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Abstract: We introduce a meshless method derived by considering the time variable as a spatial vari-
able without the need to extend further conditions to the solution of linear and non-linear parabolic
PDEs. The method is based on a moving least squares method, more precisely, the generalized finite
difference method (GFDM), which allows us to select well-conditioned stars. Several 2D and 3D
examples, including the time variable, are shown for both regular and irregular node distributions.
The results are compared with explicit GFDM both in terms of errors and execution time.
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Zum Raum wird hier die Zeit
(Here, time becomes space)

(RICHARD WAGNER, PARSIFAL)

1. Introduction

A wide variety of physical phenomena are studied mathematically through evolution
partial differential equations. The difference between parabolic evolution equations and
elliptic equations is important, both from the point of view of mathematical analysis
and numerical analysis. In this article, we are interested in the numerical treatment of
parabolic PDEs. In particular, we focus on the numerical solution at a time T of the general
parabolic PDE

∂U
∂t

+ L(x, t, U) = h(x, t), x ∈ Γ, 0 < t ≤ T (1)

with the boundary and initial condition

U(x, t) = g(x, t), x ∈ ∂Γ; U(x, 0) = U0(x). (2)

Here, Γ is a bounded domain of R or R2, and the non-linear operator

L(x, t, U) = f1(x, t)
∂U
∂x

+ f2(x, t)
∂2U
∂x2 , if Γ ⊂ R

or, if Γ ⊂ R2,
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L(x, t, U) = f1(x, y, t)
∂U
∂x

+ f2(x, y, t)
∂U
∂y

+ f3(x, y, t)
∂2U
∂x2

+ f4(x, y, t)
∂2U
∂y2 + f5(x, y, t)

∂2U
∂x∂y

.

Throughout the paper, we assume enough regularity of the functions h, g, U0 and fi in
order to provide classical solutions.

The time evolution of the modeled physical problem creates the need to study the
propagation of the numerical error. This, in some cases, produces consistent numerical
schemes that generate unstable solutions. The most common way to solve parabolic partial
differential equations numerically is to use a different discretisation for the time and space
derivatives. For instance,

∂U
∂t
≈ U(x, y, t + ∆t)−U(x, y, t)

∆t

is frequently used for the time derivative, which entails a study of the stability of the
numerical method.

In this paper, we introduce a meshless method (see [1–4] for a detailed description of
meshless methods) for resolving parabolic PDEs that consists of using the formulas given
by the generalized finite difference method to discretise all the derivatives of the equation,
including the time derivative. The researchers Jensen [5], Liszka and Orkisz [6], Orkisz [7]
and Perrone and Kao [8] have contributed to the development of the GFDM, as well as
Benito, Gavete and Ureña [9] who studied the influence of several factors and developed
the h-adaptive method for the solution of the PDEs in 2D. During the last two decades, the
method has attracted growing attention, not only because of its applications, but also, for
instance, because some improvements to the one dimensional method have been made [10].

By considering the time variable as a spatial variable in a one-dimensional problem (or
two-dimensional), we can find the 2D (or 3D) Taylor series of the solution, in the variables
x and t (or x, y and t), and at any nodal point a desired discretization, without adding any
extra conditions. In this way, we avoid the stability issues related to the time evolution
of the problem. We transform problem (1) and (2) into an elliptic problem with boundary
conditions (see Figure 1).

B.C. =


g(x, t), (x, t) ∈ ∂Γ× [0, T],

U0(x), (x, t) ∈ Γ× {t = 0},
U(x, t), (x, t) ∈ Γ× {t = T}.

(3)

Our procedure consists of defining a GFD star at each point of Γ× [0, T) and Γ× {t = T}
and solving the elliptic problem without adding any extra condition or applying any other
numerical method. A pictorial definition of the selection of the stars is given in Figure 2.
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Figure 1. Computational domain of the problem, where the green nodes belongs to ∂Γ× [0, T] and Γ,
and the blue nodes correspond to Γ× [0, T].The solution of the original problem corresponds to the
solution at ∂Γ× {t = T} (green nodes).

Figure 2. On the left, the distance criterion to choose the nodes of a star in the interior of Γ× [0, T)
where we choose the eight nearest nodes. On the right, the star is centered at a node of Γ× {t = T}
(the star is centered at the black point, the yellow points belong to Γ× [0, T) and the red ones to
∂Γ× [0, T]).

