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Abstract: Because canola is a major oilseed crop, accurately determining its planting areas is crucial
for ensuring food security and achieving UN 2030 sustainable development goals. However, when
canola is extracted using remote-sensing data, winter wheat causes serious interference because it
has a similar growth cycle and spectral reflectance characteristics. This interference seriously limits
the classification accuracy of canola, especially in mixed planting areas. Here, a novel canola flower
index (CFI) is proposed based on the red, green, blue, and near-infrared bands of Sentinel-2 images to
improve the accuracy of canola mapping, based on the finding that spectral reflectance of canola on
the red and green bands is higher than that of winter wheat during the canola flowering period. To
investigate the potential of the CFI for extracting canola, the IsoData, support vector machine (SVM),
and random forest (RF) classification methods were used to extract canola based on Sentinel-2 raw
images and CFI images. The results show that the average overall accuracy and kappa coefficient
based on CFI images were 94.77% and 0.89, respectively, which were 1.05% and 0.02, respectively,
higher than those of the Sentinel-2 raw images. Then we found that a threshold of 0.14 on the CFI
image could accurately distinguish canola from non-canola vegetation, which provides a solution
for automatic mapping of canola. The overall classification accuracy and kappa coefficient of this
threshold method were 96.02% and 0.92, which were very similar to those of the SVM and RF methods.
Moreover, the advantage of the threshold classification method is that it reduces the dependence on
training samples and has good robustness and high classification efficiency. Overall, this study shows
that CFI and Sentinel-2 images provide a solution for automatic and accurate canola extraction.

Keywords: automatic mapping; canola flower index; remote sensing; Sentinel-2; winter wheat

1. Introduction

Canola (Brassica napus L.) is one of the major oilseed crops worldwide. It is the primary
source of edible oil for human consumption and a biological feedstock for fuels [1]. Canola
flowers are an important tourism resource, promoting the local development of tourism
agriculture [2,3]. However, the production and consumption of canola are unbalanced
in different world regions. For example, China’s domestic canola production is far less
than its increasing demand for canola [2]. Mapping and tracking the unbalance in canola
planting areas is of great importance for agricultural management and food security.

Remote Sens. 2022, 14, 1113. https://doi.org/10.3390/rs14051113 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14051113
https://doi.org/10.3390/rs14051113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4567-2313
https://orcid.org/0000-0002-6962-8838
https://doi.org/10.3390/rs14051113
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14051113?type=check_update&version=1


Remote Sens. 2022, 14, 1113 2 of 18

Remote-sensing technology has made significant progress in efficiently mapping crops
because of its low cost, comprehensive coverage, and regular acquisition [4–6]. Crop
mapping methods that use remote-sensing technology vary in complexity, from cluster-
ing [7], decision trees [8], and object-oriented methods [9] to machine learning methods [10].
Most previous studies of crop identification have relied mainly on the availability of well-
represented training-data samples [11,12]. The provision of such training-data is usually
time-consuming, costly, and labor-intensive. Also, methods with specific training data
might be subject to low cross-year or different-region repeatability [13]. Consequently, it is
urgent to improve the automation level and robustness of crop mapping.

Enhanced imagery of crop characteristics gleaned from their phenological information
helps detect and map crops automatically [14,15]. These characteristics are exclusive and
steady because most crops show a unique phenological pattern, even though some have
a similar growing season [16,17]. Hence, once an automated algorithm derived from
these characteristics is completed and published, it can provide training rules that can be
used directly and repeated year after year without retraining [13,18]. Several previous
studies have successfully used phenology-derived characteristics for automatic mapping
of crops [13,19].

In the past, the mapping of canola did not receive enough attention [3]. In recent years,
with the continuous rise in the economic value of canola, several studies have begun to
pay attention to the remote sensing of canola. For example, d’Andrimont et al. [20] and
Mercier et al. [21] mapped canola flowering phenology in parts of Germany and France,
respectively. Tao et al. [22] mapped the spatiotemporal dynamics of canola on the Jianghan
Plain and the Dongting Lake Plain in China. Han et al. [23] published a data product
for canola mapping from 2017 to 2019 in 33 countries based on Sentinel satellite images.
However, the data produced did not include China.

