
A Novel Statistical Algorithm for Gene Expression
Analysis Helps Differentiate Pregnane X Receptor-
Dependent and Independent Mechanisms of Toxicity

M. Ann Mongan1*, Robert T. Dunn II1, Steven Vonderfecht1, Nancy Everds1, Guang Chen2, Cheng Su2,

Marnie Higgins-Garn1, Yuan Chen1, Cynthia A. Afshari1, Toni L. Williamson1, Linda Carlock1, Christopher

DiPalma1, Suzanne Moss1, Jeanine Bussiere1, Charles Qualls Jr.1, Yudong D. He1, Hisham K. Hamadeh1

1Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California, United States of America, 2 Research and Translational Sciences Biostatistics, Amgen

Inc., Seattle, Washington, United States of America

Abstract

Genome-wide gene expression profiling has become standard for assessing potential liabilities as well as for elucidating
mechanisms of toxicity of drug candidates under development. Analysis of microarray data is often challenging due to the
lack of a statistical model that is amenable to biological variation in a small number of samples. Here we present a novel
non-parametric algorithm that requires minimal assumptions about the data distribution. Our method for determining
differential expression consists of two steps: 1) We apply a nominal threshold on fold change and platform p-value to
designate whether a gene is differentially expressed in each treated and control sample relative to the averaged control
pool, and 2) We compared the number of samples satisfying criteria in step 1 between the treated and control groups to
estimate the statistical significance based on a null distribution established by sample permutations. The method captures
group effect without being too sensitive to anomalies as it allows tolerance for potential non-responders in the treatment
group and outliers in the control group. Performance and results of this method were compared with the Significant
Analysis of Microarrays (SAM) method. These two methods were applied to investigate hepatic transcriptional responses of
wild-type (PXR+/+) and pregnane X receptor-knockout (PXR2/2) mice after 96 h exposure to CMP013, an inhibitor of b-
secretase (b-site of amyloid precursor protein cleaving enzyme 1 or BACE1). Our results showed that CMP013 led to
transcriptional changes in hallmark PXR-regulated genes and induced a cascade of gene expression changes that explained
the hepatomegaly observed only in PXR+/+ animals. Comparison of concordant expression changes between PXR+/+ and
PXR2/2 mice also suggested a PXR-independent association between CMP013 and perturbations to cellular stress, lipid
metabolism, and biliary transport.
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Introduction

Microarrays are now the preferred technology in many

biological applications ranging from functional characterization

of genes and pathways to classification of disease signatures for

diagnostic and prognostic purposes. Within the field of toxicoge-

nomics, genome-wide gene expression data have been widely used

to assess potential toxicity as well as to elucidate mechanisms of

toxicity of drug candidates [1–4]. The growing number of

applications and wide adoption of microarray data have in turn

fueled the development of analysis methods devised to extract

information from these datasets [5]. While earlier studies were

often complicated by technical inconsistencies, microarray data

have become significantly more reliable and reproducible [6,7]. In

fact, analysis of reference mRNA obtained from mixed rat tissues

processed over a multi-year period by Amgen and several external

facilities has consistently shown relatively high sensitivity and

specificity [8,9]. However, even with highly improved technology,

the microarray community continues to struggle with the analysis,

interpretation, and extraction of biologically relevant knowledge

from the large volume of expression measurements. Much work

has been invested in developing models and algorithms for these

purposes and their levels of complexity have tended to increase

over time. Unfortunately, however, the increased level of

algorithmic complexity does not always translate to improved

biological understanding [10]. In particular, many model-driven

methods often assume certain distributions for the data that are

either not true or not easily verifiable. Furthermore, while most

existing statistical models perform well with simulated data, they

often are too sensitive to what is generally considered an

acceptable level of biological variation.

Our goal here is to devise a method that requires fewer

assumptions about intensity distribution of genes and therefore can

be described with an intuitive mathematical model. The method is
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meant to capture group effects without being too sensitive to

anomalies in a small subset of subjects. Such tolerance is necessary

because biological variation is typically large due to uncontrollable

variables resulting both from inherent heterogeneity and technical

procedures during the course of experiments. Therefore, it may

not be desirable to penalize large variations in the amplitude of

gene expression as long as the changes relative to the control group

are in the same direction across the majority of animals. Our

approach leverages the platform p-value [11] and fold change

cutoffs to designate whether changes in a gene constitute

biologically differential expression between each treated sample

relative to the vehicle-control pool. The significance of the group

effect for the gene is then estimated by comparing the number of

changed samples observed between the two groups. In particular,

the algorithm involves two steps:

1. A nominal threshold of 1.25 fold change and platform p-value

[11] of 0.1 were used to designate whether a gene displays

differential expression in each treated and control sample

relative to the averaged control pool.

2. False discovery rate was estimated based on the probability of

encountering the observed number of differentially expressed

samples in the treated group, given the total number of

observed differentially expressed samples in both groups, under

the empirically determined distribution derived from the null

hypothesis that the differentially expressed samples are equally

distributed in both groups.

Thresholds on fold change and p-values were set to values we

believed would likely translate to biological significance from our

experience with similar toxicology studies. Performance of this

method was compared with the popular microarray analysis

method Significant Analysis of Microarrays (SAM) [12]. The two

methods were applied to investigate the role of pregnane X

receptor (PXR) in hepatic toxicities induced by CMP013, a small

molecule inhibitor of b-secretase (BACE1) enzyme. BACE1, the

first of the two proteases that cleaves amyloid precursor protein, is

believed to be a prime drug target for Alzheimer’s disease [13–15].

