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e solution of a Least Squares Support Vector Machine (LS-SVM) su�ers from the problem of nonsparseness. 
e Forward Least
Squares Approximation (FLSA) is a greedy approximation algorithm with a least-squares loss function. 
is paper proposes a new
Support Vector Machine for which the FLSA is the training algorithm—the Forward Least Squares Approximation SVM (FLSA-
SVM). A major novelty of this new FLSA-SVM is that the number of support vectors is the regularization parameter for tuning the
tradeo� between the generalization ability and the training cost.
e FLSA-SVMs can also detect the linear dependencies in vectors
of the input Gramian matrix. 
ese attributes together contribute to its extreme sparseness. Experiments on benchmark datasets
are presented which show that, compared to various SVM algorithms, the FLSA-SVM is extremely compact, while maintaining a
competitive generalization ability.

1. Introduction


e last decade has seen widespread applications of Least
Squares Support VectorMachines (LS-SVM) [1, 2] to a variety
of classi�cation problems. 
e LS-SVM involves �nding a
separating hyperplane of maximal margin and minimizing
the empirical risk via a Least Squares loss function. Here the
optimization is subject to equality constraints, as opposed to
the inequality ones used with a standard SVM [3, 4].
us the
LS-SVM successfully sidesteps the quadratic programming
(QP) required for the training of the standard SVM. As a
result, an LS-SVM classi�er is equivalent to a set of linear
algebraic equations, which are usually solved by the conjugate
gradient (CG) method [5]. Empirical studies suggest that an
LS-SVM possesses very competitive generalization abilities
compared to a regular SVM [6]; improvement has beenmade
to Suyken’s algorithm by Chu et al. [7] whose proposal is also
based on CG method but with a reduced time complexity.
Meanwhile Keerthi et al. advocated training an LS-SVM
using the sequential minimal optimization (SMO) algorithm
[8].

While these algorithms have indeed made an LS-SVM
more computationally attractive, the nonsparseness of its

solution still remains amajor, and as yet unsolved, bottleneck.
Sparseness in solutions is essential for reducing the time
required in predicting the class membership of unlabelled
data. 
e general approach to addressing this issue for
an LS-SVM is iterative shrinking of the training set. Here
the importance of training samples is evaluated from the
weights assigned to them a�er training. Samples of less
importance are removed, and then the remainder forms
a reduced training set to be learnt again. In view of the
linear relationship between the approximation error and the
support value for a training sample, a straightforward prun-
ing strategy is to remove samples whose absolute support
values are trivial [9]. A later paper recommended pruning
a sample which introduces the smallest error if omitted
[10]. However, this necessitates the inversion of the kernel
matrix, which is indicative of high computation complexity.
Zeng and Chen [11] suggested a pruning method based on
the SMO formulation of an LS-SVM, which leads to faster
retraining. Other authors [12] proposed solving the dual form
of an LS-SVM by iterative addition of basis functions from
the kernel dictionary either until all the training samples
are traversed or until the approximation error is lower
than a preset threshold. Despite the lower computation cost
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with the back�tting scheme adopted, Lagrangian multipliers
associated with previously selected training samples were
inherited into the next pass, which could compromise the
generalization abilities of the resultant LS-SVM.


is paper presents a new LS-SVM formulation called the
Forward Least Squares Approximation SVMs (FLSA-SVM).
It is trained by Forward Least Squares Approximation(FLSA)
[13], a function approximation method using a Least Squares
loss function.
e FLSA-SVM loss function decreases mono-
tonically with an increasing number of support vectors,
allowing for the removal of slack variables from the equality
constraints. Another novelty with the FLSA-SVM lies in
the fact that it cleverly transforms the number of support
vectors to be the regularization parameter, which indicates
the tradeo� between generalization abilities and empirical
risk.
e FLSA-SVM builds a classi�er by iteratively selecting
a single basis function for the solution, which contributes the
largest reduction to the quadratic cost function.


epaper is organized as follows. Section 2brie�y reviews
Least Squares SVM principles. 
e new sparse LS-SVM—
Forward Least Squares Approximation SVM (FLSA-SVM)—
is introduced in Section 3. Experimental results are given in
Section 4 and concluding remarks in Section 5.

