the solar cell was characterized through simulations

and measurements. Fig. 14 (a) and (b) depict the output power

and the output current from the solar cell for the optimal

load resistance of 3.8 kΩ with reference to the ambient light

intensity, respectively. The light intensity, measured utilizing a

luminometer, was controlled by adjusting the distance between

a table lamp and the solar cell. From these measurements, the

solar cell yielded 70.5 µW of output dc power and 135.5 µA

of output dc current at the room light condition of 334 lx

irradiation. In addition, this work simulated the output power

from the hybrid RF solar harvester with respect to the current

from the solar cell (I0) for the RF power levels of -17 dBm and

-10 dBm for the optimal load at 2.45GHz as shown in Fig. 15.

The simulation results confirm that the dc combination of the

solar cell and the RF circuit exhibits a higher output dc power

without affecting the performance of the RF-dc conversion

circuit and the solar cell. However, if the solar energy is

dominant, the performance of the solar cell slightly degrades.

Finally, Fig. 16 shows the simulated and the measured S11 of
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Fig. 14. Measured (a) output dc power and (b) dc current (I0) from the soalr
cell with respect to the light intensity for the load resistance of 3.8 kΩ.
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Fig. 15. Simulated output dc power with respect to the output dc current from
the solar cell (I0) for RF input power of -17 dBm and -10 dBm.

the harvester for the input RF power of -17 dBm at 2.45GHz

when the input current from the solar cell is varied. The current

from the solar cell was varied by changing the light intensity in

the same manner as described above. The return loss (|S11|)
increases first as I0 increases, but it decreases if the input

current is too large and the solar power is dominant.

V. MODULE-LEVEL OPERATION TEST

After optimizing the subsystems of the proposed hybrid har-

vester, a module-level operation test of the RF solar harvester

utilizing a bq25504 module as a load resistance RL in Fig. 11

(a) was performed to evaluate the capability of the harvester
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+ solar under room light condition until cold start mode is over.

to “cold” start up the PMU. Fig. 17 shows the voltage of

the 100 µF capacitor that is integrated in the bq25504 PMU

during charging. The dashed line expresses the threshold of

1.5V when the IC switches the operation mode from the

cold start to the hot start. Similarly, the dotted line indicates

the threshold of 2.8V when VBAT OK signal, which is a

digital output for a battery good indicator, from the PMU is

sufficiently high so that the capacitor voltage is adequate and

the energy storage capacitor is ready to power the external dc

load by turning on a MOSFET switch. The maximum output

voltage is regulated at 3.3V to protect a battery which can be

externally connected, but this voltage can be arbitrary selected

within the range of 2.4 to 5.3V. The first three traces in Fig. 17

represent three different charging conditions: (1) -12.6 dBm

RF input power, (2) solar cell at room light condition, and (3)

aggregate dc combining the two harvesters, respectively. The

input RF power of -12.6 dBm is the minimum required RF

power to start the operation of bq25504 module from the “cold

start” condition without using any solar cell. The comparison

between (2) and (3) in Fig. 17 suggests that the charging time

significantly decreases combining the dc output of the solar

and the RF harvesters. More specifically, the time to charge

the capacitor from 0V to 2.8V under the charging conditions

(2) and (3) is 86 s and 51 s, respectively. Therefore, 40%

of capacitor charging time reduction is confirmed through

the measurement. The last trace in Fig. 17 shows another

charging condition (4) by combining the dc outputs of the

solar and the RF harvester for the lower input power level of

-15.6 dBm. In this trace, the change in slope around 2.5V

indicates that the light intensity was drastically reduced from

334 to 18.9 lx at this point by covering the solar cell. The

input RF power of -15.6 dBm, which is the half of -12.6 dBm,

cannot support alone the operation of the “cold start” operation

mode. However, with the help of solar energy, this hybrid

energy harvesting system can go over the “cold start” mode.

For non-sufficient light irradiation conditions (e.g. in the night

or in completely dark rooms), even a solar panel may not

be used to “cold start” the system. However, once the IC

starts operating with “hot start” mode after an initial relatively

strong light irradiation, the input RF power of -15.6 dBm can

maintain the perpetual operation of the IC, while the PMU

gradually charges the capacitor using the ambient RF energy

even under dark conditions.

