
A Novel Solution for Achieving Anonymity
in Wireless Ad hoc Networks1

Azzedine Boukerche†, Khalil El-Khatib‡ †, Li Xu†, Larry Korba‡

†
PARADISE Research Laboratory

SITE, University of Ottawa, Canada

{boukerch,lxu}@site.uottawa.ca

‡
National Research Council Canada

Ottawa, Canada
{khalil.el-khatib,larry.korba}@nrc.gc.ca

ABSTRACT
A mobile ad hoc network consists of mobile nodes that can move
freely in an open environment. Communicating nodes in a
wireless and mobile ad hoc network usually seek the help of other
intermediate nodes to establish communication channels. In such
an open environment, malicious intermediate nodes can be a
threat to the security and/or anonymity of the exchanged data
between the mobile nodes. While data encryption can protect the
content exchanged between nodes, routing information may
reveal valuable information about end users and their
relationships. The main purposes of this paper are to study the
possibility of achieving anonymity in ad hoc networks, and
propose an anonymous routing protocol, similar to onion routing
concept used in wired networks. Our protocol includes a
mechanism to establish a trust among mobile nodes while
avoiding untrustworthy nodes during the route discovery process.
The major objective of our protocol is to allow only trustworthy
intermediate nodes to participate in the routing protocol without
jeopardizing the anonymity of the communicating nodes. We
present our scheme, and report on its performance using an
extensive set of simulation set of experiments using ns-2
simulator. Our results indicate clearly that anonymity can be
achieved in mobile ad hoc networks, and the additional overhead
of our scheme to DSR is reasonably low when compared to a non-
secure DSR ad hoc routing protocol.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems; C.4 [Performance Systems]: Modeling Techniques;

General Terms
Algorithms, Performance, Security

Keywords
Routing, Ad hoc, Security, Network Simulator ns-2, Wireless
Networks

1. INTRODUCTION
Recent advances in wireless and mobile communication
technologies coupled with the recent proliferation of portable
computer devices have led the development efforts for future
wireless networks towards wireless and mobile ad hoc networks.
The attention that this type of networks has received is mainly
due to their potential applications in commercial and military
applications.

In an ad hoc network, two nodes can communicate directly as
long as they are within the radio communication range of each
other, but when the two nodes are far apart, they require the help
of other intermediate nodes to relay their traffic. However, since
there is no stationary infrastructure such as network routers, all
network nodes have to cooperate in relaying each other data. But
in such hostile environments, the information exchanged between
two communicating parties might include highly sensitive data
that must be secured when sent through intermediate nodes. While
end-to-end security mechanisms can provide some level of
security for the data, valuable information, such as location and
relationships of the communicating entities may easily be
determined from traffic and data analysis. Network-based
anonymity techniques, for instance, may offer the prospect of
hiding this information.

For the Internet, several network-based anonymity approaches
provide anonymous communication between end-nodes. These
approaches include DC-nets [7], Crowds [20], MIX networks [6],
and Onion Routing [19]. Both MIX networks and Onion Routing
share the same concept of establishing anonymous paths for the
data transfer. To construct an anonymous path, a source node
must store and maintain information about the topology of the
network. But keeping up-to-date information about the topology
of the network is complex in the absence of fixed infrastructure
and in the presence of dynamic topology, as is the case with ad
hoc wireless networks.

In this paper, we present a novel secure distributed path
construction protocol for anonymous communication in wireless
ad hoc networks. As opposed to other related protocols, our
protocol does not require the source node to gather and store

1 This work was supported by the Canada Research Chair program,
NSERC, Canada Foundation for Innovation Funds, and
OIT/Distinguished Researcher Award

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PE-WASUN’04, October 7, 2004, Venizia, Italy.
Copyright 2004 ACM 1-58113-959-4/04/0010…$5.00.

30

information about the network topology. Instead, the source node
initiates a path establishment process by broadcasting a path
discovery message with certain trust requirements to all of
neighboring nodes. Intermediate nodes satisfying these trust
requirements insert their identification (IDs) and a session key
into the path discovery message and forward copies of this
message to their selected neighbors until the message gets to its
destination. The intermediate nodes encrypt this information
before adding it to the message. Once the receiver node receives
the message, it retrieves from the message the information about
all intermediate nodes, encapsulates this information in a multi-
layered message, and sends it along a reverse path in the
dissemination tree back to the source node. Each intermediate
node along the reverse path removes one encrypted layer from the
message, and forwards the message to its ancestor node until the
message reaches the source node. When the protocol terminates,
the source node ends-up with information about all the trusted
intermediate nodes on the discovered route as well as the session
keys to encrypt the data transmitted through each of these nodes.
The multicast mechanism and the layered encryption used in the
protocol ensure the anonymity of the sender and receiver nodes.
In this paper, we will give a general review of the protocol and
present some of the early performance result of the protocol.