Early toxicology screening with CMP013 in rats revealed

prominent effects in the liver including hepatomegaly (liver weight

nearly 2x above control) with histological correlates of increased

mitotic figures, vacuolation, and hepatocellular hypertrophy.

In vitro data suggested that CMP013 might be an agonist for

PXR and we hypothesized that this nuclear receptor was at least

partially responsible for the potent hepatic effects noted in 4-day

rat toxicology studies. To further evaluate the role of PXR in

mediating mechanisms of toxicity by CMP013, a subsequent 4-day

toxicology study with CMP013 was carried out with wild type

(C57Bl/6) and PXR-knockout (C57Bl/6NTac) mice (Table 1) to

confirm that mice respond to CMP013 in a manner similar to rats.

Following confirmation of CMP013-mediated hepatic effects in

C57Bl/6 mice (Figure 1), gene expression data was generated from

liver tissue of these animals for mechanistic investigation.

Specifically, the data from this knock-out study allowed us to

differentiate PXR-dependent and independent mechanisms of this

BACE1 inhibitor in mediating the observed hepatotoxic effects.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and local animal

welfare bodies, and all animal work was approved by the Amgen’s

Institutional Animal Care and Use Committee under IACUC

protocol 2008-00174.

In vivo study
Two groups of mice, C57Bl/6 (PXR+/+) and PXR-knockout

C57Bl/6NTac (PXR2/2), were administered by oral gavage

either CMP013 or vehicle (2% HPMC/1% Tween 80 in DI

water, pH 2.2. adjusted with methanesulfonic acid) according to

dose levels outlined in Table 1. Food (irradiated Harlan Teklad

rodent maintenance diet) and water were available ad libitum

during the study except for the last 3–4 h prior to necropsy during

which animals were fasted and only water was available. Actual

food intake and water consumption were not monitored for

individual animals during the course of study. At 96 h, all animals

Figure 1. Effect of CMP013 on liver weight of wild type and
PXR-knockout mice. Wild type mice showed similar liver weight
increase as previously observed in Sprague Dawley rats; such increase
was absent in the knockout strain.
doi:10.1371/journal.pone.0015595.g001

Table 1. Study Design.

Strain Test Article Dose level (mg/kg/day) Dose volume (mL/kg) Concentration (mg/mL)

C57Bl/6 (WT) Vehiclea 0 10 0

C57Bl/6 (WT) CMP013 150 10 15

C57Bl/6NTac (PXR-KO) Vehiclea 0 10 0

C57Bl/6NTac (PXR-KO) CMP013 150 10 15

All animals were 9-week old males at initiation of treatment. Mice were dosed via oral gavage every 24 h and euthanized at 96 h. Each of the following groups contains
5 animals.
a2% HPMC/1% Tween 80 in DI water, pH 2.2. adjusted with methanesulfonic acid.
doi:10.1371/journal.pone.0015595.t001
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were euthanized via CO2 asphyxiation followed by exsanguina-

tion. Liver samples were promptly collected and frozen until ready

for RNA extraction.

RNA Isolation
Total RNA was isolated from pieces of mouse liver according to

the RNeasy extraction procedure (Qiagen, Valencia, CA). Tissues

were homogenized in QIAzol lysis buffer using the GenoGrinder

2000 homogenizer (SPEX SamplePrep, Metuchen, NJ). Samples

were processed on the Qiagen BioRobot Universal system

according to the manufacturer’s instructions. An on-column

DNase digestion was performed to remove any residual genomic

DNA contamination. RNA concentration and yield were mea-

sured spectrophotometrically using the Nanodrop instrument.

Quality of the nucleic acid samples was evaluated with the RNA

6000 Nano chip kit (Agilent Technologies, Expert software).

Quality of samples was verified with distinct ribosomal 18S & 28S

peaks, low baseline, and high RIN values (PXR+/+: 9.3-10;

PXR2/2: 8.7-9.6).

Gene expression data generation
Liver RNA from individual mice was profiled separately on the

Affymetrix GeneChipH platform without technical replication.

Microarray profiling was performed by Cogenics (Morrisville,

NC). Briefly, 1 mg of total RNA was reverse transcribed to double

stranded cDNA with the BioarrayTM Single-Round RNA

Amplification and Labeling Kit and biotinylated cRNA was

generated using the BioArrayTM HighYieldTM RNA Transcript

Labeling Kit (Enzo Life Sciences, Farmingdale, NY). For each

sample, 10 mg of biotinylated cRNA spiked with hybridization

controls (bioB, bioC, bioD and cre) was hybridized to an

Affymetrix Mouse 430_2 microarray for 16 h at 45uC. Following

hybridization, arrays were washed and stained in an Affymetrix

GeneChip Fluidics Station and scanned with a GeneChipH

Scanner 3000 (Affymetrix, Santa Clara, CA). Quality checks and

data analyses were carried out using Affymetrix GeneChip

Operating Software (GCOS) and Quality Reporter. All data were

MIAME compliant and raw data (cel files) have been deposited to

a MIAME compliant database, GEO, accession GSE23780.

Gene expression analysis
Analysis with the proposed method. Log-ratios of gene

expression data and associated platform p-values [11] were

generated in the Rosetta Resolver System (Rosetta Biosoftware,

Seattle, WA, version 7.2) for all profiles relative to strain-matched

vehicle-treated controls. For each Affymetrix sequence (or probe set),

log-ratio was defined to be the log10 of the intensity ratio of each animal

(either treated with vehicle or CMP013) to the mean intensity of that

sequence across the five profiles in the corresponding vehicle control

group. To identify differentially expressed sequences due to CMP013

treatment, we carried out a two-step non-parametric statistical analysis,

which was applied to data from wild type (WT) and PXR-knockout

(PXR-KO) mice separately. This analysis was performed in the

programming language R.