2. Least Squares Support Vector Machines

For a classi�cation problem of ℓ pairs of training samples(x1, �1), . . . , (xℓ, �ℓ), where x ∈ R� and � ∈ {−1, 1}, LS-SVM
algorithms seek the optimal separating hyperplane with the
orientation vector of the least �2 norm.

To ensure the presence of the optimal hyperplane, the
input data are translated into a reproducing kernel hilbert
space (RKHS) by a mapping function denoted by �(x). To
avoid the curse of dimensionality, the mapping is imple-
mented implicitly by the introduction of “kernel trick.”
Its idea is that dot products in the RKHS space can be
represented by a Mercer kernel function in input space [14]:

�(x, x�) = Φ(x)⊤Φ(x�) . (1)


us the linear discriminant function in the feature space can
be formulated as

� (x) = w
⊤� (x) + �, (2)

where w is the orientation vector and � is the bias term.
An LS-SVM�nds the hyperplane parameterized by (w, �)

by solving the following optimization problem [15]:

min
w,�,e

12w⊤w + 12 ℓ∑�=1 �2� ,
s.t. w

⊤� (x�) + � = �� − ��, � = 1, . . . , ℓ, (3)

where the slack variable �� denotes the deviation between
the actual output �(x) of the LS-SVM on sample x� and its
target value ��.  is a parameter which imposes penalty on
deviations.

Introducing the Lagrange multipliers �� (� = 1, . . . , �) for
each of the equality constraints gives

L (w, �, e, �) = 12w⊤w + 12 ℓ∑�=1 �2�
− ℓ∑
�=1
�� [w⊤� (x�) + � − �� + ��] .

(4)

Due to the equality constraints, �� can either be positive
or negative according to the Karush-Kuhn-Tucker (KKT)
conditions [16]:

w = ℓ∑
�=1
��� (x�) , (5)

ℓ∑
�=1
�� = 0, (6)

�� = ��, (7)

w
⊤� (x�) + � = �� − ��. (8)


e linear equations can be further simpli�ed to

[H + −1I �→1�→
1
⊤ 0 ] [��] = [y0] , (9)

where H ∈ R
ℓ×ℓ and H�� = �(x�, x�), y = [�1, . . . , �ℓ]⊤, � =[�1, . . . , �ℓ]⊤, I is unity matrix of rank �, and �→1 is a column

vector of 1s of � length.
e solution of an LS-SVM is a linear
combination of basis function �(⋅, x�) whose associated �� is
nonzero:

� (x) = ∑
�
���(x, x�) + �. (10)

It has been noted that the LS-SVM is almost equivalent to
ridge regression [17] since the twomethods corresponds to an
identical optimization problem. Meanwhile, the equivalence
between the LS-SVM and the Kernel Fisher Discriminant
method [18] has also been established [19].

3. Least Squares Approximation Sparse SVM

Equation (3) shows that an LS-SVM can also be viewed as
a ridge regression model. And the optimality conditions (7)
indicate that the introduction of slack variable �� is the root of
the nonsparseness problem, since in regression applications,
most slack variables end as nonzero [20]. But the introduction
of �� seems inevitable for the representation of training cost
and thus the penalty parameter to indicate the tradeo�
between training cost and generalization abilities.


e section introduces a new formulation of Least
Squares SVM,namely, ForwardLeast SquaresApproximation
SVM (FLSA-SVM). 
e proposed FLSA-SVM algorithm is
motivated by the Least Squares “Forward Approximation &
Backward Re�nement” method for function approximation,
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which was �rst developed in the dynamic system identi�ca-
tion community by Li et al.

FLSA-SVM is rid of slack variables by employing an
approximation function of Least Squares loss function which
is Forward Least Squares Approximation (FLSA) algorithm.
FLSA approximation function iteratively selects a basis func-
tion which causes the steepest reduction in the loss function.

e features enable the number of support vectors (SVs),
which equals to the number of basis functions, to be the
tradeo� between training cost and generalization abilities.
In FLSA-SVMs, the sparseness of its solution is ensured and
con�rmed by the experiments section in which FLSA-SVMs
are more sparse than standard SVMs.