The remainder of the paper is organized as follows. Section 2
discusses the anonymity and security issues in wireless ad hoc
networks. Section 3 describes briefly the trust management
system upon which our algorithm relies. Section 4 introduces our
secure distributed anonymous routing protocol, which we refer to
as SDAR. Section 5 reports on the simulation-based performance
analysis of our scheme. Section 6 concludes the paper.

2. ANONYMITY AND SECURITY IN
MOBILE AD HOC NETWORKS

A variety of widely known intrusion techniques may be used to
infer the entities’ identities, their locations, and/or relationships
between communicating entities in a public network. Typical
malicious actions may affect the message coding, timing, message
volume, flooding, intersection and collusion. Onion Routing [19]
is a communication protocol that is resistant against some of these
attacks. It employs a network of Chaum MIXes [6] in order to
provide anonymous and secure communications. It provides a
communication infrastructure that is reasonably resilient against
both eavesdropping and traffic analysis. Using this protocol,
entities representing applications communicate through a
sequence of networked computing nodes, which is referred to as
onion routers. Onion routers are generally application layer
routers that realize Chaum MIXes. Onion routing connections
proceed in three phases: connection setup phase, data transfer
phase and connection termination phase.

Over the Internet, anonymous systems [8], [10], [23] use
application level routing to provide anonymity through a fixed
core set of MIXes, as we described earlier for the Onion Routing
protocol. Each host keeps a global view of the network topology,
and make anonymous connections through a sequence of MIXes
instead of making direct socket connections to other hosts. The
authors in [13] used an alternate Onion Routing approach to
provide anonymous communications for mobile agents in the
JADE environment (Java Adaptive Dynamic Environment). Each
JADE multi-agent has several onion agents that provide an

anonymous data forwarding service, and at least one onion
monitor agent that keeps track of the location of all other onion
agents in the system. Onion monitor agents exchange onion agent
reachability information in order to maintain a valid topology of
the complete onion agent network. Levien [1], [15] developed a
monitoring utility that queries MIXes and publishes on a website
the average latency and uptime of each MIX over the past 12
days. Recently, Tarzan [9] and MorphMix [21] have discussed the
difficulties of constructing routes in dynamic environments.

Achieving secure routing in wireless ad hoc networks is a
complex task due to the nature of the wireless environment and
the lack of predefined infrastructure [14]. A number of protocols
have been developed to add security to routing in ad hoc
networks. Papadimitriou and Haas [17] proposed SRP (Secure
Routing Protocol) based on DSR [11], [12]. The protocol assumes
the existence of a security association between the source and
destination to validate the integrity of a discovered route.
Sanzgiri et. al. [22] proposed the ARAN (Authenticated Routing
for Ad hoc Networks) protocol that uses public key cryptography
instead of the shared security association used in the SRP [17].
Each intermediate node running the protocol verifies the integrity
of the received message before forwarding it to its neighbor
nodes. Source and destination nodes use certificates included in
the route discovery and reply messages to authenticate each other.
The protocol has an optional second discovery stage that provides
non-repudiating route discovery. Yi [25] developed a generalized
SAR (Security-Aware Ad-hoc Routing) protocol for discovering
routes that meet a certain security criteria. The protocol requires
that all nodes that meet a certain criteria share a common secret
key.

Venkatraman and Agrawal [24] proposed an approach for
enhancing the security of AODV protocol [18] based on public
key cryptography. In their approach, two systems, EAPS
(External Attack Prevention System) and IADCS (Internal Attack
Detection and Correction System) were introduced. EAPS works
under the assumption of having mutual trust among network
nodes while IADC runs by having the mutual suspicion between
network nodes. Every route request message carries its own digest
encrypted with the sender’s private key hash result in order to
ensure its integrity. To validate established routes, route replies
are authenticated between two neighbors along them. This
approach prevents external attacks. IADC system classifies
internal attacks and sets a misbehavior threshold for each class of
attack in order to detect compromised network nodes.

The above three protocols, i.e., SRP, ARAN, and Venkatraman
and Agrawal’s schemes, ensure only the authenticity but not the
privacy of the routing information, while SAR finds routes that
meet a certain security level. In all these protocols, intermediate
nodes that handle the route control messages can easily find the
identity of the communicating nodes, which must be protected in
case of anonymous communication. Our protocol uses the Onion
Routing approach and trust management system to provide trust
and anonymity for the path discovery (and hence for subsequent
communications using this path).

Other studies include intrusion detections to study the behavior of
mobile users in mobile phone systems [3], [4].

