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Abstract: In recent years, interest in scene classification of different indoor-outdoor scene images

has increased due to major developments in visual sensor techniques. Scene classification has been

demonstrated to be an efficient method for environmental observations but it is a challenging task

considering the complexity of multiple objects in scenery images. These images include a combination

of different properties and objects i.e., (color, text, and regions) and they are classified on the basis of

optimal features. In this paper, an efficient multiclass objects categorization method is proposed for

the indoor-outdoor scene classification of scenery images using benchmark datasets. We illustrate two

improved methods, fuzzy c-mean and mean shift algorithms, which infer multiple object segmentation

in complex images. Multiple object categorization is achieved through multiple kernel learning (MKL),

which considers local descriptors and signatures of regions. The relations between multiple objects

are then examined by intersection over union algorithm. Finally, scene classification is achieved by

using Multi-class Logistic Regression (McLR). Experimental evaluation demonstrated that our scene

classification method is superior compared to other conventional methods, especially when dealing

with complex images. Our system should be applicable in various domains such as drone targeting,

autonomous driving, Global positioning systems, robotics and tourist guide applications.

Keywords: adaptive weighted median filter; fuzzy c-mean segmentation; logistic regression; multiple

objects categorization; multiple kernel learning; scene classification; visual sensors

1. Introduction

Scene classification uses visual sensor technologies to explore the semantically significant

information contained inside an image. Scene classification is the process of assigning categorizing

labels to whole scenes based on the visual sensory data of the scene and the structure and relationships

between multiple objects presented in the images. Sensors identify two broad categories (i.e., indoor and

outdoor) to generally classify different scenes and these are further divided into different sub-categories

based on the categories and labels pertaining to the specific multiple objects presented in the images.

Visual sensors use the different properties of objects such as their local and global features to classify

the whole scene. Scenery images comprise a wide variety of knowledge about the behavior of various

objects which have visible features such as borders, corners, and point clouds and these enable us to

learn, modify, consider alternative solutions and create new techniques to examine complex scenes.

Scene interpretation [1,2] should be capable of accommodating changes in the environment being

observed, identifying the vital characteristics of various objects and defining relationships among

various objects in order to represent the actual scene behaviors [3,4].
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Such scene information needs consistent and accurate object classification that intends to

distinguish the images by evaluating semantic object properties. Object classification has become an

extensively adopted field in various applications such as smart monitoring and image fetching. It also

offers supplemental knowledge in the fields of activity recognition. Apart from object classification

which only concentrates on limited parts of an image, scene classification is the next step that leads

to scene recognition and labelling based on such limited object information [5,6]. Many scenes are

comprised of complicated object relationships and, because variations among scenes can be quite subtle,

accurate scene classification is a challenging task in the area of pattern matching and recognition.

The main function of scene classification is to recognize all the objects presented in the scene

and to describe semantics for the accurate labeling of the whole scene. Researchers and scientists

have produced a lot of work on multiple object categorization [7] for scene classification but there are

still several challenges that can affect the accuracy of object categorization and recognition such as

changes in illumination, the size of objects, view orientation, and occlusion between objects in complex

images. Several articles [8] used a place category strategy that presents a more detailed list of the

objects, summary of their spatial correlations and other static features to discriminate scenes, which

affect recognition accuracy. Therefore, we propose a novel methodology, which presents the combined

effects of similar region clustering, textures of objects, local/global descriptors and class distribution

probability estimation. Our novel methodology produces significant performance effects compared to

existing methods.

To overcome the challenges encountered in scene classification, we propose a multiple objects

categorization-based method to perform scene classification of scenery images from benchmark datasets.

As the first step, the proposed system preprocesses the images. We achieve efficient segmentation using

two segmentation algorithms, (i) Modified Fast Super-Pixel Based Fuzzy C-Mean Segmentation (MFCS)

image segmentation and (ii) Mean Shift Segmentation (MSS). In the second step the results of two

algorithms are compared and analyzed. In the third step, we achieve multiple object categorization by

evaluating the multiple regions detector, matching the signatures and local descriptors of the regions of

images. Kernel function is used to achieve an object similarity score. Finally, the Estimated Intersection

over Union (EIOU) and Multi-class Logistic Regression (McLR) are used for scene classification over

challenging datasets. The main contributions of our work are as follows.