In this section, a description of “Forward Approxima-
tion” is given, from a machine learning perspective, as a
preface to the introduction of LSA-SVM algorithm. 
e
strategy to reduce the computation complexity of FLSA-
SVMs is then presented.

3.1. Forward Least Squares Approximation [13]. Given ℓ
values (�1, . . . , �ℓ) of an unknown target function � in a
Hilbert space at ℓ input data (x1, . . . , x	). A “dictionary”{�1, . . . , ��} of functions in the Hilbert space is also given
in which �� (� = 1, . . . ,  ) is termed as a “basis function.”
Forward Least Squares Approximation (FLSA) addresses
the estimation of � with a linear combinations of ! basis
functions chosen from the dictionary:

�
 = 
∑
�=1
"���, (11)

where

! is the number of basis functions which expand �
,{�1, . . . , �
} is the set of selected basis functions, and("1, . . . , "
) ∈ R
 is the associated weight vector,

so that the squared norm of the residue vector, denoted by �,
is minimized:

� = (�→�
 − y)⊤ (�→�
 − y) , (12)

where y = (�1, . . . , �ℓ) and �→�
 = (�
(x1), . . . , �
(xℓ))⊤ is the
output vector of �
 on the ℓ input data:

�→�
 = 
∑
�=1
"��� = ΩΘ, (13)

where �� = (��(x1), . . . , ��(xℓ))⊤ is the vector of decision
values of basis function �� on the input data and Ω =[�1, . . . , �
] ∈ R

ℓ×
. Equation (13) suggests that FLSA can

be understood as working entirely in the Rℓ space.

e weight vectorΘ that minimizes the loss function (12)

is given as

Θ = (Ω⊤Ω)−1Ω⊤y (14)

for a matrixΩwhich is of full column rank [21].
e resultant
minimal loss function is� (Θ) = y

⊤
y −Θ⊤Ω⊤y

= y
⊤ (I −Ω (Ω⊤Ω)−1Ω⊤) y) . (15)

Starting from (15), FLSA de�nes a set of residuematricesR� ∈
R
ℓ×ℓ (� = 1, . . . , !) for the measurement of the contribution

of each basis function to the reduction of loss function:

R� = I −Ω�(Ω⊤� Ω�)−1Ω⊤� , (16)

where matrix Ω� = (�1, . . . , ��) is full column rank and is
composed of output vectors of � basis function. I is the unity
matrix and set R0 = I. 
en, the following equation holds:(1) R��� = 0 1 ≤ ' ≤ �, (17)

(2) R
⊤
� = R�, R

2
� = R�. (18)

For a �� = (��(x1), . . . , ��(xℓ))⊤ (1 ≤ * ≤  ) which
produces a full column rank (Ω�, ��), it is proved that R�+1
has the following properties:

(3) R�+1 = R� − R����⊤� R⊤��⊤� R��� , (19)

(4) R�R�+1 = R�+1R� = R�+1. (20)

Meanwhile, the introduction of R� simpli�es the formu-
lation of � � which is the evaluation of loss function � atΩ�:� � = y

⊤
R�y. (21)

And thus

� �+1 = y
⊤
R�+1y = � � − y⊤R����⊤� R⊤� y�⊤� R��� . (22)


e contribution, denoted by -��, of a column vector ��
makes the loss function � � can able to be explicitly expressed:

-�� = y⊤R����⊤� R⊤� y�⊤� R��� = [(R���)⊤ (R�y)]2(R���)⊤ (R���) . (23)

FLSA algorithm proceeds in a greedy manner which
selects one basis function per iteration. 
e �th iteration
identi�es the index of the �th basis function �� by solving the
optimization problem:

arg max
�=1,...,�

-�� = [(�(�−1)� )⊤y(�−1)]2
(�(�−1)� )⊤�(�−1)� , (24)

where �(�−1)� = R�−1�� and y(�−1) = R�−1y.

e �th iteration of FLSA algorithm, in actual fact,

establishes the following linear system whose solutions are
the last! − � + 1 elements of " in (13):

[�(�−1)� �(�−1)�+1 ⋅ ⋅ ⋅ �(�−1)
 ] [[[[[
"�"�+1
..."