31

3. TRUST MANAGEMENT SYSTEM
As we mentioned earlier, due to the openness of ad hoc wireless
environment, some nodes in the network are likely to defect and
become harmful to the network, thereby necessitating a
mechanism to identify these nodes and isolate them. In this
section, we will introduce the notion of trust management system
we have used in our proposed protocol. The purpose of this
system is to motivate the participating nodes not only to help each
other relaying data traffic, but also identify the malicious nodes,
and avoid using them during the route establishment. The
identification of malicious nodes makes it easy to take them out of
the network, thereby increasing the route’s security and reliability

In this section, we will introduce our trust management approach
as well as the trust notion we choose to use in ad hoc wireless
environment to select routing path that meets certain trust
requirements. In our approach, we define the trust level in a node
as a cumulative value that is based on the past behavior of the
node. The trust level of a node increases as long as the node
behaves exactly as it is supposed to (in our cases, follow reliably
the steps of the routing protocol) or decreases as the node
misbehaves accordingly. A node’s trust is computed by each of its
direct neighboring nodes based on their past experience or
observation of the node’s behavior. These neighboring nodes,
together with the evaluated node, form what we refer to as a
community, as we will describe later.

3.1 Community management
In our system, we define a node’s community as the set of nodes
that includes the node itself, referred as central node, and all of its
one-hop neighboring nodes, among which some may be
malicious. To build and maintain a node’s community, we employ
a similar method used by AODV ad hoc routing protocol [18] in
order to accomplish neighboring nodes management. In our
protocol, a node keeps track of its neighbors simply by listening
for a HELLO message, which is broadcasted periodically by each
node. The sender’s public key is passed as part of the HELLO
message. Upon receipt of a HELLO message from one of its
neighboring nodes, a central node stores its neighboring node’s
public key if it does not have it yet. Since nodes can move freely
in an ad hoc wireless network, some neighbors of the central node
may leave while new neighbors may join the neighborhood of the
central node. Thus, if a node does not receive for some time the
HELLO message from one of its neighbors, it removes it from its
list identifying its neighboring nodes.

3.2 Community Key Management
In each community, the central node classifies its neighboring
nodes into three classes, based on their trust level. The first and
lowest trust level is for nodes whose trust value is between 0 and
a Medium Trust Level Threshold, δ1, while the second trust level,
i.e., the medium level, contains the nodes whose trust level is
between δ1 and the High Trust Level Threshold, δ2. The trust
level, corresponding to the high level, contains the nodes whose
trust value is between δ2 and 1. Each node selects independently
the values for δ1 and δ2. In our experiments, both values have
been determined empirically.

The central node generates two different keys for the medium and
high trust level, and shares them with its neighbors. All neighbors
in the same trust level share the same key. The neighbors in high

trust level will have both High Trust Level Community Key
(referred to as HCK) and Medium Trust Level Community Key
(referred to as MCK); whereas, the neighbors in medium trust
level have only MCK. As for the neighbors in low trust level, they
do not share any community key at all.

When the central node detects a new neighbor, it will assign an
initial trust value to it and updates this trust level later on, based
on their interaction. The central node updates the corresponding
community key when a node’s trust level goes up or down, and
also when a node leaves the community. To protect a community
key during distribution, the central node encrypts the key with the
public key of the intended neighboring node before sending it.
The central node repeats the same process with each node in its
neighboring node set.

3.3 Identification of Nodes’ Malicious
Behavior

In this section, we will describe how each node can compute and
constantly update the node’s trust in its neighboring nodes. Our
approach is based on the ability of the node to identify
neighboring nodes good or malicious behavior, and hence
updating the trust level accordingly. A behavior is good if it
confirms to the specification of the routing protocol and malicious
otherwise. For our protocol, a malicious behavior happens when
a node drops silently the packet without forwarding it or
maliciously updating the packet before forwarding it. We call
these two malicious behaviors as Malicious Dropping and
Malicious Modification. A node can identify these behaviors
simply by overhearing whether its neighboring node modified
maliciously the message before sending it (Malicious
Modification) or simply did not forward the message (Malicious
Dropping). Note that for the destination node to protect its
anonymity without jeopardizing its trust, it must also forward a
copy of the message it receives.

3.4 Trust-Based Distributed Route Selection
Scheme

Our routing protocol, as we shall see in the next section, requires
each intermediate node that receives a route request message, to
forward this message to its neighboring nodes. But in order to
achieve the security and reliability of the route, our protocol uses
a selection algorithm that is based on the level of trust each
intermediate node has with its neighboring nodes.

When a source node initiates the route discovery protocol, it
specifies the trust level requirement in the initial message. Each
intermediate node will propagate the message only to selected
neighboring nodes, depending on the source node requested trust
level. If the requested trust level is high, the node will use the
community key for the neighbors with high trust level to encrypt
the message; this will ensure that only highly trusted nodes will
participate in the routing protocol. If the required trust level is
medium, the node will use the community key for the neighbors
with medium or high trust level to encrypt the message. Using
this approach restricts the participation of intermediate nodes only
to the ones that have a certain trust level.

