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ABSTRACT 
A mobile ad hoc network consists of mobile nodes that can move 
freely in an open environment. Communicating nodes in a 
wireless and mobile ad hoc network usually seek the help of other 
intermediate nodes to establish communication channels. In such 
an open environment, malicious intermediate nodes can be a 
threat to the security and/or anonymity of the exchanged data 
between the mobile nodes. While data encryption can protect the 
content exchanged between nodes, routing information may 
reveal valuable information about end users and their 
relationships. The main purposes of this paper are to study the 
possibility of achieving anonymity in ad hoc networks, and 
propose an anonymous routing protocol, similar to onion routing 
concept used in wired networks. Our protocol includes a 
mechanism to establish a trust among mobile nodes while 
avoiding untrustworthy nodes during the route discovery process. 
The major objective of our protocol is to allow only trustworthy 
intermediate nodes to participate in the routing protocol without 
jeopardizing the anonymity of the communicating nodes. We 
present our scheme, and report on its performance using an 
extensive set of simulation set of experiments using ns-2 
simulator. Our results indicate clearly that anonymity can be 
achieved in mobile ad hoc networks, and the additional overhead 
of our scheme to DSR is reasonably low when compared to a non-
secure DSR ad hoc routing protocol. 

Categories and Subject Descriptors 
C.2 [Computer-Communication Networks]: Distributed 
Systems; C.4 [Performance Systems]: Modeling Techniques; 

General Terms 
Algorithms, Performance, Security 

Keywords 
Routing, Ad hoc, Security, Network Simulator ns-2, Wireless 
Networks 

1. INTRODUCTION 
Recent advances in wireless and mobile communication 
technologies coupled with the recent proliferation of portable 
computer devices have led the development efforts for future 
wireless networks towards wireless and mobile ad hoc networks. 
The attention that this type of networks has received is mainly 
due to their potential applications in commercial and military 
applications. 

In an ad hoc network, two nodes can communicate directly as 
long as they are within the radio communication range of each 
other, but when the two nodes are far apart, they require the help 
of other intermediate nodes to relay their traffic. However, since 
there is no stationary infrastructure such as network routers, all 
network nodes have to cooperate in relaying each other data. But 
in such hostile environments, the information exchanged between 
two communicating parties might include highly sensitive data 
that must be secured when sent through intermediate nodes. While 
end-to-end security mechanisms can provide some level of 
security for the data, valuable information, such as location and 
relationships of the communicating entities may easily be 
determined from traffic and data analysis. Network-based 
anonymity techniques, for instance, may offer the prospect of 
hiding this information. 

For the Internet, several network-based anonymity approaches 
provide anonymous communication between end-nodes. These 
approaches include DC-nets [7], Crowds [20], MIX networks [6], 
and Onion Routing [19]. Both MIX networks and Onion Routing 
share the same concept of establishing anonymous paths for the 
data transfer. To construct an anonymous path, a source node 
must store and maintain information about the topology of the 
network. But keeping up-to-date information about the topology 
of the network is complex in the absence of fixed infrastructure 
and in the presence of dynamic topology, as is the case with ad 
hoc wireless networks.  

In this paper, we present a novel secure distributed path 
construction protocol for anonymous communication in wireless 
ad hoc networks. As opposed to other related protocols, our 
protocol does not require the source node to gather and store 
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information about the network topology. Instead, the source node 
initiates a path establishment process by broadcasting a path 
discovery message with certain trust requirements to all of 
neighboring nodes. Intermediate nodes satisfying these trust 
requirements insert their identification (IDs) and a session key 
into the path discovery message and forward copies of this 
message to their selected neighbors until the message gets to its 
destination. The intermediate nodes encrypt this information 
before adding it to the message. Once the receiver node receives 
the message, it retrieves from the message the information about 
all intermediate nodes, encapsulates this information in a multi-
layered message, and sends it along a reverse path in the 
dissemination tree back to the source node. Each intermediate 
node along the reverse path removes one encrypted layer from the 
message, and forwards the message to its ancestor node until the 
message reaches the source node. When the protocol terminates, 
the source node ends-up with information about all the trusted 
intermediate nodes on the discovered route as well as the session 
keys to encrypt the data transmitted through each of these nodes. 
The multicast mechanism and the layered encryption used in the 
protocol ensure the anonymity of the sender and receiver nodes. 
In this paper, we will give a general review of the protocol and 
present some of the early performance result of the protocol. 