One of the challenges of canola remote-sensing identification is that winter wheat and
canola have similar growth cycles and spectral reflectance characteristics during their entire
growing season [14]. In China, the distribution of canola fields and winter wheat fields is
usually staggered and mixed. This further increases the difficulty of canola identification
by remote-sensing images. Fortunately, the phenological characteristics of canola flowers
provide an opportunity to distinguish between canola and winter wheat, even though the
flowering period is transitory; only 1 month, approximately. Several studies have attempted
to map canola by detecting its bright yellow flowers using remote-sensing images [24]. For
instance, Fang et al. [25] proposed a simple model for estimating canola flowers during
the canola flowering season. Sulik and Long [3] proposed the green/blue band ratio to
identify canola flowers. Later, Sulik and Long [1] further proposed a normalized difference
yellowness index (NDYI) to estimate canola yields. Ashourloo et al. [11] proposed a
canola index (CI) during the flowering period, computed as the near-infrared (NIR) band
multiplied by the sum of red and green bands. Previous studies have gradually enriched
and improved the canola indices.

Coarse imagery, such as that of MODIS and Landsat, can barely detect the actual
boundaries of farmland. However, high-resolution sensors such as Sentinel-2 have sufficient
spatial resolution for canola mapping. Image data volume is closely related to spatial
resolution [10]. Therefore, a flood of data are encountered when analyzing Sentinel-2
images. The cloud computing platform of the Google Earth Engine (GEE), however,
provides a solution for processing very large amounts of massive remote-sensing data [26].
The GEE stores entire data products from major international remote-sensing satellites,
such as Sentinel, and has good data-management practices [27].

In this study, the objectives were to (1) characterize the spectral reflectance of canola
at a canopy scale during the canola flowering stage, (2) build a novel canola flower index
(CFI) for automatic canola mapping, and (3) achieve automatic identification of canola on
the GEE.
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2. Materials and Methods
2.1. Study Area

For this study, three study areas were selected, as shown in Figure 1. The first was
in Wuxue County, in the east of Hubei Province, China; the second in Hanzhong County,
in Shanxi Province, China; and the third in Hanshou County and its surrounding areas,
in Hunan Province, China. The first study area was used to investigate the spectral
reflectance of various objects and construct the CFI. The other two study areas were then
used to validate the effectiveness of the CFI. On remote-sensing imagery, canola fields and
winter wheat fields have a mosaic or crisscross distribution. The canola fields are highly
fragmented, and their areas are generally less than 1 hectare. In addition, canola and winter
wheat have a similar growth cycle from October to May [28]. Those phenomena increased
the challenge of remotely sensing canola in those study areas.

Figure 1. Locations of the study areas. (a) The first study area, Hubei Province. (b) The second study
area, Shanxi Province. (c) The third study area, Hunan Province.

The phenological calendar of canola and winter wheat in those study areas was
investigated, as shown in Figure 2. Canola and wheat were usually sown in October.
Canola generally enters the flowering stage in May, when winter wheat enters the stem-
elongation stage. In May, both enter the mature stage.

Figure 2. Phenological calendar of canola and winter wheat. F, M, and L represent the first, middle,
and last 10 d of a month, respectively.

2.2. Sentinel-2 Imagery

The Sentinel-2 satellite was launched by the European Commission and European
Space Agency [29]. Sentinel-2 images cover 13 wavebands [30,31]. The red, green, blue, and
NIR wavebands have a spatial resolution of 10 m. The four red-edge wavebands and two
shortwave infrared wavebands have a spatial resolution of 20 m. The spatial resolution of
the other three wavebands is 60 m. Their revisit period is 10 d. In this study, the red, green,
blue, and NIR wavebands were used because their spatial resolution is high. In addition,
according to previous research [17,32], the red-edge wavebands with a spatial resolution of
20 m contribute little to improving the identification accuracy of canola.
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In accordance with the principle of no cloud coverage, we selected six-phase Sentinel-2
images covering the first study area to investigate the spectral reflectance of various types
of ground objects, such as canola, winter wheat, forest, bare land, and construction land.
The imaging dates for the six-phase Sentinel-2 images are shown in Table 1. Those dates
covered the main growth stages of canola—seedling, wintering, budding, flowering, silique,
and mature—as shown in Figure 2.

Table 1. Dates of Sentinel-2 images used in the study.

Study Area Imaging Dates

1
11 November 2019 6 December 2019 9 February 2020

20 March 2020 29 April 2020 19 May 2020

2 17 March 2020 19 March 2020

3 18 March 2020

In the second and third study areas, those Sentinel-2 images were selected during the
canola flowering stage because those two study areas were used to validate the effectiveness
of the CFI. The imaging dates are shown in Table 1.

All Sentinel-2 images used in the study came from the imagery collection “COPER-
NICUS/S2_SR” on the GEE platform. Those images were surface reflectance data, which
were atmospheric corrected [33,34].