Step 1: Counting the number of samples in which a sequence i

showed differential expression based on platform p-value and fold

change. For each sequence, we identified the number of samples

that satisfy |log-ratio|$0.097 (equivalent to a fold change cutoff

of 1.25) and platform p-value #0.1. The number of animals

passing this criterion was counted separately for the vehicle and

the CMP013-treated groups (Equation 1)

Nvehicle
i ~max

jSj where S~fn j Ini § 0:097 ^ Pn
i ƒ 0:1g

jRj where R~fn j Ini ƒ{0:097 ^ Pn
i ƒ 0:1g

�

ð1Þ

where Ini is the log-ratio intensity of gene i measured in animal n,

Pn
i is the associated p-value of gene i, and Nvehicle

i represents the

number of animals satisfying the above conditions for sequence i in

the vehicle group. NCMP013
i is defined similarly for animals in the

treatment group. |S| represents the number of animals in which

sequence i was potentially up-regulated relative to the control pool,

while |R| represents the number of animals in which that

sequence was potentially -down-regulated. For each of WT or PXR-

KO dataset, this step produced two vectors of length equal the

number of sequences on the GeneChipH (Figure 2). In cases where

|S|= |R|, i.e., the genes show increased and decreased

expression in equal number of animals, such expression change

was designated non-interpretable and step 2 was not necessary.

Step 2: Estimate of statistical significance for group difference

between treatment and vehicle. A gene is identified as having

significantly altered expression by CMP013 treatment if a

significantly greater number of animals in the treatment group

satisfy the criteria in step 1 as compared to those in the control

group. In other words, we need to evaluate the probability of

getting a pairing of (Nvehicle
i ,NCMP013

i ) by chance. The null

hypothesis for a sequence i is that, for a givenNTotal
i = t, the

numbers of animals that satisfied conditions in step 1 are equally

distributed between the vehicle (NVehicle
i ) and treated group

(NCMP013
i ) (Equations 2–4). The values for t range from 0–9

because conditions for significance are set relative to the mean of

Figure 2. Counting procedure defined by step 1. In this diagram, colored circles represent profiles (animals) in which a sequence i satisfies |fold
change|$1.25 and platform p-value #0.1, while open circles represent samples that do not. A red circle symbolizes up-regulation and a green circle
symbolizes down-regulation. The counting step simply records a sum of the number of profiles showing changed in the same direction.
doi:10.1371/journal.pone.0015595.g002
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the control group and thus the maximal significant samples from

this group is 4.

E NCMP013
i jNTotal

i ~t
� �

~1=2t ð2Þ

NTotal
i ~NVehicle

i zNCMP013
i ð3Þ

t[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9f g

A sequence i is deemed significantly differentially expressed by

CMP013 if NCMP013
i is equal or larger than a cutoff, which is

determined by controlling the false discovery rate (FDR). A null

distribution was created by permuting the profile labels among

vehicle and treated groups 252 times (exhaustive combinations)

and re-computing step 1 on this randomized data. For a given

number of significant samples j in treated group, with NTotal = t,

the FDR is given by Equation 4.

FDRtj~medianover all permutations

P

k§j

n
perm
tk

P

k§j

nobstk

0

B

@

1

C

A
ð4Þ

The denominator in the fraction represents the number of genes

that would be considered significant from observed data; the

numerator represents the number of genes considered significant

from permutation. Sequences with FDRtj#0.05 were considered

statistically significant (Table 2).

Analysis with SAM. SAM analysis was carried out using the

method sam in the Bioconductor [16] package siggenes. The input

was a data frame containing log2 intensity of 10 profiles (vehicle

and treatment) in either the WT or PXR-KO dataset. The class

label was a vector of 10 elements, assigning zeros for vehicle and

ones for treatment profiles. The default method d.stat (a modified t-

test) as defined by Tusher et. al. [12] was applied as the test

statistics. The output of sam was a table containing a list of 10 delta

cutoffs, the number of genes deemed statistically significant at

these cutoffs and associated FDR. We used this table to fine tune

delta values so that the final FDR was ,10% below the desired

FDR of 0.05. The resulting gene lists for both WT and PXR-KO

data were used for pathway analysis.

Pathway Analysis
Pathways associated with differentially expressed genes identi-

fied by our proposed algorithm and SAM were analyzed using the

Tox Analysis function in IPA (Ingenuity Systems, Redwood City,

CA) [Application version: 8.0, Build: 82437; Content version:

2602]. Canonical pathways and tox list (list of genes associated

with toxicities as determined by IPA) with p-value #0.05 were

deemed significantly perturbed pathways.

Results

Identification of differential expressed genes due to
CMP013 treatments

Results obtained with current method. The Mouse

Affymetrix 430_2 GeneChipH contains 45,037 probe sets, which

we refer to as sequences in this paper. The principle component

analysis (46% explained, Figure 3) of these sequences, based on

quantile-normalized intensity data, showed that separation was

observed for animals treated with vehicle vs. CMP013. In fact, the

effect of CMP013 treatment appeared much larger than the effect

of knocking out PXR, highlighting the fact that this compound

modulated a relatively large number of genes in mouse liver.

Log-ratio data and associated platform p-values for all

sequences were generated in Rosetta Resolver (version 7.2).

Results with the current method showed that CMP013 led to

4,213 and 3,369 differentially expressed sequences in the livers of

WT and PXR-KO mice, respectively (Figure 4, Data S1). In the

WT model, the majority of sequences differentially expressed by

CMP013 were changed in all five animals in the treatment group.