]]]]]
= y
(�−1). (25)
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us [�(�−1)� �(�−1)� , �(�−1)� y(�−1)] (�� ∉ {�1, . . . , ��}) which
represents a linear equation is stored for the �th iteration.
Eventually, ! iterations build up an upper triangle which
represents a linear system of (26). 
e solution Θ can be
computed by performing a back substitution procedure that
is used by a typical Gaussian elimination process:

[[[[[[

�⊤1 �1 �⊤1 �2 . . . �⊤1 �
0 (�(1)2 )⊤�(1)2 . . . (�(1)2 )⊤�(1)

...

...
. . .

...0 0 . . . (�(
−1)
 )⊤�(
−1)

]]]]]]
[[[[[
"1"2
..."

]]]]]

= [[[[[[

�⊤1 y(�(1)2 )⊤y(1)
...(�(
−1)
 )⊤y(
−1)

]]]]]]
.

(26)


e FLSA algorithm, in fact, is closely related to the
Orthogonal Least Squares (OLS) method [22–24], which also
allows for the explicit formulation of the contribution of a
basis functionmade to the reduction of the squared error loss.

3.2. Forward Least Squares Approximation SVMs. As with
standard SVMs, the formulation of LS-SVMs embodies the
Structural Risk Minimization (SRM) principle which can be
illustrated by Figure 1, in which the dotted line represents the
upper bound on the complexity term of function set from
which solution is chosen and the dash line the empirical
risk. SRM minimizes the upper bound on the expected risk
(generalization error), for which the best tradeo� between
the complexity term and the empirical risk is required to be
found.

To this end, a regularization term is introduced to indicate
the tradeo� between the complexity term and the empirical
risk, both of which LS-SVMs explicitly formulate. Model
selection is performed in the domain of R > 0 in search for
its optimal value.

While in FLSA algorithm, it can be concluded from
(22) that the training cost � monotonously decreases to the
increase in the number of selected basis functions !. 
e
training cost � can be then plotted against ! into a curve
similar to that of the empirical risk in Figure 1.


is fact motivates the following two innovations to
traditional formulation of LS-SVMs: (1) the employment of
the parameter! as the regularization term; (2) the avoidance
of the term to represent empirical risk by using the FLSA
as the training algorithm, which minimizes the summed
squared residues for any value of !. As a result, a new
formulation of LS-SVMs—namely, Forward Least Squares
Approximation Sparse SVM(FLSA-SVM),which is restricted
to be trained by FLSA algorithm, is proposed:

min
w,�

12 (w⊤w + �2) , (27)

s.t. w
⊤� (x�) + � = ��, � = 1, . . . , ℓ, (28)

|Γ| = !, (29)

Confidence Empirical risk

LargeSmall

Complexity of a function set

Expected

risk

Figure 1: Structural risk minimization (SRM) principle.

where Γ = 1, . . . , 
 is composed of the indices of the support
vectors and |Γ| is the cardinality of the set. 
e addition of

term �2 to (27) is �rst introduced by [25].
In an FLSA-SVM, the parameter ! is interpreted as

the number of nonzeros of Lagrangian multipliers, that is,
the number of support vectors (SVs), which is seen more
obviously in its Lagrangian by introducing the Lagrangemul-
tipliers �� (� = 1, . . . , ℓ) for each of the equality constraints
giving

L (w, �, �) = 12 (w⊤w + �2)
− 
∑
�=1
�� [w⊤� (x�) + � − ��] − B |Γ| . (30)


e optimal point requires that

w = 
∑
�=1
��� (x�) ,


∑
�=1
�� = �,

w
⊤� (x�) + � = y�,|Γ| = !.