The remainder of the paper is organized as follows. Section 2 
discusses the anonymity and security issues in wireless ad hoc 
networks. Section 3 describes briefly the trust management 
system upon which our algorithm relies. Section 4 introduces our 
secure distributed anonymous routing protocol, which we refer to 
as SDAR. Section 5 reports on the simulation-based performance 
analysis of our scheme. Section 6 concludes the paper. 

2. ANONYMITY AND SECURITY IN 
MOBILE AD HOC NETWORKS 

A variety of widely known intrusion techniques may be used to 
infer the entities’ identities, their locations, and/or relationships 
between communicating entities in a public network. Typical 
malicious actions may affect the message coding, timing, message 
volume, flooding, intersection and collusion.  Onion Routing [19] 
is a communication protocol that is resistant against some of these 
attacks. It employs a network of Chaum MIXes [6] in order to 
provide anonymous and secure communications. It provides a 
communication infrastructure that is reasonably resilient against 
both eavesdropping and traffic analysis. Using this protocol, 
entities representing applications communicate through a 
sequence of networked computing nodes, which is referred to as 
onion routers. Onion routers are generally application layer 
routers that realize Chaum MIXes. Onion routing connections 
proceed in three phases: connection setup phase, data transfer 
phase and connection termination phase.  

Over the Internet, anonymous systems [8], [10], [23] use 
application level routing to provide anonymity through a fixed 
core set of MIXes, as we described earlier for the Onion Routing 
protocol. Each host keeps a global view of the network topology, 
and make anonymous connections through a sequence of MIXes 
instead of making direct socket connections to other hosts. The 
authors in [13] used an alternate Onion Routing approach to 
provide anonymous communications for mobile agents in the 
JADE environment (Java Adaptive Dynamic Environment). Each 
JADE multi-agent has several onion agents that provide an 

anonymous data forwarding service, and at least one onion 
monitor agent that keeps track of the location of all other onion 
agents in the system. Onion monitor agents exchange onion agent 
reachability information in order to maintain a valid topology of 
the complete onion agent network. Levien [1], [15] developed a 
monitoring utility that queries MIXes and publishes on a website 
the average latency and uptime of each MIX over the past 12 
days. Recently, Tarzan [9] and MorphMix [21] have discussed the 
difficulties of constructing routes in dynamic environments. 

Achieving secure routing in wireless ad hoc networks is a 
complex task due to the nature of the wireless environment and 
the lack of predefined infrastructure [14]. A number of protocols 
have been developed to add security to routing in ad hoc 
networks. Papadimitriou and Haas [17] proposed SRP (Secure 
Routing Protocol) based on DSR [11], [12]. The protocol assumes 
the existence of a security association between the source and 
destination to validate the integrity of a discovered route.  
Sanzgiri et. al. [22] proposed the ARAN (Authenticated Routing 
for Ad hoc Networks) protocol that uses public key cryptography 
instead of the shared security association used in the SRP [17]. 
Each intermediate node running the protocol verifies the integrity 
of the received message before forwarding it to its neighbor 
nodes. Source and destination nodes use certificates included in 
the route discovery and reply messages to authenticate each other. 
The protocol has an optional second discovery stage that provides 
non-repudiating route discovery. Yi [25] developed a generalized 
SAR (Security-Aware Ad-hoc Routing) protocol for discovering 
routes that meet a certain security criteria. The protocol requires 
that all nodes that meet a certain criteria share a common secret 
key. 

Venkatraman and Agrawal [24] proposed an approach for 
enhancing the security of AODV protocol [18] based on public 
key cryptography. In their approach, two systems, EAPS 
(External Attack Prevention System) and IADCS (Internal Attack 
Detection and Correction System) were introduced. EAPS works 
under the assumption of having mutual trust among network 
nodes while IADC runs by having the mutual suspicion between 
network nodes. Every route request message carries its own digest 
encrypted with the sender’s private key hash result in order to 
ensure its integrity. To validate established routes, route replies 
are authenticated between two neighbors along them. This 
approach prevents external attacks. IADC system classifies 
internal attacks and sets a misbehavior threshold for each class of 
attack in order to detect compromised network nodes. 