• To the best of our knowledge, this is the first time that signatures of objects, local descriptors and

multiple kernel learning for objects categorization and multi-class logistic regression for scene

classification have been introduced.

• Fusing of Geometric and SIFT feature descriptors for objects and scene classification.

• Accurate multiple region extraction and label indexing of complex scene datasets.

• Significant improvement in the accuracy of object and scene classification with less computational

time compared to other state-of-the-art methods.

Related work is discussed in Section 2. Section 3 illustrates and details the methodology of our

proposed scene classification system. Section 4 presents an analysis of our experimental results and a

detailed description of the datasets. Section 5 concludes this paper.

2. Related Work

Exploring multiple object locations, their scale, view orientation and the impact of scenery images

are challenging tasks in the visual sensors [9,10] field. We have studied the literature in several domains

such as multi-object categorization, object segmentation as well as labeling and scene classification in

order to establish proper parameters and metrices for our proposed method.

2.1. Object Segmentation

Image segmentation consists of transforming an image into a set of pixel regions represented by a

mask or labels in an image. This transformation of an image into a set of pixels (a segment) allows
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the processing of important segments only. There are numerous techniques for the segmentation of

the objects. In Sezgin et al. [11] categorized thresholding techniques into the following groups:

(a) a histogram shape-based technique, (b) a clustering-based technique, (c) an entropy-based

technique, (d) an object attribute-based technique, (e) a spatial method, and (f) thresholding methods.

In Sujji et al. [12] discussed threshold techniques where they wanted to segment an image to detect the

contours of tumors in the brain. In Bi et al. [13] proposed a segmentation method according to the

fusion of motion, color and stereo cues of objects. In Yan et al. [14] proposed k-means clustering based

on color image enhancement for the segmentation of cells. They computed the gray value components

of R, G, and B distributions to find the mean value of these distributions. Additionally, they used

YCbCr color space to represent the three clusters, achieved by dividing the improved color images.

In Kamdi et al. [15] explained region growing algorithms for segmentation by comparing advantages

and disadvantages. Moreover, they divided the image into regions of similar pixels by mean and by

min-max techniques. In K-means clustering, the number of k segments is defined to partition the

image into k groups. K groups are formed based on the similarity of color intensity or on the minimum

variance from the centroid to the target pixel.

2.2. Single/Multiple Object Categorization

The object categorization field opens a lot of challenges for researchers in the form of finding the

location of each object, identifying and describing the interactions among objects, identifying occluding

objects, and delineating groups for meaningful outcomes. In Wong et al. [16] proposed an algorithm for

detecting an object online and a classification of the various objects in the image. They suggested fast

tracking all the objects in the scene via kernel learning instead of depending on prior knowledge of the

specific object. Their implementation was performed on a Neovision2 tower benchmark dataset, which

was a biologically inspired implementation that determined the shape and the movement of an object.

In Sumbul et al. [17] devised the methods which included the attention of a multisource region network

that calculated the pre-source feature illustration and assigned attention scores to member regions

tested around the demanded object positions by utilizing their representations. They used multispectral

techniques that achieved accuracies up to 64.2%. In Martin et al. [18] designed a Bayesian inference

model to examine prior knowledge of each object for multiple object tracking. Then, it updated the

possible mass function for closer object discrimination and applied a rate of convergence for correct

classification. In Lecumberry et al. [19] computed a shape similarity measure and the steepest descent

minimization method for modeling each object’s shape iteration. They used energy optimization for

the automatic classification of multiple objects.

2.3. Scene Classification

Similarly, scene classification is a domain that provides new directions such as complicated

scene contents/labels due to major ambiguities [20], similar objects properties among different scenes,

and multi-instance learning in confused scenes. In Shi et al. [21] proposed a context-based saliency

detection algorithm that marks saliency regions in images. They used a CNN model to construct

feature points tested on five datasets, i.e., LabelMe, UIUC-Sports, Scene-15, MIT67, and SUN which

produced effective results only with indoor scenes. In Zhang et al. [22] proposed the MVFL-VC method

along with labeled object categorization algorithms. On the other hand, a mapping function was used

to find the correlation with their labels in images. In Zhou et al. [23] proposed a simple method for

indoor-outdoor scene classification, which included a bag-of-features model to construct multiple

resolution images and highlighted it with dense regions. Then, partition modalities were used to

produce better results for scene classification.