2.3. Confirming the Optimum Period

During canola’s flowering period, canola fields and winter wheat fields have a sig-
nificant visual difference; canola fields are yellow, and winter wheat fields are green. To
confirm the specific optimum period in this study, the Fisher function of the spectrum
between canola and other ground objects in various phases was computed. The Fisher
function is [11]:

J(w) = (m1 − m2)
2/(v1 + v2) (1)

where m and v are the mean and variance values of spectral reflectance, respectively, and
subscripts 1 and 2 represent two different categories.

The Fisher value describes the difference between the classes. The greater the Fisher
value, the greater the separability between categories. By using 3256 sets of pixel samples
for each spectrum (i.e., the red, green, blue, and NIR wavebands), the Fisher values between
canola and wheat, forest, bare land, and construction land were computed in various phases:
11 November 2019, 6 December 2019, 9 February 2020, 20 March 2020, 29 April 2020, and
19 May 2020. The phase with the maximum Fisher value was the optimum period for
canola mapping.

2.4. Building the Canola Flower Index

The spectral reflectance of various ground objects during the canola flowering period
was plotted based on Sentinel-2 images, as shown in Figure 3. The spectral data were
obtained by using ENVI software based on Sentinel-2 images. There were five ground
objects, i.e., canola, wheat, forest, construction land, and bare land. The imagery layers
were the red, green, blue, NIR, and normalized difference vegetation index (NDVI). The
NDVI has the potential to distinguish between canola and no-vegetation objects [35,36]. In
Figure 3, the NDVI value of construction land and bare land is less than 0.2, whereas that
of canola is more than 0.5. The NDVI value range of canola does not overlap with that of
other objects. The difference between canola and construction land, canola, and bare land
is significant in the NDVI band. Therefore, NDVI was taken as a component of the CFI.
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Figure 3. Spectral reflectance of various ground objects in Sentinel-2 imagery dated 20 March 2020 in
the first study area. That imaging date was the canola flowering period.

The difference in spectral reflectance between canola and wheat, canola, and forest
was discernable in the green and red bands, as shown in Figure 3. Therefore, two features
could be constructed to expand this difference in spectral reflectance. First, the sum of
the red and green band reflectance for canola was greater than that for wheat and forest.
Second, the difference in spectral reflectance between the green and blue bands for canola
was greater than that for wheat and forest. Considering the NDVI, three features were
obtained for building the CFI. Different combination patterns of those three features were
used to construct different CFIs. This combination sequence was that (a) The three features
were added, (b) the three features were multiplied, (c) the sum of any two features was
multiplied with the third feature, and (d) the product of any two features was added to the
third feature. Thereby, eight CFIs were constructed.

To find the best CFI of the eight CFIs, the Fisher value between canola and wheat,
forest, bare land, and construction land for each CFI equation was compared by using the
same samples, respectively. Those samples were 5219 pixels, which came from the three
study areas. The CFI with the highest Fisher value was considered the optimal CFI.

2.5. Classification Methods

To verify whether the optimal CFI enhances the image features of the canola compared
to Sentinel-2 raw images, canola was extracted based on the Sentinel-2 raw images and
the optimal CFI image derived from the Sentinel-2 raw images. This was done by using
an unsupervised classification method (i.e., the IsoData cluster method [37,38]), and two
supervised classification methods (i.e., support vector machine (SVM) [39,40] and random
forest (RF) [41]). Because IsoData is hardly affected by subjective human factors, and
classification is automatically done by computers based on the characteristics of the image
itself, the classification results from IsoData could determine to some extent whether
the optimal CFI images were better than the raw images. The SVM and RF classifiers
are widely used within the remote sensing community because of the accuracy of their
classification [39,41]. Therefore, IsoData, SVM, and RF classifiers were selected to evaluate
the performance of the CFI in the study. The training samples were the same when
extracting canola by different classifiers based on the CFI images and Sentinel-2 raw images.
The testing samples were the same for evaluating different classification results derived
from different classifiers.

A decision tree model [42] was built in GEE to improve the automation level and
robustness of the canola mapping. Specifically, the CFI values of canola had more than
one threshold. For the optimal CFI images during the optimum period, we count and
analyze the histogram of CFI values by 3517 canola and 3517 non-canola pixels in the
first study area to confirm a preset threshold. Due to the preset threshold being obtained
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from the samples in the first study area, it was necessary to further verify the stability and
reliability of the preset threshold in other regions. Therefore, the data surrounding the
preset threshold were taken one by one as the judgment threshold to distinguish between
canola and non-canola. Then the accuracies of the classification results were compared
by using the confusion matrix accuracy verification method [43,44] and all validation
samples in the three study areas. The threshold corresponding to the highest accuracy was
the best judgment threshold required by the model. The rule of threshold traversal was
to gradually move five steps, with 0.01 interval, to the left and right sides of the preset
threshold. Thus, the best threshold was selected from the 11 candidate thresholds according
to their performance in the classification results.