For this reason, we have called this approach the “space time cloud method (STCM)”.
The previous discretization of the computational domain for parabolic PDEs is not new.
Several meshless numerical methods have recently been applied, such as a kernel-based
method [11], the space–time diffuse approximation meshless method [12], the Trefftz
method [13], the localized radial basis function collocation method [14] and the multi-
quadratic method with the radial basis collocation method [15]. In addition, the GFDM has
been applied to solve space-time problems in [16–18]. The novelty of the STCM method is
to use only the generalized finite difference formulas to solve a time-dependent problem
(parabolic in this case), which makes it unnecessary to study the stability and the calculation
of the time step in the explicit case, or not to have to solve for each time step a system of
equations in the implicit case. With the solution of a single system, the problem is solved.
The advantage of STCM over the explicit GFDM is essentially not having to study the
stability and, therefore, not having to calculate the time step and perform the calculations
with that value. In addition, the advantage over FEM is that it solves the equation without
the need for integration, it does not require mesh and the boundary conditions are simpler
to implement, and, with respect to FDM, its main advantage is that irregular meshes can
be used.

The structure of the paper is as follows. In Section 2, we introduce the meshless space
time cloud method and derive the discretization of the Equations (1)–(3) for two and three
dimensions. We provide several examples where we compare the present method with the
standard GFDM applied to the original problem. Finally, some conclusions are drawn.
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2. Space Time Cloud Method (STCM)

We introduce the STCM for the two dimensional case (that is, Γ ⊂ R). Let Γ∗ = Γ× [0, T]
be a domain and

P = {x1, . . . , xn} ⊂ Γ∗

a discretization of Γ∗ with n points (see Figure 1). We designate each point of the dis-
cretization P as a point. Λs = {x0; x01 , . . . , x0s} ⊂ P with the central node x0 ∈ P and x0i ,
(i = 1, . . . , s) ∈ P is a set of points located near x0. The selection of the points for each star
can be made according to criteria as four quadrants or distance (see [9]).

With the previous notation, x0 = (x0, t0) and x0i = (xi, ti), define hi = xi − x0,
ki = ti − t0. Let us put U0 = U(x0) and Ui = U(x0i ), then, by the Taylor series expansion,
we have

Ui = U0 + hi
∂U0

∂x
+ ki

∂U0

∂t
+

1
2

(
h2

i
∂2U0

∂x2 + k2
i

∂2U0

∂t2 + 2hiki
∂2U0

∂x∂t

)
+ R2, (4)

for i = 1, ..., s, where R2 is the remainder of the second order. Let us use the notations

υi
T = {hi, ki,

h2
i

2
,

k2
i

2
, hiki}

and

Π5
T = {∂u0

∂x
,

∂u0

∂t
,

∂2u0

∂x2 ,
∂2u0

∂t2 ,
∂2u0

∂x∂t
}.

By truncation in (4) up to the second order, we can obtain a second-order approxima-
tion of Ui, which we shall denote ui. Then, we define the weighted residual function:

T(u) =
s

∑
i=1

[(u0 − ui) + hi
∂u0

∂x
+ ki

∂u0

∂t
+

+
1
2
(h2

i
∂2u0

∂x2 + k2
i

∂2u0

∂t2 + 2hiki
∂2u0

∂x∂t
)]2η2

i ,

(5)

where ηi = η(hi, ki) are positive weighting functions as [19]. We minimize the norm given
by (5) with respect to the partial derivatives by considering the following linear system

WΠ5 = β

where

W =


h1 h2 · · · hs
k1 k2 · · · ks
...

...
...

...
h1k1 h2k2 · · · hsks




η2
1

η2
2
· · ·

η2
s




h1 k1 · · · h1k1
h2 k2 · · · h2k2
...

...
...

...
hs ks · · · hsks

,

and

βT =

(
s

∑
i=1

(−u0 + ui)hiη
2
i ,

s

∑
i=1

(−u0 + ui)kiη
2
i ,

s

∑
i=1

(−u0 + ui)
h2

i η2
i

2
,

s

∑
i=1

(−u0 + ui)
k2

i η2
i

2
,

s

∑
i=1

(−u0 + ui)hikiη
2
i

)
.

In [20], the authors proved that W is a positive definite matrix and that the local
truncation error is O(h2

i , k2
i ). Then, W admits a unique Cholesty decomposition, and, if we

define
W−1 = KKT ,
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we have
Π5 = KKT β. (6)

Thus, Equation (6) can be rewritten as

Π5 = −u0KKT
s

∑
i=1

η2
i υi + KKT

s

∑
i=1

uiη
2
i υi.