(31)


e linear equations can be further simpli�ed to

(K + �→1 )� = D� = y, (32)

|Γ| = !, (33)

where K ∈ R
ℓ×ℓ and K�� = �(x�, x�), y = [�1, . . . , �ℓ]⊤, � =[�1, . . . , �ℓ]⊤, �→1 is a ℓ-by-ℓmatrix of 1s, andD ∈ Rℓ×ℓ, where

D�� = K�� + 1.
It is worth attention that, in this paper, D in (32) is also

referred to asD
 as it has! support vectors.
us, if all ℓ data
samples are used as support vectors, thenD becomesDℓ.
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FLSA can be applied to train an FLSA-SVM using a
kernel-based dictionary Dℓ = {C� = K(⋅, ') + 1 | � = 1, . . . , ℓ}
of candidate basis functions. Since ! is de�ned to be the
number of SVs, it thus achieved a more direct control of the
sparseness of its solution.

3.3. Automatic Detection of Linear Dependencies. Since the
kernel matrix K in (32) is a semipositive de�nite, it is easy
to prove the semipositive de�niteness of the matrix D. 
en
it is likely the occurrence of linear dependencies among
column vectors, each being evaluation of a basis function on
the training data. Assume that columns (d�1 , d�2 , . . . , d��) are
selected iteratively and linearly independent, where 1,...,� are
their column indices in chronological sequence. Denote d
to be any column which remains as available candidates in
D and meanwhile can be expressed as a linear combination
of (d�1 , d�2 , . . . , d��). It is thus naturally desired to remove d
as candidates in order to (1) ensure the sparseness of the
solution; (2) avoid any undue computation concerning d
since

d = �1d�1 + �2d�2 + ⋅ ⋅ ⋅ + ��d�� , (34)

where � = [�1, . . . , ��]⊤ ̸= 0.
With the introduction of the residue matrix at each

iteration as R�� (� = 1, . . . , *), the following property holds
according to (18) and (20):

R��d = �1R��d�1 + �2R�d�2 + ⋅ ⋅ ⋅ + ��R��−1d��= �1R�� (R�1d�1) + �2R�� (R�2d�2) + ⋅ ⋅ ⋅ + 0= 0.
(35)


us updating the dictionaryD by R�� , the column vector(s)
d becomes 0, that is, automatically pruned. Hence, at each
iteration of the FLSA-SVM, any column vector(s) which
can be represented by a linear combination of previously
selected columns can be automatically pruned. 
is merit of
the FLSA-SVM is one contributor to the sparseness of the
resultant solution.

Algorithm 1 gives the pseudocode of the FLSA-SVM
algorithm in detail.

3.4. Computation Complexity. As discussed in [26], for a
single round of training, the computational complexity of

FLSA-SVM is E(!ℓ2) and space complexity for FLSA-SVM

is E(ℓ2).
4. Experimental Results

A set of experiments were performed to evaluate the per-
formance of the proposed FLSA-SVM algorithm. 
e FLSA-
SVMs were �rst applied to the two-spiral benchmark [27]
for an illustrative view of their generalization abilities. 
e
following Gaussian kernel function was used for the exper-
iments in this paper:

�(X�,X�) = �−‖X�−X�‖2 . (36)

0 2 4 6 8

0

2

4

6

−2

−4

−6
−2−4−6−8

Figure 2: Two-spiral dataset.


e standard SVMs were implemented by LIBSVM [28].
e
LS-SVM trained by CG method was implemented by the
toolbox of LS-SVMlab [29] and all experiments were run on a
Pentium 4 3.2GHz processor under Windows XP with 2GB
of RAM.

4.1. Experiments on Two-Spiral Dataset. 
e 2D “two-spiral”
benchmark is known to be di�cult for pattern recognition
algorithms and poses great challenges to neural networks
[30]. 
e training set consists of 194 points of theF-G plane,
half of which has a target value of +1 output and half a target
value of −1. 
ese training points describe two intertwining
spirals that go around the origin three times, as shown in
Figure 2, where the two categories are marked, respectively,
by “+” and “o.”