The above three protocols, i.e., SRP, ARAN, and Venkatraman 
and Agrawal’s schemes, ensure only the authenticity but not the 
privacy of the routing information, while SAR finds routes that 
meet a certain security level. In all these protocols, intermediate 
nodes that handle the route control messages can easily find the 
identity of the communicating nodes, which must be protected in 
case of anonymous communication. Our protocol uses the Onion 
Routing approach and trust management system to provide trust 
and anonymity for the path discovery (and hence for subsequent 
communications using this path). 

Other studies include intrusion detections to study the behavior of 
mobile users in mobile phone systems [3], [4]. 
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3. TRUST MANAGEMENT SYSTEM 
As we mentioned earlier, due to the openness of ad hoc wireless 
environment, some nodes in the network are likely to defect and 
become harmful to the network, thereby necessitating a 
mechanism to identify these nodes and isolate them. In this 
section, we will introduce the notion of trust management system 
we have used in our proposed protocol. The purpose of this 
system is to motivate the participating nodes not only to help each 
other relaying data traffic, but also identify the malicious nodes, 
and avoid using them during the route establishment. The 
identification of malicious nodes makes it easy to take them out of 
the network, thereby increasing the route’s security and reliability 

In this section, we will introduce our trust management approach 
as well as the trust notion we choose to use in ad hoc wireless 
environment to select routing path that meets certain trust 
requirements. In our approach, we define the trust level in a node 
as a cumulative value that is based on the past behavior of the 
node. The trust level of a node increases as long as the node 
behaves exactly as it is supposed to (in our cases, follow reliably 
the steps of the routing protocol) or decreases as the node 
misbehaves accordingly. A node’s trust is computed by each of its 
direct neighboring nodes based on their past experience or 
observation of the node’s behavior. These neighboring nodes, 
together with the evaluated node, form what we refer to as a 
community, as we will describe later. 

3.1 Community management 
In our system, we define a node’s community as the set of nodes 
that includes the node itself, referred as central node, and all of its 
one-hop neighboring nodes, among which some may be 
malicious. To build and maintain a node’s community, we employ 
a similar method used by AODV ad hoc routing protocol [18] in 
order to accomplish neighboring nodes management. In our 
protocol, a node keeps track of its neighbors simply by listening 
for a HELLO message, which is broadcasted periodically by each 
node. The sender’s public key is passed as part of the HELLO 
message. Upon receipt of a HELLO message from one of its 
neighboring nodes, a central node stores its neighboring node’s 
public key if it does not have it yet. Since nodes can move freely 
in an ad hoc wireless network, some neighbors of the central node 
may leave while new neighbors may join the neighborhood of the 
central node. Thus, if a node does not receive for some time the 
HELLO message from one of its neighbors, it removes it from its 
list identifying its neighboring nodes. 

3.2 Community Key Management 
In each community, the central node classifies its neighboring 
nodes into three classes, based on their trust level. The first and 
lowest trust level is for nodes whose trust value is between 0 and 
a Medium Trust Level Threshold, δ1, while the second trust level, 
i.e., the medium level, contains the nodes whose trust level is 
between δ1 and the High Trust Level Threshold, δ2. The trust 
level, corresponding to the high level, contains the nodes whose 
trust value is between δ2 and 1. Each node selects independently 
the values for δ1 and δ2. In our experiments, both values have 
been determined empirically.  

The central node generates two different keys for the medium and 
high trust level, and shares them with its neighbors. All neighbors 
in the same trust level share the same key. The neighbors in high 

trust level will have both High Trust Level Community Key 
(referred to as HCK) and Medium Trust Level Community Key 
(referred to as MCK); whereas, the neighbors in medium trust 
level have only MCK. As for the neighbors in low trust level, they 
do not share any community key at all. 

When the central node detects a new neighbor, it will assign an 
initial trust value to it and updates this trust level later on, based 
on their interaction. The central node updates the corresponding 
community key when a node’s trust level goes up or down, and 
also when a node leaves the community. To protect a community 
key during distribution, the central node encrypts the key with the 
public key of the intended neighboring node before sending it. 
The central node repeats the same process with each node in its 
neighboring node set. 