32

4. SECURE DISTRIBUTED ANONYMOUS
ROUTING PROTOCOL (SDAR)

In this section, we will describe our secure distributed protocol for
establishing anonymous paths in ad hoc wireless networks. The
major objective of our protocol is to allow trustworthy
intermediate nodes to participate in the path construction protocol
without jeopardizing the anonymity of the communicating nodes.
The protocol has a number of characteristics, including Non-
Source-Based Routing, Flexible and Reliable Route Selection and
Resilience against Path Hijacking. Our protocol is secured against
passive and active attacks, but not against Denial-of-Service
attacks, it maintains the anonymity of the sender and receiver, and
it is able to establish a route matching certain trust level
requirement if enough nodes with qualifying trust value exist
between the source and destination. The interested reader may
wish to consult [2].

4.1 Overview
To send data anonymously to a receiver node R, a sender node S
has to discover and establish a reliable and anonymous path that
connects the two nodes. Both the path discovery and
establishment process should be carried out securely and without
jeopardizing the anonymity of the communicating nodes. The
process is divided into three phases: the path discovery phase, the
path reverse phase and the data transfer phase. Distributed
information gathering about intermediate nodes that can be used
along an anonymous path is carried out during the path discovery
phase, while passing this information to the source node takes
place during the path reverse phase. The official data exchange is
processed during the data transfer phase after the construction of
the route. We elaborate on these three phases during the following
sub-sections, but we first introduce the assumption and some main
definitions that are used henceforth.

Table 1: Notations

• IDi : The identity of node i.
• PKi : The public key of node i.
• TPK : A temporary one-time public key.
• TSK : The private (secret) key corresponding to TPK.
• Ki : A symmetric (session) key generated by node i.
• PLS : The padding length set by the sender.
• PS : A padding implemented by the sender.
• PLR : The padding length made by the receiver R.
• PR : A padding made by the receiver node R.
•)(ME

iPK : The message M is encrypted with a public key PKi.

•)(ME
iK : The message M is encrypted with the symmetric

session key Ki.
• H (M): The message M is hashed with a hash function.
•)(MH

iK : The mixture of M and Ki is hashed with a hash

function.
• SignS(M): The message M is signed with the private key of

the source node S.
•

iIDsessionSN _ : A random number generated by node IDi for the

current session.
• HCKi: The high trust level community key which is a one

way symmetric key and generated by node i.
• MCKi : The medium trust level community key which is a

one way symmetric key and generated by node i.

4.2 Assumptions and Definitions
Before we proceed further, we will make the following
assumptions about the ad hoc network.

• The links between wireless nodes are always bi-directional.

• Every wireless node has enough computation power to
execute encryption and decryption algorithm.

• There is a trusted certificate authority (CA) outside the ad
hoc network, which issues public key and private key to the
wireless nodes inside the network.

• Each wireless node holds only one IP address for its
communication in the ad hoc network, by which it will be
recognized by all other wireless nodes.

• There are some nodes that are not willing to cooperate for
routing and data delivering and possibly actively intent to
tamper the routing protocol.

Table 1 shows the main notations used in this paper.

4.3 Path Discovery Phase
The path discovery phase allows a source node S that wants to
communicate securely and privately with node R to discover and
establish a routing path through a number of intermediate wireless
nodes. An important characteristic of this phase is that none of the
intermediate nodes that participated in the path discovery phase
can discover the identity of the sending node S and the receiving
node R.

The source node S triggers the path discovery phase by sending a
path discovery message to all nodes within its wireless
transmission range. The path discovery message has five parts.
The first part is the open part. It consists of message type, TYPE,
trust requirement, TRUST_REQ, and a one-time public key, TPK.
The trust requirement indicated by TRUST_REQ could be HIGH,
MEDIUM or LOW. TPK is generated for each path discovery
session and used by each intermediate node to encrypt routing
information appended to the path discovery message. This key
serves also as a unique identifier for the message. The second part
contains the identifier IDR of the intended receiver, the symmetric
key KS generated by the source node and PLS the length of the
third part, padding, all encrypted with the public key PKR of the
receiver. The source node may learn about the public key PKR of
the destined receiver through a number of ways including using
the service of a certificate authority (CA). The symmetric key KS
is used to encrypt the fourth part of the message as well as to
protect against replay attacks. The third part is a padding PS,
generated by the source node and used to hide real routing
information and to protect against message size attack. The forth
pare consists of IDS, PKS, TPK, TSK,

SIDSessionSN _ and SignS(MS),
all encrypted with KS. The intended receiver uses the public key
TPK and its corresponding private key TSK to decrypt and verify
the routing information in the message.