In the PXR-KO model, however, the majority of differentially

expressed sequences were changed in only three animals in the

treatment group. This suggested that the transcriptional response

to CMP013 in PXR-KO mice was less homogeneous than that in

WT mice. We speculated that the difference in group behaviors

between the knockout and WT strains was a result of different

compensatory mechanisms each knockout animal developed to

compensate for the absence of PXR regulation. There was not

sufficiently strong evidence to support this hypothesis in the

current study, but we are investigating mouse strains with

knockout of other nuclear receptors to determine if similar

behaviors are exhibited. Nevertheless, our method is particularly

well-suited for studies in both preclinical and clinical settings

where subject-to-subject variation is relatively large. Overall, we

Table 2. False discovery rate (FDR) estimated based on wild-
type (A) and PXR-knockout (B) data.

A WT 0 1 2 3 4 5

0 1

1 1 0.558

2 1 0.827 0.227

3 1 0.925 0.500 0.058

4 1 0.975 0.781 0.183 0.001

5 1 0.993 0.983 0.484 0.003 0

6 1 0.993 0.990 0.692 0.044 0

7 1 0.980 0.980 0.843 0.144 0

8 1 0.947 0.947 0.842 0.333 0

9 1 1 1 1 0.5 0

B PXR-KO 0 1 2 3 4 5

0 1

1 1 0.632

2 1 0.831 0.225

3 1 0.897 0.473 0.028

4 1 0.938 0.808 0.080 0.001

5 1 0.973 0.948 0.404 0.005 0

6 1 0.979 0.973 0.642 0.046 0

7 1 0.977 0.977 0.826 0.217 0

8 1 1 1 0.923 0.385 0

9 1 1 1 1 0.5 0

Each value Fij in the table indicates the FDR for a gene found to be differentially
expressed (based on fold change and platform p-value cutoffs) in j samples of
the CMP013 treatment group out of i samples that are differentially expressed
in both groups. Underlined values correspond to cases where the genes would
be considered statistically significant at FDR#0.05. FDR = 0 corresponds to
events that were not observed in permutated data.
doi:10.1371/journal.pone.0015595.t002

A Novel Algorithm for Gene Expression Analysis

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e15595



identified 20% more differentially expressed sequences due to

CMP013 treatment in the WT model as compared to the PXR-

KO model. In addition, most of these sequences appeared to be

strain-specific: 76% of sequences changed in the WT model were

found only in this model and 70% of sequences changed in the

PXR-KO model were unique to that model. About 18% of the

total number of differentially expressed sequences in WT mice

were similarly modulated (either up-regulation or down-regula-

tion) in PXR-KO mice; these sequences and associated genes were

considered to represent PXR-independent effects.

Comparison with results obtained with SAM. SAM

returned 5,202 differential expressed sequences in CMP013-

exposed WT mice and 2,300 sequences in the PXR-KO mice

(Figure 4, Data S1). That is, at a false discovery rate of 5%, SAM

identified more sequences than our proposed method in the WT

model, and we identified more sequences than SAM in the PXR-

KO model. In designing our analysis, we wanted to give

considerations to both biological and statistical significance. The

key difference between the proposed method and SAM is that our

method used a threshold approach to determine biological

significance and group effect to determine statistical significance

determination. In addition, we did not penalize large variation of

changes within the same treatment group as long as the changes

were in the same direction. As a result, though SAM returned

approximately 20%more statistically significant sequences than our

method in the WT model; the vast majority of them (85%) did not

satisfy a fold change cutoff of 1.25. While such changes were

sufficiently homogenous among animals in the same treatment

group to achieve statistical significance; the increase or decrease

might be too small to warrant biological difference. On the other

hand, the proposed method identified 1,214 additional sequences

that were not returned by SAM. These sequences were more likely

to represent significant biological differences because their

expression changes, though varied from animal to animal, were in

the same direction. Furthermore, since there were more non-

responders in the PXR-KO group, the current method was more

sensitive than SAM and was able to return many sequences which

did not express large differential expression in 1–2 animals. In other

words, the SAMmethod is less sensitive when group behavior is less

consistent. Heat maps of sequences identified only by the current

method or SAM further illustrate the differences in results of the two

methods (Figure 5 C–F). Panels C and E show that sequences found

by our method have clear differential expression (due to fold change

cutoff) as compared to the control group even when the magnitude

of difference is relatively small. In contrast, panels D and F show

that a portion of sequences identified by SAM do not display visible

differential expression. That is, sequences identified only by our

Figure 3. Principle component analysis. The first three principle
components are based on log2 intensity and shown as four groups: (%)
WT, (O) PXR-KO, black: vehicle, red: CMP013 treatment.
doi:10.1371/journal.pone.0015595.g003

         

 

  

 
 

 

 

Figure 4. Differentially expressed genes in CMP013-treated C57Bl/6 (WT) and C57Bl6NTac (PXR-KO) mice. ‘‘CMP013 vs. vehicle’’
represents genes identified as differentially expressed due to CMP013 treatment; ‘‘Changed in WT model only’’ represent genes that are likely
mediated by PXR in response to compound treatment; and ‘‘Changed in the same direction in two models’’ represents sequences that modulated by
the compound independent of PXR regulation.
doi:10.1371/journal.pone.0015595.g004
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method cover a larger ranges of (unidirectional) fold changes,

whereas those identified only with SAM were likely sequences that

had less than 1.25 fold change but were consistent among all five

animals in the treatment group. As noted earlier, sequences in this

latter category could appropriately be considered to have

statistically significant differences, but such differences may not be

sufficient to constitute biological significance. It is, of course, up to

the investigator to decide how much change would constitute

biological difference, and the approach presented in this paper is

designed to be amenable to such modification.