Then the classification accuracies of the decision tree model, SVM, and RF methods
were compared in the three study areas. The primary purpose was to test whether the
decision tree model was better than the SVM or RF classifier for canola mapping. An-
other purpose was to test the applicability of the decision tree model because training
samples were not used in the second and third study areas. If the classification accuracy
of the decision tree model was satisfactory in the second and third study areas, automatic
identification of canola would have been achieved without relying on training samples.

2.6. Accuracy Verification

In the study, 45 validation quadrats with dimensions of 0.5 km × 0.5 km were randomly
selected. Three steps were taken to complete the production of those validation quadrats,
as shown in Figure 4. First, the boundaries of various ground objects within each validation
quadrat were manually plotted in accordance with Google imagery with a spatial resolution
of 0.1 m × 0.1 m. Second, the vector data attributes for different ground objects were
determined and labeled from field-based survey data. The canola fields were labeled as
“canola” type, and all other ground objects were labeled as “other” type. Third, the vector
data were converted to raster data, and their spatial resolution was converted to 10 m, the
same as the classification results. Those raster data were regarded as the ground-truth
samples. Then the confusion matrix accuracy verification method [43,44] and F1 score [45]
were used to verify the classification accuracy. The confusion matrix accuracy parameters
included overall accuracy, production accuracy, user accuracy, and the kappa coefficient.

Figure 4. The validation quadrats data production process. (a) The Google imagery base map with a
spatial resolution of 0.1 m × 0.1 m, and the red lines are the vectorized boundaries of different objects.
(b) The green vector data are canola fields, and the red areas represent other objects. (c) The raster
data derived from the second step.

2.7. Comparison of CFI with Other Canola Indices

Some canola indices have been used for canola identification in previous studies.
For example, Sulik and Long proposed a canola ratio index (CRI) [3] and a normalized
difference yellowness index (NDYI) [1]. Ashourloo et al. [11] proposed a canola index (CI).
The equations are as follows:

CRI = βgreen/βblue (2)

NDYI =
(

βgreen − βblue
)
/
(

βgreen + βblue
)

(3)
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CI = βnir ×
(

βgreen + βred
)

(4)

where βgreen, βblue, βred, and βnir represent the spectral reflectance on green, blue, red, and
near-infrared wavebands, respectively.

In order to compare the performance of the CFI proposed in this study with those
existing canola indices, i.e., CRI, NDYI, and CI, their classification accuracies based on
different classification method were also obtained in the study.

3. Results
3.1. Optimum Period

The Fisher values of the canola and other ground objects in the four wavebands and
NDVI images during the canola growth period in the first study area were plotted in
Figure 5.

Figure 5. Fisher values (a) between canola and wheat, (b) between canola and forest, (c) between
canola and bare land, and (d) between canola and construction land in different spectral bands from
11 November 2019 to 19 May 2020 in the first study area.

Note that March is the flowering period for canola. In Figure 5a, on 20 March 2020, the
Fisher values between canola and wheat in the blue, green, and red wavebands reached
the peak values of 33.02, 40.75, and 40.21, respectively. Those values were approximately
seven times higher than those in other periods. The Fisher values between canola and
wheat in the NDVI layer also reached a peak value of 20.95 on 20 March 2020. For the
NIR band, the Fisher values between canola and winter wheat were low throughout the
growth period, fluctuating around 2.86. In Figure 5b, the green and red wavebands still
performed well in distinguishing canola from forest, and their Fisher values were 42.58
and 31.31, respectively, on 20 March 2020. The Fisher value on the blue waveband was
18.74. As shown in Figure 5c,d, the NDVI image had an absolute advantage in identifying
canola on 20 March 2020 compared to the four wavebands. Because the Fisher values of
the NDVI were greater than 40, whereas the Fisher values of the four wavebands were
less than 10 on 20 March 2020. Those results demonstrated that the blue, green, and red
wavebands, and NDVI layer of the Sentinel-2 image on 20 March 2020 had the best potential
to identify canola.

In the same way, on 20 March 2020, the Fisher values between canola and other ground
objects were high. Those results proved that the Sentinel-2 image on 20 March 2020 had
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the best potential to identify canola. Therefore, Sentinel-2 images during canola flowering
were used to map canola.