SIDSessionSN _ is a random
number generated by the source node and is mapped to the
encryption key KS to use with the message. SignS protects the
integrity of the message. The fifth part of the message contains
information about intermediate nodes prior to the current node
along the route. A message just sent by a source node has the

33

format shown in Figure 1, with MS = H (TYPE, TRUST_REQ,
TPK, TSK, IDR, KS, IDS, PKS, SIDSessionSN _ , PLS, PS).

Figure 1. Path discovery message just sent by the source S.

We assume that each node keeps an internal table for mapping the
randomly generated number of a session to the encryption key for
the session, as well as to the ancestor and successor node along
the anonymous path for the session. Given an encrypted message
and a randomly generated number, a node can use this mapping
table to know which key to use to encrypt the message. Only the
random number, the session key, and the ancestor node entry are
added to the table during the path discovery phase, while the
successor node entry is added later during the path reverse phase.

When a node i receives a path discovery message, it processes the
message according to the following steps:

1. Check if the message has already been received from other
nodes within its wireless transmission range using the TPK as
the unique identifier for the message. If the message was
received previously, drop it silently and stop; otherwise,
continue.

2. Check if the node is the sender’s intended next hop by finding
the corresponding community key in its community key lists.
If the key is found then decrypt the message using that key
and go to the next step; otherwise, stop

3. Check if the node is the destined receiver (try to decrypt
),,(SSRPK PLKIDE

R
, with the private key of the node and

compare the IDR to the node’s id)
4. If the node is NOT the intended receiver, then

a. Add the following information to the message, all
encrypted with the TPK: the id of the node, a session key Ki
(shared encryption key generated by the node), a randomly
generated number

iIDPathSN _ for the session, and the
signature of the original received message.

b. Forward the new message to the neighbors whose trust
levels meet the source node’s trust requirement.

c. Add <
iIDPathSN _ , id of the ancestor node, Ki > to the

internal mapping table.
5. If the node is the destined receiver, then

a. Use the length of padding, PLS, from),,(SSRPK PLKIDE
R

to find out the offset of the fourth part and then use the
retrieved session key KS to decrypt the fourth part of the
message and get TSK, then use the TSK to get session keys
for all the nodes along the path of the message.

b. Put all ids of the nodes and their session keys in one
message; encrypt the message several times, each time with
the session key of a node along the path to the receiver. Use
the reverse order of the keys in the message (same as the
data flow in onion routing)

c. Send the message to the first node in the reverse path
A path discovery message that has already traveled nodes i on its
way from the sender S to the receiver R would have the format
shown in Figure 2, with MS = H(TYPE, TRUST_REQ, TPK, TSK,
IDR, KS, IDS, PKS, SIDSessionSN _ , PLS, PS), and

iIDM = H (Mprev,

IDi, Ki, iIDPathSN _), and Mprev is the cumulative message that
nodei gets from its ancestor nodei-1.

Figure 2. Path discovery message just processed by nodei.

4.4 Path Reverse Phase
The path discovery message is forwarded from one node to the
other in the network until it reaches the target receiver R, which
triggers the path reverse phase. When the intended receiver gets
the path discovery message, it can use its private key to retrieve
KS. Then using KS, it can obtain the temporary private (secret) key
TSK encrypted in the fourth part of the message. Using TSK, the
receiver node R can also retrieve the IDs of all intermediate nodes
and the session key to use with each one of these intermediate
nodes, and the random number generated by each node. The
receiver then composes a message that contains all these random
numbers and the corresponding session keys, and encrypts the
message with the session keys of all the nodes along the path to
the source node. With each encryption, the receiver R adds a layer
that contains the random number generated by the node and the
random number generated by the node’s next-next-hop node
along the reverse path to the sender. If the first node to get this
message from the receiver is node i, the encrypted message
constructed by the receiver R should have a format completely
similar to the format shown in Figure 3, where
Mi=)(),(,),(2__2 21 iKiIDSessionIDSessioniK NHMHSNSNME

iiii −− −−
,

Ni = ()(,,),(
2__1 iKIDSessionIDSessioniK NHSNSNME

iiii −−). P is a

padding that has the same length as any Mj, and
1−SSesson_IDSN is a

random number having the same number of bits as any regular

JSesson_IDSN and it is generated by the source node.

 TYPE, TRUST_REQ, TPK,

),,(SSRPK PLKIDE
R

,

 PS ,

) (, , , , , (_ SSIDSessionSSK MSignSNTSKTPKPKIDE
SS

TYPE, TRUST_REQ, TPK,

),,(SSRPK PLKIDE
R

,

PS ,

)) (, , , , , (_ SSIDSessionSSK MSignSNTSKTPKPKIDE
SS

,

)) (, , , (
111_11 IDIDIDSessionTPK MSignSNKIDE ,

:

 :

)) (, , , (_ iii IDIDIDSessioniiTPK MSignSNKIDE

34

Figure 3. Path reverse Message

Each intermediate node that receives the path reverse message
uses the

iIDSessionSN _ to retrieve the key for the session, removes
one encryption layer and forwards the message to the next node
on the reverse path to the source node. The ID of the node from
which the message was received is added to the successor node
entry corresponding to the random number into the mapping
table. When the source node receives the message, it decrypts the
message and passes the information about all the intermediate
nodes (i.e., the route) to the higher application.