In Hayat et al. [24] introduced an indoor scene categorization method based on large-scale spatial

layout, scale variations and rich feature descriptors for multiple distinct objects. In addition, tailored

feature representations were learned by a Convolution Neural Network to effectively adopt large-scale

classification. In Zou et al. [25] proposed an effective scene classification approach where fusion
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of local/global spatial features were adopted as collaborative representation. These features were

processed by multiscale completed local binary patterns, Gabor features and SIFT patterns. Finally,

they implemented Kernel collaborative classification for scene discrimination. In Ismail et al. [26]

proposed a method consisting of two steps for indoor scene classification. Initially, spatial layout

estimation was performed to estimate three orthogonal vanishing points and then the relationships

between scene elements were represented by a layout estimation method to retrieve a high scene

classification score.

3. Overview of Solution Framework

In this section, we propose a novel scene classification approach along with object categorization

that accurately recognizes and labels all target objects presented in the scene. The proposed scene

classification system starts with preprocessing and clearing unwanted information such as noise contents

and with the normalization of object sizes for all images in the datasets. Then, the extracted data are

applied to accurate object segmentation based on two distinct segmentation algorithms: modified fast

super-pixel based fuzzy c-means clustering and mean shift segmentation algorithms. Multiple objects

categorization is performed by considering multiple kernel learning. Finally, the proposed system

achieves scene classification by using the EIOU score and McLR. Figure 1 presents an overview of the

proposed scene classification system.

 

 

,
= − 3 3 5	 , ,		 , ,

Figure 1. Overview of the proposed scene classification system using Multi-class Logistic Regression.

3.1. Preprocessing and Normalization

During preprocessing, images are captured under different conditions such as various lights and

environments which produce noise and high intensity values in the images (see Figure 2a). Therefore,

to solve these issues, an Adaptive Weighted Median Filter (AWMF) [27] is applied. Such filters use an

M×N sliding window which slides over all the images. It uses the local statistic weights of the image

for the filtering process. The relative weights Wi, j of the pixels (i, j) are calculated as:

Wi, j = W0 −
aDV2

xy

Uxy
(1)

where W0 indicates the weight of the central pixel of the frame of the filter (i.e., 3× 3 or 5×5), “a” is the

scaling factor used for the scale of frame of the filter (i.e., 3 or 5) and D is Euclidean distance between

pixels. Ux,y and Vx,y are the mean and variance of the M×N sliding window respectively. Ux,y and

Vx,y are achieved as follows:

Ux,y =
1

MN

M−1
∑

i=0

N−1
∑

j=0

xi, j (2)
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Vx,y =
1

MN
− 1

M−1
∑

i=0

N−1
∑

j=0

xi, j −Ui, j (3)

Figure 2 demonstrates the preprocessing steps which include both noisy images and filtered images.

 

	 , = 1 ,
, = 1 − 1 , − ,

 
(a) noisy images 

 
(b) filtered images 

,
, = | − |

Figure 2. Some preprocessing steps include, (a) depicting noisy images and (b) filtering noise on images

over the MSRC dataset.

3.2. Single/Multiple Object Segmentation

This section provides a detailed description of single/multiple object segmentation. Object

segmentation is a process in which an image is split into multiple regions. Segmentation can be

achieved according to similarities in pixels or colors in a scene. As different scenes contain multiple

regions, the delineation or demarcation of these regions through segmentation is a significant but

challenging process in scene classification. Accuracy in segmentation greatly influences accuracy and

consistency in scene classification. Images are segmented into multiple regions which are labeled with

different colors. To process object segmentation, two robust segmentation methods are considered as,

(i) Modified fast super-pixel based fuzzy c-means clustering image segmentation (MFCS) and (ii) mean

shift segmentation (MSS).