3.2. Optimum Canola Flower Index

In accordance with the three features for building the CFI (Section 2.4), eight canola
flower indices were derived:

CFI1 = NDVI + sumred,green + di f fgreen,blue (5)

CFI2 = NDVI × sumred,green × di f fgreen,blue (6)

CFI3 = NDVI ×
(

sumred,green + di f fgreen,blue

)
(7)

CFI4 = sumred,green ×
(

NDVI + di f fgreen,blue

)
(8)

CFI5 = di f fgreen,blue ×
(

sumred,green + NDVI
)

(9)

CFI6 = NDVIi + sumred,green × di f fgreen,blue (10)

CFI7 = sumred,green + NDVIi × di f fgreen,blue (11)

CFI8 = di f fgreen,blue + NDVIi × sumred,green (12)

where sumred, green is the sum of spectral reflectance on the red and green spectral wavebands,
and diffgreen, blue is the difference between the green and blue spectral wavebands.

sumred,green = βred + βgreen (13)

di f fgreen,blue = βgreen − βblue (14)

NDVI = (βnir − βred)/(βnir + βred) (15)

where βred, βgreen, βblue, and βnir are the spectral reflectance on red, green, blue, and NIR
wavebands, respectively.

For the different CFI images on 20 March 2020, the Fisher values between canola and
the other four types of ground objects are shown in Table 2.

Table 2. Fisher values of canola and other ground objects for various CFIs.

CFI
Fisher Values of Canola and Others

Mean
Wheat Forest Bare Construction

CFI1 0.02 5.79 19.90 10.96 9.17
CFI2 20.04 26.38 16.91 17.75 20.27
CFI3 34.51 43.09 53.25 48.38 44.81
CFI4 31.06 40.96 24.86 31.17 32.01
CFI5 23.39 35.20 9.05 9.42 19.27
CFI6 19.81 0.01 101.11 47.16 42.02
CFI7 38.81 41.71 1.41 0.37 20.58
CFI8 34.04 42.77 22.15 38.95 34.48

The mean Fisher value of CFI3 was 44.81, which was maximal. Also, CFI3 gave canola
and all other objects good separability. For example, although the Fisher value between
canola and wheat was minimal compared to other objects, the value was as high as 34.51.
For the CFI3, it was multiplied by two factors, as shown in Equation (7). The first factor
was NDVI, which can distinguish between non-vegetation. Because the NDVI values of
non-vegetation were less than 0.2, whereas canola was more than 0.5, as shown in Figure 3.
In addition, the second factor values of canola were greater than that of non-vegetation.
Therefore, CFI3 can accurately distinguish canola from non-vegetation. Although the NDVI
values of wheat and forest were similar to those of canola, the second factor values of



Remote Sens. 2022, 14, 1113 9 of 18

canola were greater than those of wheat and forest. Therefore, CFI3 can also accurately
distinguish canola from wheat and forest. The mean Fisher value of CFI6 was similar to
that of CFI3. However, CFI6 barely distinguished between canola and forest because the
Fisher value was 0.01. Therefore, CFI3 was the optimum CFI for canola mapping, and was
used in the study.

3.3. Effectiveness of the Optimum Canola Flower Index

The CFI mentioned in the remainder of the paper is the optimum CFI—i.e., CFI3.
The classification accuracies based on CFI images and Sentinel-2 raw images by using
the IsoData method are plotted in Table 3. In each study area, the canola identification
performance of the CFI image was higher than that of the Sentinel-2 raw image. Especially
in the third study area, the advantages of the CFI image were more pronounced. For
example, compared to the raw image, the overall accuracy of the CFI image in that area was
improved by 2.63 percentage points. In addition, for the production accuracy of the canola
category, the CFI image’s performance was similar to that of the raw image. However, the
user accuracy of the canola category of the CFI image in the third study area was improved
by 5.17 percentage points compared to the raw image. Therefore, CFI images were more
effective than the Sentinel-2 raw images for mapping canola by using the IsoData method.

Table 3. Classification accuracy based on CFI images and Sentinel-2 raw images by using IsoData.

Study
Area

Image
Type OA (%) Kappa F1-Score PA (%) UA (%)

1
CFI 94.76 0.88 0.92 95.29 88.42
Raw 92.96 0.84 0.89 96.49 83.11

2
CFI 92.67 0.77 0.81 92.45 72.65
Raw 91.90 0.75 0.79 90.60 70.76

3
CFI 90.27 0.81 0.90 82.83 98.67
Raw 87.64 0.75 0.88 82.52 93.50

Total
CFI 92.31 0.84 0.90 87.47 92.90
Raw 91.10 0.81 0.89 87.36 90.08

OA = overall accuracy, PA = production accuracy of canola category, UA = user accuracy of canola category.