For the FLSA-SVM, the parameter setting of Gaussian
kernel was H = 1 as in (36). With a feasible range of[85, 193], the optimal regularization parameter was found to
be 134which gave a leave-one-out cross-validation (LOOCV)
accuracy of 97.94%. With standard SVMs, the parameter
setting was M = 32 and H = 0.5, whose LOOCV accuracy
is 98.97%. 
e SVM classi�er was required in 164 support
vectors (SVs). 
e graphical outputs of the FLSA-SVM and
the SVM were given by Figure 3. It showed that generally
both SVMand FLSA-SVMalgorithms recognized the pattern
successfully, outputting “two-spiral” in a very smooth and
regular manner. But at the area around the coordinate of[0, 0], the FLSA-SVM showed better performance than the
conventional SVM whose decision hyperplane was biased
towards the “o” class.

Despite the reduction in the number of SVs which is
very notable for such a “hard” classi�cation problem, the
FLSA-SVMs are comparatively superior to the following two
aspects. In SVMs, it o�en occurred that given a �xed kernel
parameter, the optimal CV accuracy can be obtained from
multiple value settings on the regularization parameter. 
e
“two-spiral” problem is a case in point. For the best LOOCV
accuracy, with a �xed H = 0.5, the value of M can also opt
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Figure 3: Comparison between standard SVMs and FLSA-SVMs: (a) two-spiral pattern recognized by the FLSA-SVM trained on 134 data
points with H = 1 in (36); (b) two-spiral pattern recognized by the standard SVM trained on 164 data points. 
e penalty constant M = 32
and O = 0.5.
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Figure 4: Comparison between LS-SVMs and FLSA-SVMs: (a) two-spiral pattern recognized by the conventional LS-SVM trained on 194
data points with the penalty parameter  = 173.7427 and H = 5.4899 for Gaussian RBF; (b) two-spiral pattern recognized by the FLSA-SVM
trained on 180 data points with H = 1 in (36).

for (26, 27, 28, 29, 210) beyond 25. 
ere is no speci�c rule as
to which option is the best, and normally the smallest is
chosen for a scaled-down feasible region. While in FLSA-
SVMs, the setting for the value of the regularization term! is
more tractable since di�erent options correspond to di�erent
learning errors which can be easily tracked with (23). For
multiple values of ! which produce the same optimal CV
accuracy, the largest! is chosen for a smaller learning error.

In fact, for ! ∈ [160, 193], the LOOCV accuracy
remained stable at 96.91%. 
us an FLSA-SVM was also
trained with the parameter settings of ! = 193 which was
depicted in Figure 4(a). For comparisons, an LS-SVM was
trained whose parameter settings are  = 173.7427 andH = 5.4899 forGaussianRBF.
e solutionwas parameterized
by the entire 194 points and illustrated in Figure 4(b).

e decision boundaries of both of the LS-SVM and the
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INPUT:
(i) 
e data set {(x1, �1),. . ., (x	, �	)}
(ii)! which is the number of support vectors desired in the expansion of the solution and1 ≤ ! ≤ �
(iii) A dictionary of � basis functionsD0 = {d1, . . . , d	}
INITIALIZATION:
(i) Current residue vector y, current dictionaryD which is initially a matrix of evaluations

of � candidate basis functions on training data:

y ←� (�1...�	), D←� (C1 (x1) ⋅ ⋅ ⋅ C	 (x1)...
. . .

...C1 (x	) ⋅ ⋅ ⋅ C	 (x	))
(ii) 
e matrix A and the vector b both starts as empty A is appended a row and b grows

by one extra element at each iteration, which in the end forms a linear system.
(iii) A variable � which is the count of candidate basis functions and a vector Γ = {1, . . . , 	}

which contains the indices of basis functions. At the start, � = � for 1 ≤ � ≤ � and � = �.
FOR � = 1, . . . , !

* ←� argmax
�=�,...,�

SSSSSSSSSSD(⋅, �)
⊤
yTTTTD (⋅, �)TTTT
SSSSSSSSSS

(iv) � is made a pointer to the current selected basis functions:� ↔ � �� ←� D(⋅, �)⊤yTTTTD (⋅, �)TTTT2
(v) 
e residue vector is reduced by ��d�� as the target values for the next linear system of size �:

y ←� y − ��D(⋅, �)
(vi) Update the dictionary matrix and prune the candidate basis functions which can be

represented as a linear combinations of the previously selected ones:
FOR ' = � + 1, . . . , �

B�� ←� D(⋅, �)⊤D (⋅, �)TTTTD (⋅, �)TTTT2
D (⋅, �) ← D (⋅, �) − B�D (⋅, �)

IFD (⋅, �) = 0	 ↔ �� ← � − 1B�� ← 1
D (⋅, �) ← 0

A← (B1, . . . , B	
A

)
b← (�� b)⊤

(vii) If equations � = � and! > � hold where � is the number of selected basis functions and� the count of available candidates, it suggests that the initial value setting on! has
exceeded the rank ofD0. Terminate the loop and reset!:! ← �

BACK SUBSTITUTION:
(i)! basis functions are chosen whose indices {1, . . . , 
} are the �rst! elements of Γ.!1

columns of matrix A with the indices {1, . . . , 
} and b forms a linear system, on which
the process of back substitution is performed for the solution:�
 ← ��

FOR � = ! − 1, . . . , 1�� ← �� − ∑
�=�+1 ��A(�, �)
OUTPUT:

(i) 
e solution is de�ned by � (x) = ∑
�=1 ��d�� (x)
Algorithm 1: Forward Least Squares Approximation SVMs.
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Table 1: Time cost of 10-fold cross-validation on two-spiral data
by FLSA-SVMS, SVMs, and LS-SVMs with �xed kernel parameters:H = 1 for FLSA-SVMs, H = 0.5 for SVMs, and H = 5.4899 for LS-
SVMs.

No. of
folds

FLSA-SVMs SVMs LS-SVMs O2 = 1H = 1 H = 0.5 SMO CG

1 0.218 0.843 0.125 2.915

2 0.203 0.766 0.141 2.832

3 0.219 0.859 0.125 2.815

4 0.219 0.735 0.140 2.916

5 0.203 0.703 0.125 2.821

6 0.219 0.890 0.125 2.861

7 0.219 0.954 0.141 2.941

8 0.218 1.000 0.125 2.842

9 0.219 0.968 0.125 2.847

10 0.219 0.907 0.125 2.847∑ 2.156 8.625 1.297 28.637

FLSA-SVM were generally smooth and followed the pattern
satisfactorily, despite the slightly biased segments around the
coordinates of [1.5, 1.5] and [−1.5, −1.5]. But still the FLSA-
SVM performed much better at the origin area than the LS-
SVM.

Table 1 also compares the time cost of 10-fold cross-
validation (CV) on the regularization parameter by FLSA-
SVMs, SVMs and LS-SVMs. For FLSA-SVMs, the regulariza-
tion term! was assigned 21 integers evenly with an interval
of 10 within the range of (1, 194). For SVMs and LS-SVMs,

the parameter M was sequentially increased from 2−10 to 210
in multiple of 2. Each fold was split into a training set and a
validation set, with a division pattern of 176 training versus18 validation or 174 training versus 20 validation. 
e total
computation time of the 21 classi�ers on various folds for
each algorithm was reported in Table 1. 
e time cost of the10-fold altogether was given in the last row entry of Table 1.
It was clearly shown that the 10-fold cross-validation (CV)
of FLSA-SVMs is over 4 times faster than SVMs. 
e time
complexity of FLSA-SVMs remained competitive to that of
LS-SVMs using the SMO algorithm and much more reduced
than LS-SVMs using the CG method.


ese comparisons prove that the FLSA-SVM is very
promising in easing the nonsparseness problem of an LS-
SVM, in addition to its outstanding generalization perfor-
mance. And it can obtain a solution whose sparseness is
competitive, or even superior, to that of a standard SVM.

4.2. More Benchmark Problems. 
e FLSA-SVM algorithm
was applied to 3 small-scale binary problems: Banana,
Image, and Splice which are accessible at http://theoval
.cmp.uea.ac.uk/matlab/#benchmarks/. Among all the real-
izations for each benchmark, the �rst one of them was
used. Experiments were also performed on Banana dataset
[31], which is a medium-scale binary learning problem. 
e
detailed information of the datasets was given in Table 2.

Table 2: Benchmark information.