We denote the derivatives as follows

∂u(x0, t0)

∂x
= −ϕ01u0 +

s

∑
i=1

ϕi1ui +O(h2
i , k2

i ), with ϕ01 =
s

∑
i=1

ϕi1,

∂u(x0, t0)

∂t
= −ϕ02u0 +

s

∑
i=1

ϕi2ui +O(h2
i , k2

i ), with ϕ02 =
s

∑
i=1

ϕi2,

∂2u(x0, t0)

∂x2 = −ϕ03u0 +
s

∑
i=1

ϕi3ui +O(h2
i , k2

i ), with ϕ03 =
s

∑
i=1

ϕi3,

∂2u(x0, t0)

∂t2 = −ϕ04u0 +
s

∑
i=1

ϕi4ui +O(h2
i , k2

i ), with ϕ03 =
s

∑
i=1

ϕi4,

∂2u(x0, t0)

∂x∂t
= −ϕ05u0 +

s

∑
i=1

ϕi5ui +O(h2
i , k2

i )), with ϕ05 =
s

∑
i=1

ϕi5,

(7)

or, written in vectorial form,

Π5u(x0, t0) = −ϕ0u0 +
s

∑
i=1

ϕiui +O(h2
i , k2

i )

where ϕ0 and ϕi stand for

ϕ0 = {ϕ01, ϕ02, ϕ03, ϕ04, ϕ05}T ,

ϕi = {ϕi1, ϕi2, ϕi3, ϕi4, ϕi5}T ,

fulfilling

ϕ0 =
s

∑
i=1

ϕi.

Since the method allows us to choose different numbers of points per star, greater
or equal to 6, and the selection of these nodes can be made by different criteria (distance,
quadrant, octant), in order to obtain well-conditioned stars, the STCM allows us to solve
the problem without the requirement of adding further conditions.

Similarly for the 3D case, the approximation derivatives are:
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∂u(x0, y0, t0)

∂x
= −ϕ01u0 +

s

∑
i=1

ϕi1ui +O(h2
i , k2

i , τ2
i ),

∂u(x0, y0, t0)

∂y
= −ϕ02u0 +

s

∑
i=1

ϕi2ui +O(h2
i , k2

i , τ2
i ),

∂u(x0, y0, t0)

∂t
= −ϕ03u0 +

s

∑
i=1

ϕi3ui +O(h2
i , k2

i , τ2
i ),

∂2u(x0, y0, t0)

∂x2 = −ϕ04u0 +
s

∑
i=1

ϕi4ui +O(h2
i , k2

i , τ2
i ),

∂2u(x0, y0, t0)

∂y2 = −ϕ05u0 +
s

∑
i=1

ϕi5ui +O(h2
i , k2

i , τ2
i ),

∂2u(x0, y0, t0)

∂t2 = −ϕ06u0 +
s

∑
i=1

ϕi6ui +O(h2
i , k2

i , τ2
i ),

∂2u(x0, y0, t0)

∂x∂y
= −ϕ07u0 +

s

∑
i=1

ϕi7ui +O(h2
i , k2

i , τ2
i ),

∂2u(x0, y0, t0)

∂x∂t
= −ϕ08u0 +

s

∑
i=1

ϕi8ui +O(h2
i , k2

i , τ2
i ),

∂2u(x0, y0, t0)

∂y∂t
= −ϕ09u0 +

s

∑
i=1

ϕi9ui +O(h2
i , k2

i , τ2
i ),

(8)

or, written in the vectorial form,

Π9u(x0, y0, t0) = −ϕ0u0 +
s

∑
i=1

ϕiui +O(h2
i , k2

i , τ2
i ),

where ϕ0 and ϕi stand for

ϕ0 = {ϕ01, ϕ02, ϕ03, ϕ04, ϕ05, ϕ06, ϕ07, ϕ08, ϕ09}T ,

ϕi = {ϕi1, ϕi2, ϕi3, ϕi4, ϕi5 ϕi6, ϕi7, ϕi8, ϕi9}T ,

fulfilling

ϕ0 =
s

∑
i=1

ϕi.

For the 3D case, the number of nodes per star should be greater or equal to 10 in order
to obtain well-conditioned stars.

Remark 1. The consistency of the GFD formulae was proved in [20] for the 2D case (which in our
case is Γ ⊂ R and Γ∗ = Γ× [0, T]) and for the 3D case (for our case, Γ ⊂ R2 and Γ∗ = Γ× [0, T])
in [21]. Moreover, the rate of convergence is quadratic, which is clear from the cited papers.