3.3 Identification of Nodes’ Malicious 
Behavior 

In this section, we will describe how each node can compute and 
constantly update the node’s trust in its neighboring nodes. Our 
approach is based on the ability of the node to identify 
neighboring nodes good or malicious behavior, and hence 
updating the trust level accordingly. A behavior is good if it 
confirms to the specification of the routing protocol and malicious 
otherwise.  For our protocol, a malicious behavior happens when 
a node drops silently the packet without forwarding it or 
maliciously updating the packet before forwarding it. We call 
these two malicious behaviors as Malicious Dropping and 
Malicious Modification. A node can identify these behaviors 
simply by overhearing whether its neighboring node modified 
maliciously the message before sending it (Malicious 
Modification) or simply did not forward the message (Malicious 
Dropping). Note that for the destination node to protect its 
anonymity without jeopardizing its trust, it must also forward a 
copy of the message it receives.  

3.4 Trust-Based Distributed Route Selection 
Scheme 

Our routing protocol, as we shall see in the next section, requires 
each intermediate node that receives a route request message, to 
forward this message to its neighboring nodes. But in order to 
achieve the security and reliability of the route, our protocol uses 
a selection algorithm that is based on the level of trust each 
intermediate node has with its neighboring nodes.  

When a source node initiates the route discovery protocol, it 
specifies the trust level requirement in the initial message. Each 
intermediate node will propagate the message only to selected 
neighboring nodes, depending on the source node requested trust 
level. If the requested trust level is high, the node will use the 
community key for the neighbors with high trust level to encrypt 
the message; this will ensure that only highly trusted nodes will 
participate in the routing protocol. If the required trust level is 
medium, the node will use the community key for the neighbors 
with medium or high trust level to encrypt the message. Using 
this approach restricts the participation of intermediate nodes only 
to the ones that have a certain trust level. 
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4. SECURE DISTRIBUTED ANONYMOUS 
ROUTING PROTOCOL (SDAR) 

In this section, we will describe our secure distributed protocol for 
establishing anonymous paths in ad hoc wireless networks. The 
major objective of our protocol is to allow trustworthy 
intermediate nodes to participate in the path construction protocol 
without jeopardizing the anonymity of the communicating nodes. 
The protocol has a number of characteristics, including Non-
Source-Based Routing, Flexible and Reliable Route Selection and 
Resilience against Path Hijacking. Our protocol is secured against 
passive and active attacks, but not against Denial-of-Service 
attacks, it maintains the anonymity of the sender and receiver, and 
it is able to establish a route matching certain trust level 
requirement if enough nodes with qualifying trust value exist 
between the source and destination. The interested reader may 
wish to consult [2]. 

4.1 Overview 
To send data anonymously to a receiver node R, a sender node S 
has to discover and establish a reliable and anonymous path that 
connects the two nodes. Both the path discovery and 
establishment process should be carried out securely and without 
jeopardizing the anonymity of the communicating nodes.  The 
process is divided into three phases: the path discovery phase, the 
path reverse phase and the data transfer phase. Distributed 
information gathering about intermediate nodes that can be used 
along an anonymous path is carried out during the path discovery 
phase, while passing this information to the source node takes 
place during the path reverse phase. The official data exchange is 
processed during the data transfer phase after the construction of 
the route. We elaborate on these three phases during the following 
sub-sections, but we first introduce the assumption and some main 
definitions that are used henceforth. 

Table 1: Notations 

• IDi : The identity of node i. 
• PKi : The public key of node i. 
• TPK : A temporary one-time public key. 
• TSK : The private (secret) key corresponding to TPK.          
• Ki : A symmetric (session) key generated by node i.          
• PLS : The padding length set by the sender. 
• PS  : A padding implemented by the sender. 
• PLR : The padding length made by the receiver R.                                  
• PR : A padding made by the receiver node R. 
• )(ME

iPK : The message M is encrypted with a public key PKi. 

• )(ME
iK : The message M is encrypted with the symmetric 

session key Ki. 
• H (M): The message M is hashed with a hash function. 
• )(MH

iK : The mixture of M and Ki is hashed with a hash 

function. 
• SignS(M): The message M is signed with the private key of 

the source node S. 
• 

iIDsessionSN _ : A random number generated by node IDi for the 

current session. 
• HCKi: The high trust level community key which is a one 

way symmetric key and generated by node i. 
• MCKi : The medium trust level community key which is a 

one way symmetric key and generated by node i. 