4.5 Data Transfer Phase
Our protocol uses a similar approach to the Onion Routing
protocol for the data transfer.

When the source node gets the path reverse message, it first
checks whether or not the message is correct, and then uses the
shared session keys of the intermediate nodes to make the layer
encryption for the data, which the sender wants to transfer to the
receiver. Each intermediate node just decrypts one encryption
layer and forwards the message to the next node according to the
ID of the next node.

5. SIMULATION EXPERIMENTS
In this section, we present the simulation experiments we have
carried out to evaluate the performance of our protocol using the
Network Simulator, ns-2 [16]. During our experiments we wish to
be able to study closely the behavior of our protocol. In this
paper, we present the results we have obtained using an ad hoc
network which consists of 30 mobile nodes, moving according to
the random waypoint mobility model [5], and where the initial
position of each mobile node was randomly chosen. Except for
the experiments in Section 5.1 where we changed the speed value,
the nodes moved around at a maximum speed of 5m/s in a
randomly chosen direction within a flat rectangle area of 670m
x670m. The nodes had to pause for a configured period of time,
which we set it up to 20s, before they changed their moving
direction. In each experiment, the simulation was run for 4000 sec
of simulated time. Half of the route requests have High Trust
Requirement (HTR) for the intermediate nodes and the other half
have Low Trust Requirement (LTR). The values of the Medium
Trust Level Threshold, δ1, and the High Trust Threshold, δ2, were
empirically selected as 0.6 and 0.95.

We have used an IEEE 802.11 MAC layer and a 914MHz Lucent
WaveLAN DSSS radio interface with the transmission range of
250m. The traffic was generated by CBR sources over UDP. The
source node continuously generated data packets of 512 bytes at
the rate of 4 packets per second in each flow.

SDAR was simulated using 512 bit keys for authentication with
the RSA algorithm, 64 bit for the community keys, and 64 bit
session keys. We believe these values are reasonable given the
computation resource of the mobile ad hoc nodes.

We have evaluated our protocol using the following performance
metrics:

• Connectivity: Connectivity is defined as the percentage of
the route request successfully answered by the destination,
out of the route requests sent by the source.

• Number of Packets: In our simulations, we kept track of the
number of packets that were prepared to be sent, the number
of packets actually sent, and the number of packets received.

• Routing Overhead: Routing overhead represents the
number of routing packets required to send one hundred data
packets.

• End-to-End Delay: End-to-end delay is defined as the
average time difference between the time a packet is sent
from the source and the time it is successfully received by
the destination.

• Average Route Length: the average route length indicates
the average number of hops in a route.

• Security Overhead: The security overhead indicates the
number of UPDATE messages sent by all nodes. These
messages, as we mentioned in Section 3, are used to compute
and update the trust value of mobile nodes.

5.1 SDAR and DSR- A Comparison
In this section, we wish to investigate the overhead of our scheme
when compared to the best well known routing algorithm. In this
paper, we choose the Dynamic Source Routing (DSR) routing
protocol [11], [12]. This was due mainly to the fact that both
protocols share the main routing idea. During the course of our
simulations experiments, both protocols were run under identical
mobility and traffic scenarios. We used a basic version of DSR,
which does not include any optimization, such as the caching,
which, as one may expect, goes against the anonymity concept.
This allowed us, also, to have a fair comparative study.

Figure 4 and Figure 5 show that the SDAR protocol has a lower
connectivity rate and a higher end-to-end delay. This variation is
mainly due to the computational overhead of the security
functions required for anonymously computing the path;
intermediate nodes have to spend more time processing each
single message, leading to a larger waiting time and hence longer
end-to-end delay.

TYPE,

)(),(,,

)),(),(,,

)),(),(,,

)),...),(),(,,

)),(),(,,

)),(),(,,

),,,,,...,

,,,

(((...(((

2__

13__

24__

2__

1__

__

_2

1

2

131

242

22

111

1

21

1221

ikiIDSessionIDSession

iKiIDSessionIDSession

iKiIDSessionIDSession

KSIDSessionIDSession

KIDSessionIDSession

SKIDSessionIDSession

RRIDSessioni

IDSessionIDSession

KKKKKK

NHMHSNSN

NHMHSNSN

NHMHSNSN

NHMHSNSN

NHPHSNSN

NHPHSNSN

PPLSNKK

SNKSN

EEEEEE

iii

iii

iii

S

S

SSS

R

Siii

−

−−

−−

−

−−−

−−−

−

−

−−

35

5.2 The effect of the change in the percentage
of malicious node on SDAR

In the experiments we have described in the previous section, we
have compared mainly the security overhead incurred by the
SDAR, in comparison with the basic version of DSR [11], [12]. In

Figure 4. Connectivity of SDAR vs. DSR

Figure 5. End-to-end delay for SDAR vs. DSR

these experiments, we have also assumed that all the nodes in the
network are well-behaved nodes. In this section, we will present
the additional experiments we have conducted to determine the
effect of the change in the percentage of malicious nodes on the
behavior of the SDAR protocol.