3.2.1. Modified Fast Super-pixel Based Fuzzy C-Mean Segmentation (MFCS)

Using the MFCS clustering algorithm, we achieved improved color image segmentation results

compared to conventional FCM [28] methods. At the start of the process, overlapping elements are

identified and pixels are taken as data points similar to the clustering approach. Then, each pixel that

reveals fuzzy logic is considered to belong to more than one cluster rather than to just one defined

cluster. The MFCS achieves the segmentation of the image by minimizing the objective function during

iterations. In addition, these elements restrict optimal clusters of images by minimizing the weights

within the clusters through a squared error objective function JM(U, V) which is formulated as:

JM(U, V) =
c

∑

i=1

n
∑

j=1

ur
i j|x j − vi|

2 (4)

where c represents the number of clusters, n is the data points having r any real numbers in ith cluster

which show the fuzziness of the resulting cluster, ur
i j

represents the membership of x j pixels of data in

the ith cluster and vi which shows the cluster center:

ui j =
1

∑c
k=1

(
∣

∣

∣x j−vi

∣

∣

∣

∣

∣

∣x j−vk

∣

∣

∣

2 2

)
1

r−1

(5)
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ui j ∈ [0, 1], for i = [1, . . . , c] (6)

vi =

∑n
j=1 ur

i j
x j

∑n
j=1 ur

i j

(7)

JM(U, V) is used to measure the distance between the corresponding pixel and the cluster center.

The corresponding pixel is assigned with high value of membership when the distance between the

pixel and the cluster center is minimum. The conventional FCM algorithm works on the local spatial

information of pixels in images such that all neighboring regions of pixels cause high computation

complexity due to analysis of spatial values at each iteration. Therefore, the proposed algorithm uses

super pixel-based pre-segmentation [29] and density-based spatial clustering with noise (DBSCN) to

decrease the computational complexity of Conventional FCM. Figure 3 presents the results of super

pixel-based pre-segmentation. The proposed method achieved the segmentation of the color image in

a few seconds on the MatLab platform running on an Intel(R) CPU 2.5 GHz core-i5 CPU 2.5 GHz and 8

GB of RAM (Intel, Santa Clara, CA, USA).

 

= 1∑ | − || − | 2∈ 0,1 , for	 = 1, … ,= ∑∑  ,

 

= , … , = , … ,

	 ,

Figure 3. A few examples of super pixel-based pre-segmentation.

The set of data points are shown as xi = x1, . . . , xn, and vi = v1, . . . , vc shows the set of cluster

centers and r (any real numbers) shows the fuzziness of resulting clusters. The proposed MFCS,

Algorithm 1, is carried out in steps, and the pseudo code of the MFCS algorithm is given as follows:

Algorithm 1. Pseudo code of the MFCM Algorithm

1: Initialize the clusters c randomly

2: calculate the centers vi of clusters c

3: while minimum value of objective function JM(U, V) do

4: for each data point in an image do

5: Step 1. Measure the membership ui j of given data point to clusters c

6: Step 2. Update the cluster centers vi

7: end for

8: end while

Figure 4 presents the results of the proposed MFCS algorithm over MSRC dataset.
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Figure 4. Single and multiple objects segmentation using MFCS. The 1st row shows the original while

the 2nd row shows the segmentation results.
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3.2.2. Mean Shift-Based Segmentation (MSS)

The proposed system achieves the segmentation of an image in multiple regions using the Mean

Shift Segmentation [30] algorithm. The MSS algorithm searches for the highest concentration of similar

pixels space in the sample image and estimates the local density of pixels. MSS then performs density

estimation iteratively and finds the minimum local value for density [31] so that all pixels having local

density near to local minimum density are easily shifted to clusters of similar attributes (see Figure 5).

This is a non-parametric clustering technique which does not depend on any prior knowledge of the

objects or picture elements. Therefore, it can find cluster centers quickly and perform efficient object

segmentation. Meanwhile, the proposed system uses kernel density estimation to find the minimum

local value of density. Such kernel density kE(x) of window function is estimated at D dimensional

space SD for n pixels x j, j = 1, 2, 3, . . . , n at a location of x can be determined as:

kE(x) =
1

n

n
∑

j=1

1

hD
n

k













x− x j

hx j













(8)

where hx j
is the width of kernel density (window function) which can be determined as:

h
(

x j

)

= h×
(

1− d
(

x j

))

(9)

where d
(

x j

)

is probability density function of given pixels space and h is a constant. Kernel density

(window function) K(x) satisfies the given condition as:

∫

s
k(x)dx = 1 (10)

∫

SD
xk(x)dx = 0 (11)

 

= 	1, 2, 3, . . . , 	
= 1 1 −

= 1 −
= 1

= 0

 

 

Figure 5. Results of Mean shift-based segmentation. The 1st row shows the original while the 2nd row

shows the segmentation results.