4.2 Assumptions and Definitions 
Before we proceed further, we will make the following 
assumptions about the ad hoc network. 

• The links between wireless nodes are always bi-directional.  

• Every wireless node has enough computation power to 
execute encryption and decryption algorithm. 

• There is a trusted certificate authority (CA) outside the ad 
hoc network, which issues public key and private key to the 
wireless nodes inside the network. 

• Each wireless node holds only one IP address for its 
communication in the ad hoc network, by which it will be 
recognized by all other wireless nodes. 

• There are some nodes that are not willing to cooperate for 
routing and data delivering and possibly actively intent to 
tamper the routing protocol. 

Table 1 shows the main notations used in this paper.  

4.3 Path Discovery Phase 
The path discovery phase allows a source node S that wants to 
communicate securely and privately with node R to discover and 
establish a routing path through a number of intermediate wireless 
nodes. An important characteristic of this phase is that none of the 
intermediate nodes that participated in the path discovery phase 
can discover the identity of the sending node S and the receiving 
node R. 

The source node S triggers the path discovery phase by sending a 
path discovery message to all nodes within its wireless 
transmission range. The path discovery message has five parts. 
The first part is the open part. It consists of message type, TYPE, 
trust requirement, TRUST_REQ, and a one-time public key, TPK. 
The trust requirement indicated by TRUST_REQ could be HIGH, 
MEDIUM or LOW. TPK is generated for each path discovery 
session and used by each intermediate node to encrypt routing 
information appended to the path discovery message. This key 
serves also as a unique identifier for the message. The second part 
contains the identifier IDR of the intended receiver, the symmetric 
key KS generated by the source node and PLS the length of the 
third part, padding, all encrypted with the public key PKR of the 
receiver. The source node may learn about the public key PKR of 
the destined receiver through a number of ways including using 
the service of a certificate authority (CA). The symmetric key KS 
is used to encrypt the fourth part of the message as well as to 
protect against replay attacks. The third part is a padding PS, 
generated by the source node and used to hide real routing 
information and to protect against message size attack. The forth 
pare consists of IDS, PKS, TPK, TSK, 

SIDSessionSN _  and SignS(MS), 
all encrypted with KS.  The intended receiver uses the public key 
TPK and its corresponding private key TSK to decrypt and verify 
the routing information in the message. 

SIDSessionSN _ is a random 
number generated by the source node and is mapped to the 
encryption key KS to use with the message. SignS protects the 
integrity of the message. The fifth part of the message contains 
information about intermediate nodes prior to the current node 
along the route. A message just sent by a source node has the 
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format shown in Figure 1, with MS = H ( TYPE, TRUST_REQ, 
TPK, TSK, IDR, KS, IDS, PKS, SIDSessionSN _ , PLS, PS ). 

Figure 1. Path discovery message just sent by the source S. 
 

We assume that each node keeps an internal table for mapping the 
randomly generated number of a session to the encryption key for 
the session, as well as to the ancestor and successor node along 
the anonymous path for the session. Given an encrypted message 
and a randomly generated number, a node can use this mapping 
table to know which key to use to encrypt the message. Only the 
random number, the session key, and the ancestor node entry are 
added to the table during the path discovery phase, while the 
successor node entry is added later during the path reverse phase. 

When a node i receives a path discovery message, it processes the 
message according to the following steps: 

1. Check if the message has already been received from other 
nodes within its wireless transmission range using the TPK as 
the unique identifier for the message. If the message was 
received previously, drop it silently and stop; otherwise, 
continue.   