Figure 6 shows the change in the percentage of connectivity in
relation with the change in the percentage of malicious nodes. The
graph shows clearly that as the number of malicious nodes
increases in the network, the percentage of successfully
established route decreases. This is mainly due to the fact that the
higher the percentage of malicious nodes, the higher probability
that these nodes will drop the route request messages, leading to a
lower connectivity rate. The graph shows also the difference
between route requests with HTR and LTR for the intermediate
nodes: the difference in the degree of connectivity between HTR
and LTR is mainly due to the higher trust requirement of HTR,
which restricts the number of intermediate nodes that can
participate in the routing protocol leading to a lower connectivity;

LTR route requests uses intermediate nodes even if they have low
trust value.

Figure 7 illustrates the routing overhead as a function of the
percentage of malicious nodes for both HTR and LTR. The graph
shows that as the number of malicious nodes increases, the
number of times the source node has to run the route discovery
algorithm increases, and hence an increase in the routing
overhead

Figure 6. Connectivity vs. percentage of malicious nodes

Figure 7. Routing overhead vs. percentage of malicious nodes

 This is also the result of intermediate malicious nodes dropping
the route request or reply messages, resulting in an increase in the
number of route requests. HTR has also higher routing overhead,
since the probability of route requests is higher because of the
restriction on the trust level of intermediate nodes, hence
requiring a larger number of route requests.

The results in Figure 8 show the change in route length as a result
of the change in the percentage of malicious nodes in the network,
and also for HTR and LTR. For both HTR and LTR, the average
route length increases with the increase of the percentage of
malicious nodes. This is mainly due to the fact that the shortest
path might not be satisfactory in terms of the trust level
requirement. The graph shows also that when there are few
malicious nodes in the network, the average path length for the
HTR is higher than the average path length for the LTR. This
could be explained by the fact that the HTR adds more constraints
on the path discovery algorithm, but since paths do exist between

36

communicating nodes, the path would eventually be found, but it
will be longer.

Figure 9 shows the end-to-end delay for the HTR and LTR, as a
function of the percentage of malicious nodes. As explained in the
previous paragraph, a higher percentage of malicious nodes
means a longer route between the source and the destination, and
hence additional delay in the packet delivery. Additionally, since
HTR

Figure 8. Average route length vs. percentage of malicious

nodes.

Figure 9. End-to-end delay vs. percentage of malicious nodes.

routes are longer than LTR routes, this means also higher end-to-
end delay value.

Figure 10 and Figure 11 illustrate the difference between the
number of packets prepared to be sent, the actual number of
packets sent, and the number of packets that were received at the
destination, as the percentage of malicious nodes in the network
changes. As noticed from the graph, using the LTR generates a
higher throughput, especially when the percentage of bad nodes is
low; this is mainly due to the fact that all nodes are considered
initially as malicious nodes, and their status is updated during the
course of the simulation.

Figure 12 shows the number of exchanged UPDATE messages
used to establish and update the trust relationship between
neighboring mobile nodes. This number drops as the percentage
of malicious nodes increases in the network. This number is
expected to decrease, since nodes send only UPDATE messages
when their status is changed from malicious (default) to good

node. But as the percentage of malicious nodes increases in the
network, the status of all the nodes remains malicious, fewer and
fewer UPDATE messages are sent. The issue of coalition between
malicious nodes is not included in our current work.

6. CONCLUSION
Security and anonymity are the most challenging issues in
wireless and mobile ad hoc networks (MANET). In this paper, we

Figure 10. Number of packet for HTR vs. percentage of

malicious nodes.

Figure 11. Number of packet for LTR vs. percentage of

malicious nodes.

Figure 12. Security overhead vs. percentage of malicious

nodes.

37

present an efficient secure distributed anonymous routing protocol
for MANET, which anonymously creates routes dynamically to
support onion routing without the originator knowing neither the
keys of the mix nodes nor the topology of the network. We
discuss the algorithm, and present an extensive set of simulation
experiments to evaluate its performance analysis. Our simulation
experiments indicate clearly that the anonymity in MANET is
feasible, could be incorporated within an ad hoc routing protocol
and provide a good solution for achieving anonymity in MANET
at a reasonable additional cost when compared to the well-known
DSR ad hoc routing protocol.