3. Numerical Results

In the present section, we give several numerical results obtained by solving the
parabolic equations in 2D and 3D using STCM. In order to show the applicability of the
present method, we compare the present method with the results obtained previously in
the literature. In the following numerical examples, the distance criterion has been used,
the number of nodes per star is eight plus the central node and the weighting function is
the inverse of the distance cubed, η(di) =

1
d3

i
with di being the distance from node i to the

central node of the star. More precisely, we compare the errors and execution times of the
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STCM and the GFDM. In all the cases under consideration, the accuracy of the STCM and
the GFDM are computed using the expressions: l2 =

(
∑Z

i=1(ui −Ui)
2

Z

) 1
2

,

l∞ = max|ui −Ui|,
(9)

where Z is the number of points in (Γ \ ∂Γ)× (0, T].

3.1. 2D Problems

For the two-dimensional examples (one space variable and one temporal variable), we
use the clouds of points of Figures 3 and 4.

Figure 3. First cloud of points for the 2D examples (Cloud 1).

Figure 4. Second cloud of points for the 2D examples (Cloud 2).

3.1.1. Example 1

We consider the equation

π2 ∂u(x, t)
∂t

− ∂2u(x, t)
∂x2 = e−t[−π2x(1− x) + 2] (10)
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with initial and boundary conditions:

u(x, 0) = sin(πx) + x(1− x); u(0, t) = u(1, t) = 0 (11)

and whose exact solution is

u(x, 0) = e−t[sin(πx) + x(1− x)]. (12)

Table 1 shows the errors and execution times for the resolution of Example 1 in the
clouds of Figures 3 and 4, respectively, using STCM and GFDM explicitly (with step size
∆t = 0.001 s for cloud 1 and ∆t = 0.00001 for cloud 2). It can be seen that the error norms
are very similar and the execution times of the STCM are slightly higher.

Table 1. Errors and execution time of the Example 1 in the clouds of Figures 3 and 4.

Cloud 1 l2 l∞ t(s)

STCM 0.000902 0.001637 0.183955

Explicit-GFDM 0.000813 0.001398 0.029527 s

Cloud 2 l2 l∞ t(s)

STCM 0.000248 0.000573 20.2965 s

Explicit-GFDM 0.000277 0.000401 11.723 s

3.1.2. Example 2

For our second 2D examples, we choose

∂u(x, t)
∂t

− ∂u(x, t)
∂x

− x
∂2u(x, t)

∂x2 = e−t[(x2 − x− 1) sin x− 3 cos x] (13)

together with

u(x, 0) = x sin(x); u(0, t) = 0; u(1, t) = e−t sin(1). (14)

The exact solution of problem (13) and (14) is

u(x, t) = e−t[x sin(x)]. (15)

The error norms, run times, and a comparison between the STCM and the explicit
GFDM (step sizes are the same as in the previous example as the meshes are the same), for
this second example in the clouds of points of Figures 3 and 4, are depicted in Table 2. We
observe that the errors are rather similar and the execution times are smaller for the STCM
for a great number of points.

Table 2. Errors and execution time of the Example 2 in the clouds of Figures 3 and 4.

Cloud 1 l2 l∞ t(s)

STCM 0.063348 0.084077 0.10168 s

Explicit-GFDM 0.059003 0.080338 0.096604 s

Cloud 2 l2 l∞ t(s)

STCM 0.009618 0.013204 26.145s

Explicit-GFDM 0.009787 0.017510 44.409 s

It is clear from the examples that, as the number of nodes increases, the execution
times are shorter in the STCM than in the explicit GFDM, which is logical, since, as the time
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step decreases (in order to guarantee the stability conditions), the explicit GFDM has to
make more iterations.

3.2. 3D Problems

To continue our study, we provide examples in the three-dimensional setting. We use
both regular and irregular clouds of points, seen in Figures 5–8. The black points denote the
boundary nodes, the blue ones denote the interior nodes and the green points denote the
∂Γ× {t = T} boundary nodes. In the following numerical examples, the distance criterion
has been used, the number of nodes per star is 24 plus the central node and the weighting
function is the inverse of the distance squared, η(di) =

1
d2

i
with di being the distance from

node i to the central node of the star.

Figure 5. First regular cloud of points for the 3D examples (Cloud 3).

Figure 6. Second regular cloud of points for the 3D examples (Cloud 4).

Figure 7. First irregular cloud of points for the 3D examples (Cloud 5).
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Figure 8. Second irregular cloud of points for the 3D examples (Cloud 6).