2. Check if the node is the sender’s intended next hop by finding 
the corresponding community key in its community key lists. 
If the key is found then decrypt the message using that key 
and go to the next step; otherwise, stop  

3. Check if the node is the destined receiver (try to decrypt 
),,( SSRPK PLKIDE

R
, with the private key of the node and 

compare the IDR to the node’s id) 
4. If the node is NOT the intended receiver, then 

a. Add the following information to the message, all 
encrypted with the TPK: the id of the node, a session key Ki 
(shared encryption key generated by the node), a randomly 
generated number 

iIDPathSN _ for the session, and the 
signature of the original received message. 

b. Forward the new message to the neighbors whose trust 
levels meet the source node’s trust requirement. 

c. Add <
iIDPathSN _ , id of the ancestor node, Ki > to the 

internal mapping table. 
5. If the node is the destined receiver, then 

a. Use the length of padding, PLS, from ),,( SSRPK PLKIDE
R

 
to find out the offset of the fourth part and then use the 
retrieved session key KS to decrypt the fourth part of the 
message and get TSK, then use the TSK to get session keys 
for all the nodes along the path of the message. 

b. Put all ids of the nodes and their session keys in one 
message; encrypt the message several times, each time with 
the session key of a node along the path to the receiver. Use 
the reverse order of the keys in the message (same as the 
data flow in onion routing) 

c. Send the message to the first node in the reverse path 
A path discovery message that has already traveled nodes i on its 
way from the sender S to the receiver R would have the format 
shown in Figure 2, with MS = H(TYPE, TRUST_REQ, TPK, TSK, 
IDR, KS, IDS, PKS, SIDSessionSN _ , PLS, PS ), and 

iIDM = H ( Mprev, 

IDi, Ki, iIDPathSN _ ), and Mprev is the cumulative message that 
nodei gets from its ancestor nodei-1.  

Figure 2. Path discovery message just processed by nodei. 

4.4 Path Reverse Phase 
The path discovery message is forwarded from one node to the 
other in the network until it reaches the target receiver R, which 
triggers the path reverse phase. When the intended receiver gets 
the path discovery message, it can use its private key to retrieve 
KS. Then using KS, it can obtain the temporary private (secret) key 
TSK encrypted in the fourth part of the message. Using TSK, the 
receiver node R can also retrieve the IDs of all intermediate nodes 
and the session key to use with each one of these intermediate 
nodes, and the random number generated by each node. The 
receiver then composes a message that contains all these random 
numbers and the corresponding session keys, and encrypts the 
message with the session keys of all the nodes along the path to 
the source node. With each encryption, the receiver R adds a layer 
that contains the random number generated by the node and the 
random number generated by the node’s next-next-hop node 
along the reverse path to the sender. If the first node to get this 
message from the receiver is node i, the encrypted message 
constructed by the receiver R should have a format completely 
similar to the format shown in Figure 3, where 
Mi= )(),(,),( 2__2 21 iKiIDSessionIDSessioniK NHMHSNSNME

iiii −− −−
, 

Ni = ( )(,,),(
2__1 iKIDSessionIDSessioniK NHSNSNME

iiii −− ). P is a 

padding that has the same length as any Mj, and 
1−SSesson_IDSN is a 

random number having the same number of bits as any regular 

JSesson_IDSN and it is generated by the source node. 

 TYPE, TRUST_REQ, TPK,  

),,( SSRPK PLKIDE
R

,   

 PS ,  

 ) (, , , , , ( _ SSIDSessionSSK MSignSNTSKTPKPKIDE
SS

TYPE, TRUST_REQ, TPK,  

),,( SSRPK PLKIDE
R

,  

PS ,  

) )  (, , , , , ( _ SSIDSessionSSK MSignSNTSKTPKPKIDE
SS

,     

) ) (, , , (
111_11 IDIDIDSessionTPK MSignSNKIDE ,         

:  

  : 

) ) (, , , ( _ iii IDIDIDSessioniiTPK MSignSNKIDE  

34



Figure 3. Path reverse Message 
 

Each intermediate node that receives the path reverse message 
uses the

iIDSessionSN _ to retrieve the key for the session, removes 
one encryption layer and forwards the message to the next node 
on the reverse path to the source node. The ID of the node from 
which the message was received is added to the successor node 
entry corresponding to the random number into the mapping 
table. When the source node receives the message, it decrypts the 
message and passes the information about all the intermediate 
nodes (i.e., the route) to the higher application. 

4.5 Data Transfer Phase 
Our protocol uses a similar approach to the Onion Routing 
protocol for the data transfer. 

When the source node gets the path reverse message, it first 
checks whether or not the message is correct, and then uses the 
shared session keys of the intermediate nodes to make the layer 
encryption for the data, which the sender wants to transfer to the 
receiver. Each intermediate node just decrypts one encryption 
layer and forwards the message to the next node according to the 
ID of the next node. 