7. REFERENCES
[1] Anonymity on the Internet.

http://www.sendfakemail.com/~raph/remailer-list.html,
Accessed Jun. 2004.

[2] Boukerche, A., El-Khatib, K., and Xu, L. Secure Routing Protocols
for mobile Ad Hoc Networks. Technical Report, TR-2004, University
of Ottawa.

[3] Boukerche, A. and Notare, M. Neural Fraud Based Intrusion
Detection for Mobile Phone Operations, IEEE BioSP3, 2001

[4] Boukerche, A. and Notare, M. Behavior Based Intrusion
Detection in Mobile Phone Systems, Journal of Parallel and
Distributed Computing. 2002.

[5] Broch, J., Maltz, D. A., Johnson, D. B., Hu, Y-C., and
Jetcheva, J. A performance comparison of multi-hop wireless
ad hoc network routing protocols. In Proc. ACM
MOBICOM, pages 85–97, Oct. 1998.

[6] Chaum, D. Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. Communications of the ACM, 24.2,
(Feb 1981) 84-88.

[7] Chaum, D. The Dining Cryptographers Problem:
Unconditional Sender and Recipient Untraceability. Journal
of Cryptography, 1.1, (1988) 65-75.

[8] Electronic Frontiers Georgia (EFGA). Anonymous remailer
information. http://anon.efga.org/Remailers/.

[9] Freedman, M. J., Morris, R. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of the First
International Workshop on Peer-to-Peer Systems
(Cambridge, MA, Mar. 2002).

[10] Goldberg, I., and Shostack, A. Freedom network 1.0
architecture, November 1999.

[11] Johnson, D. and Maltz, D. Dynamic source routing in ad hoc
wireless networks. T. Imielinski and H. Korth, editors,
Mobile computing, Kluwer Academic, 1996.

[12] Johnson, D. B., Maltz, D. A., and Broch, J. DSR: The
Dynamic Source Routing Protocol for Multi-Hop Wireless

Ad Hoc Networks. In Ad Hoc Networking, ch. 5, pp. 139-
172. Addison-Wesley, 2001.

[13] Korba L., Song, R., and Yee, G. Anonymous
Communications for Mobile Agents. MATA 2002: 171-181

[14] Lundberg, J. Routing Security in Ad Hoc Networks. Tech.
Rep. Tik-110.501, Helsinki University of Technology, 2000.

[15] May, T. C. http://www2.pro-ns.net/~crypto/chapter8.html,
Accessed June 2004.

[16] NS-2, available at http://www.isi.edu/nsnam/ns/
[17] Papadimitratos, P. and Haas, Z. J. Secure Routing for Mobile

Ad hoc Networks. SCS Communication Networks and
Distributed Systems Modeling and Simulation Conference
(CNDS 2002), San Antonio, TX, January 27-31, 2002.

[18] Perkins, C. E. and E. Royer, M. Ad hoc on demand distance
vector (AODV) routing. http://www.ietf.org/internet-
drafts/draft-ietf-manet-aodv-00.txt, 1997. IETF Internet
Draft.

[19] Reed, M., Syverson, P., and Goldschlag, D. Proxies for
anonymous routing. In 12th Annual Computer Security
Applications Conference, (Dec. 1995), 95-104.

[20] Reiter, M. K. and Rubin, A. D. Crowds: Anonymity for Web
Transactions. ACM Transactions on Information and System
Security, 1.1, (Nov. 1998), 66-92.

[21] Rennhard, M. MorphMix: Peer-to-Peer based Anonymous
Internet Usage with Collusion Detection. Technical Report
Nr. 147, TIK, ETH Zurich, Switzerland, August 2002

[22] Sanzgiri, K., Dahill, B., Levine, B. N., Shields, C., and
Belding-Royer, E. M. A Secure Routing Protocol for Ad Hoc
Networks, In Proceedings of 2002 IEEE International
Conference on Network Protocols (ICNP), Nov. 2002.

[23] Syverson, P. F., Goldschlag, D. M., and Reed, M. G.
Anonymous connections and onion routing. In Proceedings
of the IEEE Symposium on Security and Privacy (Oakland,
California, May1997), 44–54.

[24] Venkatraman, L., Agrawal, D.P. Strategies for enhancing
routing security in protocols for mobile ad hoc networks, in
Journal of Parallel and Distributed Computing, 63.2
 (February 2003), Special issue on Routing in mobile and
wireless ad hoc networks, Pages: 214 – 227, Year of
Publication: 2003, ISSN:0743-7315

[25] Yi, S., Naldurg, P., and Kravets, R. Security-Aware Ad Hoc
Routing Protocol for Wireless Networks. The 6th World
Multi-Conference on Systemics, Cybernetics and Informatics
(SCI 2002), 2002.

38