Transcriptional effects of BACE1 inhibitor CMP013
We grouped CMP013-modulated sequences into two catego-

ries: A) sequences uniquely changed in the WT model, i.e., PXR-

Figure 5. Heat maps of differentially expressed genes identified by the proposed method and SAM. Panels A and B show genes that
transcriptionally respond to CMP013 treatment in a PXR-dependent and independent manners. Panels C and E show the subset of genes identified
only by our proposed method and panels D and F show genes identified only by SAM.
doi:10.1371/journal.pone.0015595.g005
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dependent effects and B) sequences showing concordant changes

between the WT and PXR-KO models, i.e., PXR-independent

response to CMP013 treatment. Sequences in group A were found

to be involved in PXR-mediated pathways, as their expression was

modulated only in WT mice and unchanged in the knockout

model (Figure 5A). Examination of this group of pathways in

relation to histopathology findings provided a clearer understand-

ing of PXR’s role in the dramatic hepatocellular hypertrophy

observed in WT mice. Sequences in group B reflected properties

of the compound that did not depend on the presence of PXR

(Figure 5B). These groups of sequences were transferred to IPA

where they were mapped to known genes and associated

pathways. It should be noted, however, that only about 50% of

sequences were mapped to annotated genes and pathways in IPA,

and thus our interpretation of these data was limited by this

annotation. When there were multiple sequences mapped to the

same gene symbol, the sequence with the largest fold change was

assigned to that gene.

PXR-dependent transcriptional effects. Parallel treatment

of wild type and PXR-KO mice with CMP013 allowed us to

elucidate transcriptional responses that were dependent on PXR

regulation. Knockout of the nuclear hormone receptor PXR

completely prevented the CMP013-induced increases in liver

weights, hepatocellular hypertrophy and mitotic activity.

Comparison of gene expression data obtained from two groups

of animals provided molecular evidence for many of these

changes. In particular, CMP013 increased the expression of

3,206 genes exclusively in WT mice, many of which were

indicative of PXR/CAR agonism properties of this compound. In

particular, there was increased expression of hallmark P450 genes

including Cyp3a4 (4.3 fold) and Cyp2b6 (88 fold). We additionally

observed induction of genes encoding phase 1 and 2 enzymes such

as aldehyde dehydrogenase (1a1, 1a7, 1b1, and 18a1, 1.5-2 fold),

glutathione S-transferase alpha (Gsta4, 4.5 fold; Gsta5, 11 fold),

glutathione S-transferase mu (members 1, 3, 4, 5 and 6; 1.3-11

fold), and UDP glucuronosyltransferase (Ugt2b10 and Ugt2b15,

,2 fold). Besides these xenobiotic metabolism genes, PXR

regulation also had roles in many hepatotoxicity-related cellular

processes with the notable ones described below.

Consistent with the hepatomegaly and liver weight increase

observations (Figure 1), altered expression of genes involved in

G1/S and G2/M cell cycle check points was observed in WT

mice. Increased expression of cyclin-dependent kinase 1 (Cdk1, 3.3

fold) and cyclin D1 (Ccnd1, 2 fold) suggested that CMP013

enabled a growth-induced condition, which allowed the cells to

overcome the G1/S checkpoint. Complexes involved Ccnd1 have

been reported to phosphorylate the tumor suppressor retinoblas-

toma, which in turn relieved the inhibition on the transcription

factor E2f [17,18]. Consistent with this report, we observed 2-3

fold increased expression of retinoblastoma-binding proteins

(Rbll), E2f3, and E2f6. The second checkpoint is located at the

end of G2 phase and the beginning of the M phase, which ensures

the cell’s readiness for mitosis. Though many proteins involved in

this process were regulated by post-translational modification,

transcriptional changes were observable for Chk1 checkpoint

homolog (Chek1, 2.9 fold) and cyclin B1 and B2 (Ccnb1, 2.2 fold;

Ccnb2, 4 fold). The induction of these genes underscored the role

of PXR in cellular proliferation as a likely contributor to the

profound liver weight increase observed in WT but not PXR-KO

mice.

The protein ubiquitination pathway plays a major role in the

degradation of regulatory proteins involved in cell cycle, apoptosis,

and a variety of signaling processes in the cell. In WT mice treated

with CMP013, we observed an increase in proteasomal degrada-

tion evidenced by the transcriptional changes of genes encoding

these enzymes. The degradation of proteins via the protein

ubiquitination pathway begins with the conjugation of multiple

ubiquitin (Ub) moieties to the target protein followed by the

degradation of the polyubiquitinated protein by the 26S protea-

some complex. Though expression changes in Ub-activating

enzyme (E1) were not observed, altered expression was noted for

numerous Ub-conjugating enzymes E2 (2f, 2k, 2l, 2m and 2v

increased ,1.5 fold; 2b, 2d, 2e, 2i, and 2n decreased 1.3-2 fold),

Ub protein ligase E3 (Ube3a, 1.6 fold increase), and ubiquitination

factors E4 (Ube4a and 4b, ,1.5 fold), which participated in multi-

Ub chain assembly. The polyubiquitin chain was recognized by

the multi-catalytic proteasome complex which completed the

proteolysis process. Transcriptional increase of genes making up

the proteasome complex was accordingly observed (Psma, Psmb,

Psmc, Psmd, and Psme, 1.3-2 fold).