The classification accuracies based on CFI images and Sentinel-2 raw images using the
SVM method are plotted in Table 4.

Table 4. Classification accuracy based on CFI images and Sentinel-2 raw images using the SVM.

Study
Area

Image
Type OA (%) Kappa F1-Score PA (%) UA (%)

1
CFI 96.36 0.91 0.94 93.29 94.68
Raw 94.14 0.86 0.90 82.51 97.94

2
CFI 96.34 0.86 0.89 87.33 89.86
Raw 95.89 0.85 0.88 88.67 86.41

3
CFI 95.70 0.91 0.96 95.27 96.86
Raw 94.70 0.89 0.95 94.60 95.56

Total
CFI 96.01 0.92 0.95 94.14 95.79
Raw 94.85 0.89 0.93 91.81 94.98

OA = overall accuracy, PA = production accuracy of canola category, UA = user accuracy of canola category.

Compared to Table 3, the SVM classification accuracies were higher than those of
IsoData, whether based on CFI images or raw images. In all study areas, the canola
identification performance of the CFI images is higher than that of the Sentinel-2 raw
images, as shown in Table 4. For example, the overall accuracy of the CFI images reached
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96.01%, an improvement of 1.16 percentage points compared to the raw images. Therefore,
CFI images were more effective than Sentinel-2 raw images for mapping canola by using
the SVM method.

The classification accuracies based on CFI images and Sentinel-2 raw images using the
RF method are plotted in Table 5. These results demonstrate that CFI images have better
effectiveness compered to Sentinel-2 raw images for mapping canola using the RF method.
For example, all the accuracy measures of CFI images were better than those of raw images
in all study areas. Compared to Table 4, the classification accuracy of the RF was similar to
that of the SVM, whether based on CFI images or raw images.

Table 5. Classification accuracy based on CFI images and Sentinel-2 raw images using the RF.

Study
Area

Image
Type OA (%) Kappa F1-Score PA (%) UA (%)

1
CFI 96.21 0.91 0.94 92.61 94.84
Raw 95.99 0.90 0.93 92.49 93.19

2
CFI 96.38 0.87 0.89 91.59 87.03
Raw 95.22 0.86 0.88 91.29 86.32

3
CFI 95.52 0.91 0.96 94.88 96.53
Raw 94.69 0.89 0.95 94.60 95.47

Total
CFI 95.99 0.91 0.95 94.08 95.01
Raw 95.21 0.90 0.93 93.21 94.29

OA = overall accuracy, PA = production accuracy of canola category, UA = user accuracy of canola category.

3.4. Best Threshold of Canola Flower Index

According to histogram statistics, the preset threshold to distinguish canola and non-
canola on the CFI images was 0.15. Then accuracy curves were drawn corresponding to
various candidate thresholds, as shown in Figure 6. As the threshold increased from 0.1 to
0.2, the UA increased while the PA reduced. Other accuracy indicators showed a trend of
increasing first and then decreasing, reaching a peak value when the threshold was 0.14.
Therefore, it was believed that 0.14 was the best threshold of the decision tree model based
on CFI images for distinguishing canola from other ground objects.

Figure 6. Classification accuracy for various thresholds based on CFI images derived from Sentinel-
2 images on 20 March 2020 in the first study area. UA = user accuracy of canola category,
PA = production accuracy of canola category, OA = overall accuracy.

3.5. Classification Results

A map of the canola planting distribution in 2020 was obtained based on the decision
tree model classification method, as shown in Figure 7. The canola planting areas were
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45.14 km2, 168.93 km2, and 810.36 km2 in the first, second and third study areas, respectively.
Canola was distributed mainly in plains or valleys. In the third study area, canola plots
were very regular relative to those of the other two study areas.

Figure 7. Distribution of canola planting regions in the three study areas in 2020. (a–c) The canola
map in the first, second, and third study area respectively.

The classification accuracy is shown in Table 6. There, the classification results from
the decision tree model are compared with those from the SVM classification method. The
results show that the classification accuracies of the two classification methods were very
similar. The overall accuracy was approximately 96%, with a kappa coefficient of 0.91.

Table 6. Classification accuracy of CFI images by using the decision tree model, SVM and RF.