Thus, the proposed system analyses the results of MFCS and MSS algorithms with respect to

segmentation accuracies along with ground truths and computation time efficiency. MFSC takes

less computation time and produces clearer results compared to MSS. MFCS performance is more

significant and better than MSS, therefore we used MFCS results for further experiments. Figure 6

indicates the comparison between the MFCS and MSS. The segmentation accuracies are evaluated by

comparing the results with given ground truths of all classes from the dataset. Evaluation is carried

out on the basis of pixels of segmented objects and ground truths. Table 1 indicates segmented object

accuracies after comparing them with the ground truth labels.
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Table 1. Objects Segmentation Accuracy of MFCS Algorithm over MSRC Dataset.

Classes fl bo sh do ca co Bi

Accuracy (%) 92.3 88.6 96.4 94.6 82.7 94 87

Classes ro bd gr ch du bu Sk

Accuracy (%) 83.3 86.8 89.3 79.9 88.4 84.8 87

Classes tr si ct wt bc bk

Accuracy (%) 84.4 78.2 87.9 92 79.8 78

Mean Segmentation Accuracy = 86.77 %

fl = flower; bo = boat; sh = sheep; do = dog; ca = car; co = cow; bi = bird; ro = road; bd = body; gr = grass; ch = chair;
du = duck; bu = building; sk = sky; tr = tree; si = sign; ct = cat; wt =water; bc = bicycle; bk = book.

 

 

 

Figure 6. Comparison of objects segmentation examples images; (a) original images, (b) ground truth

(c) MFCS results and (d) MSS results over MSRC dataset.

On the other hand, Tables 2 and 3 define the total computational time of the proposed method

such as MFCS and MSS algorithms over MSRC and Corel-10k datasets, respectively.

Table 2. Comparison of Computation Time of Objects Segmentation Algorithms over MSRC Dataset.

Class MFCS MSS Class MFCS MSS

fl 76.5 78.2 ch 84.6 98.7
bo 47.4 47.8 bu 92.3 93.4
sh 65.9 71.2 sk 32.7 35.5
do 35.2 43.5 tr 54.5 61.8
ca 45.8 46.1 si 46.7 47.0
co 97.5 101.5 ct 63.1 65.2
bi 41.1 43.7 wt 29.8 33.5
ro 52.6 53.1 bc 36.2 41.8
bd 39.2 42.9 bk 54.7 52.1
gr 51.4 52.2 du 172.9 201.5

Mean computational time of the MFCS algorithm = 61.00 s
Mean computational time of the MSS algorithm = 65.53 s
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Table 3. Comparison of Computation Time for Object Segmentation Algorithms over Corel-10k Dataset.

Class MFCS MSS Class MFCS MSS

rh 112.0 131.2 wo 130.6 149.5
dr 130.1 143.5 do 129.1 148.2
ca 91.7 105.0 bo 150 168.9
wa 87.4 99.3 fl 114.5 126.1
bu 171.0 188.9 be 145.8 166.0
el 96.5 114.2 sk 89.0 104.5
ai 150.2 170.3 la 97.5 113.2
tr 94.1 105.9 ct 122.9 143.9
ti 133.2 156.3 bd 131.2 157.0
bi 170.9 199.2 fi 135.0 162.7

Mean computational time of the MFCS algorithm = 124.13 s
Mean computational time of the MSS algorithm = 142.69 s

rh = rhino; dr = deer; ca = car; wa = water; bu = building; el = elephant; ai = airplane; tr = tree; ti = tiger; bi = bike;
wo =wolf; do = dog; bo = boat; fl = flower; be = beer; sk = sky; la = land; ct = cat; bd = bird; fi = fish.