Significant up-regulation of aminoacyl-tRNA biosysnthesis was

also observed exclusively in WT mice. Approximately two fold

transcriptional increase was noted for tRNA of most amino acids

including ala-tRNA synthetase (Aars and Aarsd1), arg tRNA

synthetase (Rars), asp tRNA synthetase (Nars), glu-tRNA synthe-

tase (Ears2), ile-tRNA synthetase (Iars), leu-tRNA synthetase

(Lars), lys-tRNA synthetase (Kars), phe-tRNA synthetase (Farsa),

and trp-tRNA synthetase (Wars) The increased transcription in

this process together with similar increases in the ubiquitination

pathway indicated that CMP013 led to a high rate of protein

turnover in the cells, likely associated with cell division.

Furthermore, CMP013 was associated with transcriptional

modulation of genes that were suggestive of an activation of the

NFkB signaling pathway in WT mice treated with CMP013. In

particular, we observed increased expression of TGFa (1.4 fold),

toll-interleukin 1 receptor domain containing adaptor protein

(Tirap, 1.3 fold), TNF receptor-associated factor 3 (Traf3, 2 fold),

eukaryotic translation initiation factor 2-alpha kinase (Eif2ak2, 1.7

fold), and inhibitor of kappa light polypeptide gene enhancer

(Ikbkg, 1.7 fold). The activation of this signaling pathway was

suggestive of an inflammatory response and was consistent with

the severity and frequency of the inflammatory infiltrates observed

in this group of mice.

PXR-independent transcriptional effects. We identified

754 sequences that were perturbed in the same direction in both

WT and PXR-KO mice treated with CMP013. Genes associated

with these sequences were mapped to five biological processes. In

addition to this shared gene set, we observed groups of

differentially expressed genes that were unique in each model of

mice, but were mapped to these same five pathways (Table 3).

A notable common response to CMP013 between WT and

PXR-KO mice was the down-regulation of genes involved in fatty

acid metabolism. In particular, decreased expression was observed

for key enzymes in b-oxidation including acyl-CoA dehydrogenase

(Acads, -1.4 fold in both models), which catalyzes the initial step in

each cycle of b-oxidation; and acetyl-CoA acyltransferases (Acaa1

and Acaa1b, both genes: -1.3 fold in WT, -1.6 fold in PXR-KO),

which catalyze the final step of the b-oxidation cycle. We

additionally observed transcriptional decrease in isoforms of these

genes as well as related genes in fatty acid metabolism; these genes

were unique to each mouse model. In the WT model, decreased

expression of -1.3-3 fold was noted for carnitine palmitoyltranfer-

ase (Cpt1a, -1.4 fold), acyl-CoA dehydrogenase, short and

branched chain (Acadsb, -2.6 fold), and acetyl-CoA acyltranferase

2 (Acaa2, -1.3 fold). In the PXR-KO model, decreased expression

of -1.3-2 fold was observed for acyl-CoA synthetase (Acad8, -1.6

fold), acyl-CoA oxidase 3 (Acox3, -1.4 fold), and enoyl-CoA

hydratase (Ehhadh, -1.3 fold). Collectively, these data suggested
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that treatment with CMP013 was associated with functional

perturbation of mitochondrial b-oxidation and that this effect did

not necessitate PXR mediation. Additionally, CMP013 led to

increased biosynthesis of cholesterol in both mouse strains.

Evidence of this increase included the ,2 fold increased

expression of the rate limiting enzyme HMG-CoA reducatase

(Hmgcr) and numerous genes in this pathway such as mevalonate

kinase (Mvk), squalene epoxidase (Sqle), isopentenyl-diphosphate

delta isomerase 1 (Idi1), and farnesyl diphosphate farnesyl

transferase 1 (Fdft1). Similar increases in expression were noted

for other genes in the pathway, though the changes were only

observed in WT mice: lanosterol synthase (Lss), farnesyl

diphosphate synthase (Fdps) and 7-dehydrocholesterol reductase

(Dhcr7). Besides cholesterol, metabolism of other C21 steroids,

relating to androgen and estrogen metabolism, appeared to be

down-regulated with 1.3-21 fold decreased expression of multiple

hydroxysteroid dehydrogenases (Hsd3b1, Hsd3b3, Hsd3b4,

Hsd3b5, Hsd3b7, and Sdr42e1), and steroid-5-alpha-reductase

(Srd5a1, -1.5 fold). Perturbations related to cholesterol and its

derivatives might be associated with cellular stress responses

further described below.