Study
Area

Image
Type OA (%) Kappa F1-Score PA (%) UA (%)

1
Threshold 96.36 0.91 0.94 93.29 94.68

SVM 96.34 0.91 0.94 93.01 94.84
RF 96.21 0.91 0.94 92.61 94.84

2
Threshold 96.34 0.86 0.89 87.33 89.86

SVM 96.26 0.86 0.89 90.60 86.89
RF 96.38 0.87 0.89 91.59 87.03

3
Threshold 95.46 0.91 0.96 95.89 95.59

SVM 95.24 0.90 0.95 97.41 93.88
RF 95.52 0.91 0.96 94.88 96.53

Total
Threshold 96.02 0.91 0.95 95.45 94.58

SVM 96.01 0.91 0.95 94.14 95.79
RF 95.99 0.91 0.95 94.08 95.01

OA = overall accuracy, PA = production accuracy of canola category, UA = user accuracy of canola category.

Note that when using the decision tree model to identify canola in the second and third
study areas, new training samples were not used. However, new training samples were
used in the SVM method. That was because when using the SVM method as a classification
system, the training samples produced on one image were difficult to apply to another
image. In addition, the classification speed of the decision tree model was approximately
60 times that of the SVM method.
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Therefore, it was judged that the classification accuracy and robustness of the decision
tree model made it appropriate for the automatic identification of canola.

Figure 8 shows the accuracy results of some validation quadrats, which intuitively
and visually express the spatial distribution of classification accuracy. Misclassification
occurred mainly at the boundary regions of various categories, and some roads less than
10 m wide could not be accurately identified. However, the interiors of the canola plots
could usually be accurately identified by using the method proposed in this study.

Figure 8. Results of accuracy validation based on 15 validation quadrats with dimensions of
0.5 km × 0.5 km, selected randomly from 45 validation quadrats. Columns A, B, and C are ground-
truth data, classification results, and accuracy results, respectively.

The classification result areas of canola were compared with their ground-truth areas
for each validation quadrat, as shown in Figure 9. It demonstrates that the identification
areas of canola were very similar to the ground-truth area of canola, with a correlation
coefficient of 0.996. Production and user accuracy were also balanced, as shown in Table 6.
In other words, the omission rate and commission rate for canola were balanced. Therefore,
the identification areas of the canola were very close to the actual areas.

3.6. Performance of Other Canola Indices

The results of classification accuracy based on various existing canola indices using
different methods were plotted in Table 7. No matter which method was used, CFI had
the best performance for identifying canola, as shown in Table 7. For CFI, its production
accuracy of the canola category was similar to its user accuracy of the canola category,
especially when using the SVM and RF methods. This showed that the omission rate of
canola and misclassification rate of canola were similar in the classification results based
on CFI images. These two errors will offset each other, so that the areas of canola in the
classification results are closer to the truth. For overall accuracy and kappa coefficient, the
classification accuracy of NDYI was second only to CFI, followed by CI and CRI.
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Figure 9. Canola area scatterplot of validation quadrats from ground-truth surface samples and
classification result samples. RMSE denotes the root mean square error.

Table 7. Classification accuracy of different canola indices by using different methods.

Methods Indices OA (%) Kappa F1-Score PA (%) UA (%)

IsoData

CFI 92.31 0.84 0.90 87.47 92.90
CRI 91.08 0.80 0.86 82.41 90.16

NDYI 92.73 0.82 0.87 84.07 90.95
CI 89.62 0.74 0.81 73.10 90.61

SVM

CFI 96.01 0.92 0.95 94.14 95.79
CRI 92.19 0.84 0.90 86.56 94.33

NDYI 94.44 0.87 0.92 88.48 94.98
CI 90.30 0.80 0.87 85.60 87.51

RF

CFI 95.99 0.91 0.95 94.08 95.01
CRI 93.11 0.88 0.93 92.10 94.37

NDYI 94.52 0.89 0.93 91.83 95.14
CI 90.66 0.82 0.88 87.52 88.57

OA = overall accuracy, PA = production accuracy of canola category, UA = user accuracy of canola category.

In order to more intuitively reflect the classification performances difference between
CFI and other indices, we counted the histograms of some objects based on different canola
index images derived from Sentinel-2 image on 20 March 2020, as shown in Figure 10.

NDYI cannot completely distinguish between forest and canola in certain forest areas,
while the CFI was better at identifying canola, as shown in Figure 10. Some construction
land regions were wrongly identified as canola by using the CI, as shown in Figure 10d.
Although the reflectance of construction land in the NIR waveband was less than that of
canola, its reflectance in the red and green wavebands was greater than that of canola.
Hence, CI ranges of construction land overlapped with canola. Similarly, the CI cannot
fully distinguish canola from bare land, as shown in Figure 10f. However, the CFI could
fully distinguish canola from construction land and bare land.
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Figure 10. Histograms of various objects based on various canola flower indices. (a,c,e) Histograms
of canola, forest, construction land, and bare land based on CFI values. (b) Histograms of canola and
forest based on NDYI values. (d,f) Histogram of canola, construction land, and bare land based on
CI values.