5. SIMULATION EXPERIMENTS  
In this section, we present the simulation experiments we have 
carried out to evaluate the performance of our protocol using the 
Network Simulator, ns-2 [16]. During our experiments we wish to 
be able to study closely the behavior of our protocol. In this 
paper, we present the results we have obtained using an ad hoc 
network which consists of 30 mobile nodes, moving according to 
the random waypoint mobility model [5], and where the  initial 
position of each mobile  node was randomly chosen. Except for 
the experiments in Section 5.1 where we changed the speed value, 
the nodes moved around at a maximum speed of 5m/s in a 
randomly chosen direction within a flat rectangle area of 670m 
x670m. The nodes had to pause for a configured period of time, 
which we set it up to 20s, before they changed their moving 
direction. In each experiment, the simulation was run for 4000 sec 
of simulated time. Half of the route requests have High Trust 
Requirement (HTR) for the intermediate nodes and the other half 
have Low Trust Requirement (LTR). The values of the Medium 
Trust Level Threshold, δ1, and the High Trust Threshold, δ2, were 
empirically selected as 0.6 and 0.95. 

We have used an IEEE 802.11 MAC layer and a 914MHz Lucent 
WaveLAN DSSS radio interface with the transmission range of 
250m. The traffic was generated by CBR sources over UDP. The 
source node continuously generated data packets of 512 bytes at 
the rate of 4 packets per second in each flow.  

SDAR was simulated using 512 bit keys for authentication with 
the RSA algorithm, 64 bit for the community keys, and 64 bit 
session keys. We believe these values are reasonable given the 
computation resource of the mobile ad hoc nodes. 

We have evaluated our protocol using the following performance 
metrics: 

• Connectivity: Connectivity is defined as the percentage of 
the route request successfully answered by the destination, 
out of the route requests sent by the source.  

• Number of Packets: In our simulations, we kept track of the 
number of packets that were prepared to be sent, the number 
of packets actually sent, and the number of packets received. 

• Routing Overhead: Routing overhead represents the 
number of routing packets required to send one hundred data 
packets. 

• End-to-End Delay: End-to-end delay is defined as the 
average time difference between the time a packet is sent 
from the source and the time it is successfully received by 
the destination.  

• Average Route Length: the average route length indicates 
the average number of hops in a route. 

• Security Overhead: The security overhead indicates the 
number of UPDATE messages sent by all nodes. These 
messages, as we mentioned in Section 3, are used to compute 
and update the trust value of mobile nodes. 

5.1 SDAR and DSR- A Comparison 
In this section, we wish to investigate the overhead of our scheme 
when compared to the best well known routing algorithm. In this 
paper, we choose the Dynamic Source Routing (DSR) routing 
protocol [11], [12]. This was due mainly to the fact that both 
protocols share the main routing idea. During the course of our 
simulations experiments, both protocols were run under identical 
mobility and traffic scenarios. We used a basic version of DSR, 
which does not include any optimization, such as the caching, 
which, as one may expect, goes against the anonymity concept. 
This allowed us, also, to have a fair comparative study. 

Figure 4 and Figure 5 show that the SDAR protocol has a lower 
connectivity rate and a higher end-to-end delay. This variation is 
mainly due to the computational overhead of the security 
functions required for anonymously computing the path; 
intermediate nodes have to spend more time processing each 
single message, leading to a larger waiting time and hence longer 
end-to-end delay. 
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5.2 The effect of the change in the percentage 
of malicious node on SDAR 

In the experiments we have described in the previous section, we 
have compared mainly the security overhead incurred by the 
SDAR, in comparison with the basic version of DSR [11], [12]. In  

 
Figure 4. Connectivity of SDAR vs. DSR 

 
Figure 5. End-to-end delay for SDAR vs. DSR 

 

 

these experiments, we have also assumed that all the nodes in the 
network are well-behaved nodes. In this section, we will present 
the additional experiments we have conducted to determine the 
effect of the change in the percentage of malicious nodes on the 
behavior of the SDAR protocol. 