In both mouse strains, CMP013 treatment was associated with

molecular evidences of reactive oxygen species (ROS) generation

and an oxidative stress response in the cell. Aside from the

induction of numerous phase 2 enzymes that had roles in elimina-

ting ROS, Nrf2 also coordinated the transcriptional increases of

antioxidant genes such as NAD(P)H dehydrogenase, quinone

1(Nqo1, 2.4 fold in WT, 1.7 fold in PXR-KO), and kelch-like

ECH-associated protein 1 (Keap1, 1.4 fold in WT, 1.3 fold in

PXR-KO). In the WT model, we further observed the transcrip-

tional increases of glutathione peroxidase 2 (Gpx2, 3.5 fold),

glutathione reductase (Gsr, 3.1 fold), thioredoxin (Txn, 1.4 fold),

and DnaJ (Dnajb2, Dnajb6, Dnajb9, Dnajc2, 1.3-2 fold). In PXR-

KO mice, increased expression was observed for thioredoxin

reductase 1 (1.4 fold PXR-KO), heme oxygenase (Hmox1, 2.8

fold), flavin containing monooxygenase (Fmo1, 1.5 fold), perox-

iredoxin 1 (Prdx1, 1.4 fold), and multiple DnaJ (a2, b1, b4, b6, c1,

c2, c3, and c10, ,1.5 fold). Furthermore, evidence for pertur-

bations in the endoplasmic reticulum (ER) function was noted with

the altered expression of genes signaling ER stress. In particular,

we observed increased expression of eukaryotic translation

initiation factor 2-alpha kinase 3 (Eif2ak3 or Perk, 1.4 fold in

WT, 1.6 fold in PXR-KO), the ER stress sensor activating

transcription factor 6 (Atf6, 1.3 in WT, 1.8 fold in PXR-KO),

membrane-bound transcription factor peptidase, site 2 (Mbtps2 or

S2p, 1.4 fold in WT, 1.7 fold in PXR-KO), and Mapk8 (1.6 fold

WT, 1.7 fold in PXR-KO). These collective transcriptional

changes suggested that such ER stress was associated with an

Table 3. Comparison of differentially expressed genes
identified by the proposed method and SAM.

Wild type PXR-KO

Gene

Proposed

Method SAM

Proposed

Method SAM

Fatty acid metabolism

ACAA1 21.368 21.368 21.619 21.619

ACAA1B 21.337 21.337 21.642

ACAA2 21.318

ACAD8 21.545 21.545 21.622 21.485

ACADS 21.411 21.427

ACADSB 22.616 22.616 21.856

ACOX3 21.382 21.382

ACSL1 21.451 22.093 22.482 22.482

CPT1A 21.402 21.339

EHHADH 21.332

Cholesterol biosynthesis

DHCR7 1.692 1.692

FDFT1 2.498 1.862 1.345 1.345

FDPS 1.366

HMGCR 2.631 2.631 1.55

HMGCS1 10.515 10.515 2.985

IDI1 1.544 1.445 1.815 1.815

LSS 2.303 2.303

MVD 5.342 5.342

MVK 2.633 2.633 2.968 2.968

SQLE 1.945 1.945 1.242

Oxidative Stress

DNAJA2 1.439

DNAJB9 2.367 2.367 1.962 1.962

DNAJC2 1.965 1.965 1.533

FMO1 1.547 1.547

GPX2 3.464 3.464

GSR 3.065 3.065

HMOX1 2.848 2.848

KEAP1 1.445 1.445 1.268

NQO1 2.392 2.392 1.741 1.741

PRDX1 1.35

TXN 1.413 1.36

TXNRD1 1.423

Endoplasmic reticulum signaling

ATF4 1.64

ATF6 1.308 1.811 1.811

EIF2AK3 1.416 1.61 1.61

MAPK8 1.557 1.686

MBTPS2 1.369 1.663

Bile acid signaling

ABCB1 3.761 3.177 2.89 2.89

ABCC2 1.927 1.927

ABCC3 2.432 2.432 1.325 1.325

CYP7B1 21.876 21.876

CYP8B1 21.933 21.933

Wild type PXR-KO

Gene

Proposed

Method SAM

Proposed

Method SAM

SLCO1A2 11.494 7.756

Below are five biological processes and associated genes that were commonly
modulated in both WT and PXR-KO mice after 96 h treatment with CMP013.
Values in each row are averaged fold change of the gene across all five animals
in the treatment group. Fold change values of a gene may differ between the
proposed method and SAM if each method identifies a different Affymetrix
sequence corresponding to the same gene as significant.
doi:10.1371/journal.pone.0015595.t003

Table 3. Cont.
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accumulation of unfolded proteins. Cells responded by decreasing

the rate of protein translation to prevent the accumulation of

unfolded proteins (via the action of Perk and its target eukaryotic

initiation factor 2, eIF2) and activating regulated intramembrane

proteolysis [19] (via the action of Atf6 and S2p). There appears to

be an interesting relationship between ER stress and increased

cholesterol biosynthesis. Previously, Lee et. al. reported that ER

stress inhibited the synthesis of Insig-1 protein, which in turns

allowed Srebp proteolytic activation even in the presence of sterols

[20]. The authors used cultured cells transfected with human

Insig-1 and Insig-2 and herpes simplex virus Srebp2; here we were

observed a similar phenomenon in vivo.

Lastly, there were perturbations in bile acid homeostasis

associated with CMP013 exposure in both WT and PXR-KO

models. Alteration to biliary transport was noted with increased

expression of the canalicular transporters Abcb1 (or Mdr1, 3.8

fold), the basolateral transporter Abcc3 (or Mrp3, 2.4 fold), and

the basolateral uptake transporter Slco1a2 (or Oatp, 11 fold).

Increased expression of Mrp3 observed in the PXR-KO model

suggested that another nuclear receptor was compensating for

PXR in regulating bile acid homeostasis. In WT mice, we further

observed increased expression of the canalicular transporter Abcc2

(Mrp2, 1.9 fold). In PXR-KO mice, Cyp7b1, encoding oxysterol

7alpha-hydroxylase, which converted cholesterol to bile acids,

decreased 1.5 fold in expression. Cyp8b1, encoding the enzyme

sterol 12-alpha-hydroxylase, which controls the balance between

cholic acid and chenodeoxycholic acid secreted into the bile,

decreased 1.9 fold in expression. These transcriptional changes

indicated that CMP013 perturbed the transport and recycle of bile

acids and their conjugates in WT mice and affected the

biosynthesis and metabolism of bile acids in the knock-out strain.

Together, the changes were suggestive of a cholestatic response

induced by the compound [21].