3.2.1. Example 3

Consider the following equation

2π2 ∂u(x, y, t)
∂t

− ∂2u(x, y, t)
∂x2 − ∂2u(x, y, t)

∂y2 = 2x(1− x)(1− y) (16)

with the initial condition

u(x, y, 0) = sin(πx) sin(πy) + x(1− x)(1− y). (17)

By a direct check, the exact solution is (the Dirichlet boundary conditions are chosen
so that the equation is fulfilled)

u(x, y, t) = e−t[sin(πx) sin(πy) + x(1− x)(1− y)] (18)

We depict in Table 3 the error norms and run times for this third example. We found
that for similar errors, the STCM consumes slightly less time than the explicit GFDM (where
we use ∆t = 0.001 s for cloud 3, ∆t = 0.00001 s for cloud 4, ∆t = 0.05 s for cloud 5 and
∆t = 0.0025 s for cloud 6). For this third example, we have also compared the STCM with
the implicit scheme given by the GFDM formulae (with step size ∆t = 0.1 s for cloud 5 and
∆t = 0.05 s for cloud 6). In this case, the discretisation of the derivatives is

∂u
∂t

=
uj+1

0 − uj
0

2∆t
;

∂2u
∂x2 = −ϕ04uj+1

0 +
s

∑
i=1

ϕi4uj+1
i ;

∂2u
∂x2 = −ϕ05uj+1

0 +
s

∑
i=1

ϕi5uj+1
i

3.2.2. Example 4

Finally, we solve the equation

∂u(x, y, t)
∂t

− ∂u(x, y, t)
∂x

− ∂u(x, y, t)
∂y

− x
∂2u(x, y, t)

∂x2 − y
∂2u(x, y, t)

∂y2 =

= e−t[((x2 − x− 1) sin x− 3x cos x)y sin y + ((y2 − y− 1) sin y− 3y cos y)x sin x], (19)

with initial data
u(x, y, 0) = xy sin(x) sin(y), (20)

and exact solution
u(x, y, t) = e−t[xy sin(x) sin(y)]. (21)

Again, in Table 4, we can observe that, even though the errors are rather similar for
both methods, the STCM achieves better execution times.
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Table 3. Errors and execution time of the Example 3 in the clouds of Figures 5–8.

Cloud 3 l2 l∞ t(s)

STCM 0.016509 0.032567 0.047252 s

Explicit-GFDM 0.015263 0.025234 0.04283 s

Cloud 4 l2 l∞ t(s)

STCM 0.000806 0.006275 2.1954 s

Explicit-GFDM 0.000822 0.001541 2.3099 s

Cloud 5 l2 l∞ t(s)

STCM 0.003672 0.005581 0.010077 s

Explicit-GFDM 0.003923 0.005818 0.007449 s

Implicit-GFDM 0.003804 0.005742 0.01121 s

Cloud 6 l2 l∞ t(s)

STCM 0.000816 0.001623 0.18481s

Explicit-GFDM 0.000733 0.001283 0.26016 s

Implicit-GFDM 0.000831 0.002432 0.19145 s

Table 4. Errors and execution time of Example 4 in the clouds of Figures 5–8.

Cloud 3 l2 l∞ t(s)

STCM 0.004338 0.008377 0.87247 s

Explicit-GFDM 0.004098 0.007860 1.1949 s

Cloud 4 l2 l∞ t(s)

STCM 0.004136 0.006394 3.2172 s

Explicit-GFDM 0.004166 0.006567 3.4186 s

Cloud 5 l2 l∞ t(s)

STCM 0.003383 0.005183 0.35261 s

Explicit-GFDM 0.002923 0.004987 0.5059 s

Cloud 6 l2 l∞ t(s)

STCM 0.000871 0.001276 1.94437 s

Explicit-GFDM 0.000931 0.001905 2.2854 s

4. Conclusions

The STCM allows the solution of the numerically parabolic PDEs in an efficient way
without the need for any additional condition to the well-defined problem (initial and
boundary conditions). In the various examples treated, both in 2D and 3D, linear and
non-linear, in regular and irregular domains, the numerical results show that the errors are
similar to those obtained with the explicit GFDM. The run times are also similar, but the
numerical examples show that the time consumption of the STCM is smaller if the number
of points in the computational domain is high.

The potential of the STCM consists of the elimination of the time step constraint forced
by the stability of the explicit method, which is a real advance in the resolution of linear
and non-linear parabolic PDEs.
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