Figure 6 shows the change in the percentage of connectivity in 
relation with the change in the percentage of malicious nodes. The 
graph shows clearly that as the number of malicious nodes 
increases in the network, the percentage of successfully 
established route decreases. This is mainly due to the fact that the 
higher the percentage of malicious nodes, the higher probability 
that these nodes will drop the route request messages, leading to a 
lower connectivity rate. The graph shows also the difference 
between route requests with HTR and LTR for the intermediate 
nodes: the difference in the degree of connectivity between HTR 
and LTR is mainly due to the higher trust requirement of HTR, 
which restricts the number of intermediate nodes that can 
participate in the routing protocol leading to a lower connectivity; 

LTR route requests uses intermediate nodes even if they have low 
trust value. 

Figure 7 illustrates the routing overhead as a function of the 
percentage of malicious nodes for both HTR and LTR. The graph 
shows that as the number of malicious nodes increases, the 
number of times the source node has to run the route discovery 
algorithm increases, and hence an increase in the routing 
overhead 

 
Figure 6. Connectivity vs. percentage of malicious nodes 

 
Figure 7. Routing overhead vs. percentage of malicious nodes 

 

 This is also the result of intermediate malicious nodes dropping 
the route request or reply messages, resulting in an increase in the 
number of route requests. HTR has also higher routing overhead, 
since the probability of route requests is higher because of the 
restriction on the trust level of intermediate nodes, hence 
requiring a larger number of route requests.  

The results in Figure 8 show the change in route length as a result 
of the change in the percentage of malicious nodes in the network, 
and also for HTR and LTR. For both HTR and LTR, the average 
route length increases with the increase of the percentage of 
malicious nodes. This is mainly due to the fact that the shortest 
path might not be satisfactory in terms of the trust level 
requirement. The graph shows also that when there are few 
malicious nodes in the network, the average path length for the 
HTR is higher than the average path length for the LTR. This 
could be explained by the fact that the HTR adds more constraints 
on the path discovery algorithm, but since paths do exist between 
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communicating nodes, the path would eventually be found, but it 
will be longer.  

Figure 9 shows the end-to-end delay for the HTR and LTR, as a 
function of the percentage of malicious nodes. As explained in the 
previous paragraph, a higher percentage of malicious nodes 
means a longer route between the source and the destination, and 
hence additional delay in the packet delivery. Additionally, since 
HTR  

 
Figure 8. Average route length vs. percentage of malicious 

nodes. 

 
Figure 9. End-to-end delay vs. percentage of malicious nodes. 

 
routes are longer than LTR routes, this means also higher end-to-
end delay value. 

Figure 10 and Figure 11 illustrate the difference between the 
number of packets prepared to be sent, the actual number of 
packets sent, and the number of packets that were received at the 
destination, as the percentage of malicious nodes in the network 
changes. As noticed from the graph, using the LTR generates a 
higher throughput, especially when the percentage of bad nodes is 
low; this is mainly due to the fact that all nodes are considered 
initially as malicious nodes, and their status is updated during the 
course of the simulation.  

Figure 12 shows the number of exchanged UPDATE messages 
used to establish and update the trust relationship between 
neighboring mobile nodes. This number drops as the percentage 
of malicious nodes increases in the network. This number is 
expected to decrease, since nodes send only UPDATE messages 
when their status is changed from malicious (default) to good 

node. But as the percentage of malicious nodes increases in the 
network, the status of all the nodes remains malicious, fewer and 
fewer UPDATE messages are sent. The issue of coalition between 
malicious nodes is not included in our current work.  

6. CONCLUSION 
Security and anonymity are the most challenging issues in 
wireless and mobile ad hoc networks (MANET). In this paper, we 

 
Figure 10. Number of packet for HTR vs. percentage of 

malicious nodes. 

 
Figure 11. Number of packet for LTR vs. percentage of 

malicious nodes. 

 

 
Figure 12. Security overhead vs. percentage of malicious 

nodes. 
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present an efficient secure distributed anonymous routing protocol 
for MANET, which anonymously creates routes dynamically to 
support onion routing without the originator knowing neither the 
keys of the mix nodes nor the topology of the network. We 
discuss the algorithm, and present an extensive set of simulation 
experiments to evaluate its performance analysis. Our simulation 
experiments indicate clearly that the anonymity in MANET is 
feasible, could be incorporated within an ad hoc routing protocol 
and provide a good solution for achieving anonymity in MANET 
at a reasonable additional cost when compared to the well-known 
DSR ad hoc routing protocol.  
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