TABLE III
ENERGY HARVESTING SYSTEM PERFORMANCE COMPARISON

Energy source Antenna frequency
Maximum gain

(dBi)
Polarization

Communication

capability
Load Sensitivity

This work EM/Light 2.28 to 2.55GHz 7.4 Circular

RF Transceiver
(simultaneously
with harvesting)

PMU (bq25504)
MCU

RF Transceiver
Sensor

-15.6 dBm @ 2.8V

Niotaki [24] EM/Light 2.3 to 2.45GHz 1.9 - -

PMU (bq25504)
Sensor

(Simulation)
-

Georgiadis [25] EM/Light
868MHz

(no measurement data)
- Linear RFID Oscillator 9.3 dBm @1.7V

De Donno [26] EM/Light 855 to 880MHz 1.85 Linear -

MCU
Dc-dc converter

Sensor
EEPROM

-14 dBm @ 2.4V

Pinuela [9] EM
470 to 2017MHz

(multiple antennas)
4.48 to 4.76 Linear - PMU (bq25504)

-25 dBm (single)
-29 dBm (array)
@ 2.4 to 5.3V

Vyas [8] EM
511 to 566MHz

(wideband)
7.3 Linear -

MCU
Sensor

-14.6 dBm @ 1.8V
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VI. HYBRID HARVESTER SYSTEM PERFORMANCE

BENCHMARKING

Recently, there have been various reported energy harvesting

systems which utilize a PMU including a dc-dc converter to

increase the sensitivity of the systems. Therefore, Table III

summarizes the performance of recently reported EM/solar

and EM energy harvesting system in terms of energy source,

antenna operation frequency, maximum gain, antenna polar-

ization, communication capability, dc load, and sensitivity,

which is the minimum required RF power to satisfy the dc

voltage and power requirements for their load. Compared with

other EM/solar energy harvesters, the proposed design has the

highest antenna operation bandwidth, highest gain, circular

polarization, which is more suitable for ambient RF energy

harvesting than linear polarization because of the unknown

polarization of the harvested transmitting antennas, and simul-

taneous wireless communication capability while harvesting

ambient energy. Regarding sensitivity, this work exhibits the

lowest required RF input power among the EM/solar energy

harvesters summarized in Table III. The sensitivity can be

increased by improving the RF-dc conversion efficiency and

further reducing the system power requirement. For example,

Pinuela et al. have reported the lowest required RF input power

of -29 dBm for the same bq25504 PMU [9] for the cold-start.

Although, according to the datasheet of bq25504 PMU, this IC

requires the minimum dc input power of 15 µW for cold-start

[45], which is more than 10 times higher than the reported

sensitivity in [9] without considering RF-dc conversion loss

that is typically more than 70% of RF input power with input

power below -20 dBm.

VII. CONCLUSION

This paper investigates the potential of multiple energy

harvesting system for the cold start and the subsequent

perpetual operation of low profile the low power wireless

sensor motes. This research effort demonstrated the design

of a dual solar and electromagnetic energy harvesting and

communication system which operates at 2.4GHz ISM band

enabling the operation of a low power PMU for a wire-

less sensor. The harvester consists of a dual-port rectangular

slot antenna, a 3D printed package, a solar cell, an RF-

dc converter, a PMU, an MCU, and an RF transceiver and

every component was designed and characterized through

simulation and measurements. As a result, this novel antenna

with simultaneous harvesting and communication capabilities

exhibited a performance satisfying the design goals of (1) S11

and S22 below −13 dB, (2) S21 below −13 dB, and (3) axial

ratio below 3 dB in the frequency range of 2.4 to 2.5GHz.

Similarly, the designed miniaturized RF-dc conversion circuit

generated sufficient voltage and power to support the operation

of the bq25504 PMU from RF input power as low as -

12.6 dBm and -15.6 dBm at the “cold start” and “hot start”

condition, respectively. The module-level operation test of the

PMU utilizing the hybrid RF/solar energy harvester confirmed

a 40% reduction in the capacitor charging time and a 50%

reduction in the minimum required RF input power compared

to the independent operation of the RF and the solar harvester

under the room light irradiation condition of 334 lx. As a

future work, all circuit components in Fig. 1 will be integrated

to two printed circuit boards (PCBs), one for the antenna,

communication, and rectification and another one for the

power management and the micro-controller. Both of them are

arranged in a printed 3D package which will have an opening

to connect the micro-controller unit to a debugger to program

the chip. We plan to connect the PCBs with a flexible ribbon

cable in the package. The solar cell will be attached on the

top of the communication/harvesting board. The MCU can be

programmed for wireless measurement as reported in [15].

The proposed hybrid energy harvester could find numerous

applications in IoT, smart skin and M2M applications in

rugged operation conditions.
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