3.3. Object Categorization

In this section, the proposed system used the Multiple Kernel Learning (MKL) method [32]

to achieve multiple object categorization based on multiple regions and signatures of the regions

in complex scenes. In object categorization, an image j (containing clusters c of multiple objects

represented by different colors obtained by the segmentation process) is initially set for local descriptor

D j (i.e., SIFT, HOG) and defines the region R of the image j. The signature x j is computed using a

function fR from local descriptors D j as fR : D j → x j . This conversion of fR is mathematically derived

as follows:

Cenc =
1

|c|

∑

j

∑

i
Dic j (12)

µc =
1

|c|

∑

j

∑

i

(

Dic j −Cenc

)(

Dic j −Cenc

)⊤
(13)

µ j,c =
∑

i

(

Dic j −Cenc

)(

Dic j −Cenc

)⊤
− µc (14)

where Cenc is used for the center of clusters c, |c| represents the total descriptors in the clusters c of all

the images of a class, descriptors of image j that belong to cluster c are shown as Dic j and µc represents

the mean of centered descriptors that belong to clusters c. µ j,c represents the computation of the

signature of an image j. Then µ j,c is converted into a vector vec j,C. The signature vector x j of image j

for all clusters c is computed by the concatenation of all vec j,C

vec j =
(

vec j,1 . . . vec j,C

)

(15)

Figure 7 indicates the results of HOG and SIFT descriptors. These descriptors of defined region R

are operated using a deformable parts model [33]. It produces multiple regions by drawing rectangular

bounding boxes [34] over the images. The proposed system only uses bounding box regions with

maximum scores given by the detector. These rectangular bounding boxes are used to indicate the

regions of different foreground objects.
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Figure 7. Local feature descriptor, (a) original images, (b) HOG feature extraction and (c) SIFT feature

extraction results over MSRC dataset. The 1st row shows the locations while the 2nd row shows the

scale and orientation of key points.

After defining accurate regions R of objects within the image, similarity based on the signature

(extracted vectors) of this region R in i and j images is measured using kernel function kR as:

kR(i, j) =
〈

fR(DRi), fR
(

DRj

)〉

(16)

However, an image holds multiple regions to achieve similarity over the entire image. Therefore,

the proposed system computes similarity as:

k(i, j) =
∑

R

ωRkR(i, j) (17)

where ωR is associated with weights of multiple regions. Figure 8 illustrates the objects categorization

method using multiple kernel learning.

 

, = 〈 , 〉
, = ω ,

ω

 

 

Figure 8. Results of object categorization using multiple kernel learning.

3.4. Scene Classification

After multiple object categorization, the labeled information is further used for scene classification.

This includes two significant approaches, (1) Expected Intersection over Union (EIOU) [35] score and

(2) Multi-class Logistic Regression (McLR) [36]. EIOU is measured for the foreground objects and

McLR is used to solve the multi-class classification problem which recognizes scenes in the images.
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3.4.1. Expected Intersection over Union score (EIOU)

The EIOU score is used to indicate how accurately we have predicted the objects and the regions

of predicted objects. The EIOU score is given to all foreground objects in the images of all scenes

by the proposed system and the scene is classified based on the EIOU of the foreground objects. To

examine the EIOU function, we used the multiple objects y j, their locations and the predicted objects

y j. The Expected Intersection over Union UEIOU are achieved as follows:

UEIOU =
1

C

C
∑

C=1

U
(C)
iou

(y, y) (18)

where C is the number of classes and U
(C)
iou

is defined as:

U
(C)
iou

(y, y) =

∑

j∈V 1{y j−k∧y j−C}
∑

j∈V 1{y j=k∨y j=C}
(19)

where y jǫ1, . . . , C ∀ j ∈ V andV shows all pixels set in all images. 1{y j−k∧y j−C} represents the indicator

function which gives the 1 if
{

y j − k∧ y j −C
}

is true otherwise it gives 0. The ratio of the sum of pixels

represents the value of U
(C)
iou

as the EIOU score of objects. The computed EIOU score is shown over the

objects as in Figure 9.

 

= 1 ,
	 , = ∑ 1 ∧∈∑ 1 ∨∈1, … . . , 	∀	 ∈ 1 ∧− ∧ −

 

= 	1,2, …= , , … , ,

Figure 9. Demonstration of EIOU score over multiple objects at MSRC dataset.