Discussion

The present study describes a novel algorithm for analyzing

gene expression data and its application in studying the

mechanism of toxicity of a drug candidate. Results with the

proposed method were compared with analysis obtained with

SAM to identify strengths and weaknesses associated with the new

approach. First, a compelling aspect of our approach is that it is

straightforward in its assumptions and therefore would be

relatively easy for investigators to determine if the method is

suitable for their experiments or questions. The threshold proce-

dure in step 1 is simple and investigators can easily substitute an

alternate cutoff that constitutes biological significance in their

experiment. In the current study, by allowing a small cutoff on fold

change, we increase our sensitivity for subtle expression changes

because it is important, in toxicological assessment, to maintain a

low false negative rate, even at the expense of false positives. This

low threshold facilitates the discovery of signaling and regulatory

genes which can produce a large downstream effect with a small

change in expression. In fact, as most regulatory proteins are

regulated by post-translational modification, only a small tran-

scriptional increase is necessary to supplement the allosteric

changes of the proteins. As compared to results obtained with

SAM, the current method produced improved results in at least

two pathways. For example, none of the genes in the ER stress

response were found with SAM in WT mice. These genes have

relatively small fold change (1.25 – 1.5), but the combined increase

of multiple genes in this pathway strongly suggests that the ER

stress response is not insignificant. The second example involves

the cholesterol biosynthesis pathway in PXR-KO mice (Table 2).

The current method identifies six genes while SAM only identifies

three as differentially significant. Since pathway mapping by IPA is

determined by the Fisher’s Exact test, the presence or absence of

these few genes may affect whether the pathway is considered

activated. In looking at differentially expressed genes mapped to

canonical pathways (Table 3), we noted that the overlap between

results of the non-parametric method and SAM was much higher

(,70% as opposed to 45–55% in Figure 5). A possible explanation

for this is that genes with annotation tend to be those that have

been easily detected, resulting in their better characterization in

the literature, and this robustness to measurement is also reflected

in our study.

Inherent to the threshold approach in step 1 is that the current

procedure accounts only for directional changes and disregards

any differences in magnitude of changes as long as the fold change

cutoff is satisfied. In other words, the method does not use the level

of mRNA measured to determine if one pathway is more strongly

up or down regulated than others. Our rationale for this is two

fold. First, since the levels of mRNA fluctuate rapidly, it is usually

not possible to make an accurate determination of the level of

induction based on measurements at limited time points. That is,

beyond a threshold of fold change used to signify biological

difference, information on the magnitude of expression change is

likely to be highly dependent on the exact time of measurement

and therefore is not a reliable indicator of relative level of pathway

activation. Second, even when such ranking of pathway activation

can be determined, this information does not always improve the

overall understanding of the underlying biology since only

qualitative information about pathway modulation, i.e., whether

a pathway is up- or down-regulated, is transferable across

experiments. Alternative to the magnitude of change, we believe

that the statistical significance of modulation can be more reliably

estimated based on the consistency and similarity of responses

from animals in the same cohort. Accordingly, perhaps a

disadvantage of this method is that it necessitates at least five

animals per treatment group and does not perform well with small

group sizes. Similar to SAM and many other non-parametric

statistics, the null distribution is created by permuting sample

labels. Given an experimental design of two groups, sample

permutation of group size of four produces maximally only 70

different possibilities, and this number, from our experience, is too

small to generate a sufficiently informative null distribution for

FDR estimation. In the drug development setting, the requirement

of group size larger than three makes the method somewhat

impractical for many screening studies where the group size may

be limited to three, given the large number of drug candidates and

the intent for these studies. However, for most investigational and

mechanism identification studies, the number of animals per group

tends to be larger and thus more suitable for this method.

Finally, perhaps another undesirable aspect of the threshold

procedure is that it does not deal well with sequences which show

increased and decreased expression in equal number of animals.

In fact, we have resolved these situations by pre-filtering out all

such genes from consideration as differentially expressed (Mate-

rials & Methods section). With methods in which absolute levels of

expression are evaluated, it is possible that the genes could be

considered differentially expressed if the magnitude of change in

one direction far exceeds that in the other direction. In fact,

looking at genes that were only identified by SAM, we found

approximately 100 genes falling in this category (extreme ends of

Figure 5DF). These genes in vehicle-treated animals showed

mixed increased and decreased expression relative in the group

mean, but the genes were identified as differentially expressed

because the inter-group difference far exceeds intra-group
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difference. We understand that failure to discover these genes is

perhaps a drawback of the current method. However, given the

uncertainty associated with magnitude of expression changes as

discussed above, it is unlikely that all of these genes are associated

with true signals. It is noteworthy to mention that if such genes

were associated with a true signal, one may still be able to realize

the associated biological response by the expression of other genes

involved in the same pathway. We therefore feel that the

elimination of such genes does not necessarily impact our overall

interpretation of the experiment. Our best recommendation in

these situations would be to apply our analysis method in

conjunction with an algorithm similar to SAM, i.e. using two

methods that have complementary approaches, so that one can

obtain a clear picture of the overall transcriptional response.

In summary, we describe a novel non-parametric statistical

method for the analysis of gene expression data for studies in

which conventional variance-based analysis methods result in

suboptimal results. Indeed, the benefit of our method is

substantiated for datasets from preclinical or clinical studies where

subject-to-subject variations are relatively large. The method is

straightforward in its assumptions and allows investigators to

specify criteria for both biological significance and statistical

significance. In the mouse-knockout example described here, the

application of this method allowed us to unravel the molecular

mechanisms associated with hepatic toxicities induced by an

inhibitor of b-secretase in the presence and absence of the nuclear

hormone receptor PXR.
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