No. of
trainings

No. of tests
No. of
features

Banana 400 4900 2

Splice 1000 2175 60

Image 1300 1010 18

Ringnorm 3000 4400 20

FLSA-SVMs were compared with SVMs, LS-SVMs, the
fast sparse approximation scheme for LS-SVM (FSALS-
SVM), and its variant, called PFSALS-SVM, both of which
were proposed by Jiao et al. [12]. 
e parameter Y of FSALS-
SVMs and PFSALS-SVMs was uniformly set to be 0.5 which
was empirically proved to work well with most datasets [12].
Comparisons were also made against D-optimality orthog-
onal forward regression (D-OFR) [32] which is a technique
for nonlinear function estimation, promised to yield sparse
solutions. 
e parameters, which were the penalty constant
and H in (36), were tuned by tenfold cross-validation (CV).

Table 3 presented the classi�cation accuracy of the SVM
algorithms. 
e best results among the four SVM algorithms
were highlighted. It can be seen that the FLSA-SVM achieved
comparable classi�cation accuracy to the standard SVM,
the conventional SVM, FSAL-SVM, PFSALS-SVM, and D-
optimality OFR.


e numbers of SVs were compared in Table 4. For all
the learning problems, the FLSA-SVM required much less
SVs than the SVM and the conventional SVM. In particular,
the reduction in SVs reached over 98% and 80%, respectively,
on Ringnorm and Banana datasets compared with the SVM.
FLSA-SVM has maintained its edges over FSAL-SVM and
PFSALS-SVM, particularly with the Ringnorm and Banana
datasets. Although the D-OFRmethod falls into the category
of unsupervised learning algorithms, FLSA-SVM,mathemat-
ically, has the closest linkwith theD-OFRmethod.
e results
in Table 3 demonstrated that the D-OFR method remained
competitive compared with FLSA-SVM on Ringnorm and
Banana datasets. However, on the Splice and Image datasets,
the D-OFR method failed to achieve any sparse solutions.

5. Conclusions


e paper proposed a new LS-SVM algorithm—the FLSA-
SVM which is trained speci�cally by the FLSA method of
minimized squared error loss. 
e FLSA-SVM iteratively
selects an optimal basis function which is associated with
a speci�c training example into the solution. 
e algorithm
cleverly adapts the number of SVs into the regularization
term as the tradeo� between generalization abilities and
training cost. As a result, the solution of the FLSA-SVMs
is extremely sparse compared to LS-SVMs. Experiments
showed that the FLSA-SVM algorithm maintained a com-
parable accuracy compared to the standard SVM, the LS-
SVM and a number of recently developed sparse learning
algorithms. Yet the FLSA-SVM showed de�nite advantages to
its counterparts regarding the sparseness of the solution. On
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Table 3: Test correctness (%).

FLSA-SVM SVM LS-SVM FSALS-SVM PFSALS-SVM D-OFR
(
, ) (�, ) (�, ) (�, ) (�, ) (�, )

Banana 89.33 (20, 1) 89.33 (25, 2−1) 88.92 (23, 0.6369) 89.14 (25, 2−1) 89.12 (23, 2−1) 89.10 (40, 2−2)
Splice 89.98 (220, 2−6) 89.75 (23, 2−7) 89.84 (23, 0.0135) 89.93 (23, 2−6) 89.93 (28, 2−6) 89.33 (380, 2−6)
Image 97.92 (180, 2−5) 97.82 (27, 2−3) 97.92 (27, 0.0135) 98.32 (24, 2−2) 98.02 (25, 2−2) 97.92 (480, 2−3)
Ringnorm 98.66 (27, 2−5) 98.68 (2−6, 2−5) 97.07 (29, 0.1192) 98.70 (2−4, 2−5) 98.70 (2−5, 2−5) 98.59 (47, 2−5)

Table 4: Number of support vectors (best in bold).

FLSA-SVM SVM LS-SVM FSALS-SVM PFSALS-SVM D-OFR

Banana 20 94 400 145 141 40

Splice 220 595 1000 507 539 380

Image 180 221 1300 272 278 480

Ringnorm 27 1624 3000 556 575 47

small datasets like the two-spiral benchmark, the FLSA-SVM
training algorithm also proved to be more e�cient than the
CG method.
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