3.4.2. Multi-Class Logistic Regression (McLR)

McLR is used for the classification of a whole scene based on multiple objects and their features.

If there are multiple classes, McLR predicts the probability of given class x belongs to jth(i.e., all classes

of datasets). During McLR, a classifier is designed to distinguish multiple c = 1, 2, . . .K classes having

L labeled training images using the feature vector as input. The L labels of all training images are

TL =
{

(x1, z1), . . . , (xL, zL)
}

and the posterior class distribution (PCD) is achieved for the estimation of

the ω̂ logistic regressor. Figure 10 shows the systematic flow of multi-class logistic regression.

 

= 1 ,
	 , = ∑ 1 ∧∈∑ 1 ∨∈1, … . . , 	∀	 ∈ 1 ∧− ∧ −

= 	1,2, …= , , … , ,

Figure 10. Flow architecture of multi-class logistic regression.
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The McLR is achieved as follows:

P
(

z1 = c
∣

∣

∣x j, w
)

=
exp

(

w(c)x j

)

∑K
c=1 exp

(

w(c)x j

) (20)

where w(c) is used as a logistic regressor for class c, the feature vectors are shown as x =
(

x1, . . . , x j

)

and

set logistic regressors are shown as w(c) =
[

w
(c)
1

, . . . , w
(c)
K

]T

for class c. The posterior class probability

of regressor w is achieved as follows:

P(w|zL, xL)αp(zL|xL, w)p(w|xL) (21)

During testing, the posterior class probabilities for all feature vectors in the classes c are determined

by entering the regressor into the McLR model. The class label of a feature vector is achieved by the

index of the maximum posterior probability of the given test vector. The results of scene classification

using McLR are shown in Figures 11 and 12.
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Figure 11. Some examples of object classification in outdoor scenes using the McLR algorithm over the

MSRC object dataset.
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Figure 12. Some examples of indoor scene classification using the McLR algorithm over the CVPR 67

indoor scene dataset.

4. Experimental Setup and Evaluation

In this section, we present details of the experimental setup and evaluation. Object segmentation

accuracy and computation time are used for performance evaluation of the proposed system for

challenging indoor and outdoor datasets. We used Matlab to carry-out the experiments with a hardware

system using an Intel Core i3 CPU of 2.5 GHz and 8 GB of RAM. To evaluate the performance of the

proposed scene classification system, we used three different datasets: MSRC [37], Corel-10k [38] and

CVPR 67 [39] datasets. For the training/testing of datasets, we used a leave-one-out-cross validation

method. For the training and testing set, datasets are split into 1 and n-1 observation sets for testing

and training respectively. Then, prediction weights are observed for each observation set. All the
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details of each dataset, their experimental results and comparisons of the proposed scene classification

method with other state-of-the-art scene classification methods are given below.

4.1. Dataset Descriptions

4.1.1. MSRC Dataset

In the MSRC dataset, we are dealing with 591 scene images. We used twenty classes for the

experimental evaluation: flower, boat, sheep, dog, car, chair, cow, bird, road, body, grass, building, sky,

tree, sign, cat, water, bicycle, book and duck. Figure 13 shows example images from the MSRC dataset.

Such dataset is comprised of various complicated scene images with the resolution of 213 × 320 having

various objects.

 

 

Figure 13. Example images from the MSRC dataset.

4.1.2. Corel-10k Dataset

The Corel-10k dataset contains 10,000 scene images, which include multiple classes and have

challenging images of different sizes and backgrounds. We performed experimental evaluations

over twenty classes which included rhino, deer, car, water, building, elephant, plane, tree, tiger, bike,

wolf, dog, boat, flower, bear, sky, land, cat, bird and fish. Figure 14 presents example images of the

Corel-10k dataset.

 

 

Figure 14. Example images from the Corel-10k dataset.

4.1.3. CVPR 67 indoor Scene Dataset

CVPR 67 dataset contains 67 indoor scene classes and 15,620 total images, each class consisting of

100 scene images. We performed experimental evaluation on all classes of indoor scenes (i.e., kitchen,

bedroom, bathroom, corridor, elevator, locker-room, waiting-room, dining-room, game-room and

garage). Figure 15 presents some example images of the CVPR 67 indoor scene dataset.
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Figure 15. Example images from the CVPR 67 indoor scene dataset.