4. Discussion

This study developed a novel CFI for automatic canola mapping. The CFI is a spectral
index for canola field detection using remote-sensing data. Its advantages are calculation
simplicity and effectiveness, and a high automation level.

The spectral difference between canola and winter wheat was slight during their most-
growth stages. Wheat can seriously reduce the mapping accuracy of canola, especially in
mixed planting areas of wheat and canola. However, the yellow canola flowers provide
another opportunity to distinguish between canola and winter wheat, even though the
flowering stage is transitory, only about one month [3].

According to our observations, the yellow flowers of canola can create a visual differ-
ence between canola fields and winter wheat fields. The most spectral differences between
yellow petals and non-yellow petals are visible in the green and red bands [46]. The content
of carotenoids in the canola petal is very high; they absorb blue light and reflect green
and red light [3]. At the vegetation canopy scale, the recorded spectral reflectance values
came from the canola’s yellow flowers and green leaves and stems. The values from other
crops, including winter wheat, came only from their green leaves and stems [11,47]. As
a result, the spectral reflectance values of canola in the red and green bands were higher
than those of other vegetation types during the canola flowering season. However, in the
blue and NIR bands, the spectral reflectance values of canola and other vegetation types
were similar.

The red-edge bands of Sentinel-2 images play an important role in establishing pa-
rameters such as the leaf area index [48]. However, in this study it was not found that the
red-edge bands made a significant contribution to the identification of canola according to
our previous experimental results. As Griffiths, Nendel and Hostert [32] pointed out, the
red-edge bands only slightly improve overall accuracy. In addition, the spatial resolution
of the red-edge bands is 20 m × 20 m, which is lower than that of blue, green, red, and NIR
bands, whose spatial resolution is 10 m × 10 m. Therefore, the red-edge bands were not
used to build the CFI in this study.
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The reflectivity of most ground objects in the blue waveband is usually low. Under
the influence of a complex atmospheric environment, sometimes the reflectivity of ground
objects might be close to zero in the blue band of an atmospheric corrected image. At
that time, the NDYI of those objects will be similar to that of canola flowers, even if their
reflectivity in the green band is much lower. This phenomenon was found in the Sentinel-2
image on 12 April 2020 in the third study region. Nevertheless, the CFI can effectively
avoid similar problems. For example, the NDYI cannot completely distinguish between
forest and canola in some particular forest areas, whereas the CFI had better performance
at identifying canola, as shown in Figure 10.

During the canola flowering stage, the CFI values of the canola field were greater than
the threshold of 0.14, as shown in Figure 11. However, the CFI value of canola did not
exceed the threshold in other growth stages. Therefore, the decision tree model based on
CFI images can achieve the automatic and accurate identification of canola.

Figure 11. Time series of canola flower index curve of a canola field during its entire growth cycle.

The flowering period of canola is only approximately 1 mon. Suppose no remote-
sensing images were available during the flowering period, due to the influence of cloud
and rain. In that case, it would be difficult to identify the planting distribution of canola by
using the method proposed in this study. This is the limitation of using optical imagery
data to identify canola.

Of course, at the development stage, the automated algorithm requires substantial
expert input and image analysis to isolate type-specific properties from inter-annual and
inter-region variability [13]. It was concluded that an important research direction is to
evaluate the ability of the CFI in different years by considering various climates and other
conditions in future research to verify the results of this study.

5. Conclusions

The spectral index, the CFI, proposed in this study, is extremely sensitive to yellow
canola flowers. Therefore, the CFI has great potential to identify canola planting distribution
accurately. The following conclusions were drawn:

The flowering stage of canola is the best time to identify its planting distribution by
remote-sensing data, especially in mixed planting areas of different types of winter crops.

CFI integrates four kinds of spectral information: blue, green, red, and NIR wavebands.
It dramatically reduces the dimensions and volume of remote-sensing data and enhances
the image information of canola flowers.

The decision tree model based on CFI images can improve the classification accuracy
of canola compared to other canola indices. In addition, this decision tree model has good
universality. When this model is applied elsewhere, the model threshold does not need to
be adjusted.
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6. Patents

One Chinese invention patent, an automatic canola identification method based on
optical satellite imagery (grant number ZL202010021111.6), resulted from the work reported
in this manuscript.
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