4.2. Experimental Results

For experiments, mean classification accuracy and comparison with existing methods were

investigated by considering the indoor-outdoor scenes of all images. The proposed system achieved

sufficiently informative enough results due to robust object segmentation techniques (i.e., MFCS and

MSS) which reflect better performance in scene classification.

4.2.1. Experiment 1: Using the MSRC Dataset

Considering the MSRC dataset, the proposed system was applied for scene classification accuracy.

Table 4 shows that the major scene classes of the MSRC dataset produce remarkable performance

in terms of accuracy. Table 5 summarizes the comparison of classification accuracy of the proposed

method and it shows significantly better results (88.75%) than all other state-of-the-art methods.

4.2.2. Experiment 2: Using the Corel-10k Dataset

During experiments using the Corel-10k dataset, the proposed method is used with 20 different

scenes and it obtained the highest classification accuracy score (85.75%) as shown in Table 6. Similarly,

Table 7 shows that the proposed method has significantly higher recognition accuracy than the other

state-of the-art methods such as VLAD, TNNV and LLC.

4.2.3. Experiment 3: Using the CVPR 67 Indoor Scene Dataset

In the experimental evaluation using the CVPR 67 indoor scene data, the proposed method

achieved scene classification accuracy of (80.02%) over 10 different classes of the CVPR 67 indoor scene

dataset. The accuracy of the CVPR 67 dataset is less than the MSRC and the Corel-10k dataset caused

by multiple occluded objects in different real-world scenes used in the dataset. When an object is

hidden behind other objects, it is difficult to recognize it due to this occlusion effect. Table 8 shows the

confusion matrix of classification using the CVPR 67 dataset.
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Table 4. Confusion matrix of accuracy scores for object classification in outdoor scenes for the proposed approach and the MSRC dataset.

fl bo sh do ca co bi ro bd gr ch du bu sk tr si ct wt bc Bk

fl 0.95 0 0 0 0 0 0.1 0 0 0.4 0 0 0 0 0.1 0 0 0 0 0

bo 0 0.89 0 0 0 0 0.1 0 0 0 0 0.5 0 0 0 0.1 0 0.4 0 0

sh 0 0 0.92 0.2 0 0.5 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0

do 0 0 0.2 0.89 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0

ca 0 0.2 0 0 0.84 0 0.7 0.5 0 0 0 0 0.3 0 0 0 0 0 0 0

co 0 0 0.7 0 0 0.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bi 0 0 0 0 0 0 0.90 0 0 0 0 0 0 0.9 0 0 0 0.1 0 0

ro 0 0 0 0 0 0 0 0.87 0 0 0 0 0 0 0 0 0 0 0 0

bd 0 0 0 0 0.2 0 0 0 0.89 0.1 0 0 0.3 0 0 0.2 0 0 0.1 0.2

gr 0 0 0 0 0 0 0 0 0 0.91 0 0 0 0.2 0.9 0 0 0 0 0

ch 0 0 0 0 0.1 0 0 0.3 0 0 0.88 0 0.4 0 0 0.2 0 0 0 0.2

du 0 0 0 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0

bu 0 0 0 0 0 0 0 0 0 0.2 0 0 0.88 0 0 0 0 0.9 0 0.1

sk 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.87 0 0 0 0.9 0 0.1

tr 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0.88 0 0 0 0 0

si 0 0 0 0 0 0 0 0.3 0 0 0 0 0.4 0 0 0.89 0 0 0 0.4

ct 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0.2 0.88 0 0 0.1

wt 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0.90 0 0

bc 0 0 0 0 0.6 0 0 0.1 0 0 0 0 0.2 0 0 0.2 0 0 0.89 0

bk 0.1 0 0 0 0 0 0 0 0 0 0.5 0 0.2 0 0 0.8 0 0 0 0.84

fl = flower; bo = boat; sh = sheep; do = dog; ca = car; co = cow; bi = bird; ro = road; bd = body; gr = grass; ch = chair; du = duck; bu = building; sk = sky; tr = tree; si = sign; ct = cat; wt =
water; bc = bicycle; bk = book.

Table 5. Comparison of the proposed method with other state-of-the art methods using the MSRC dataset.

Methods Classification Accuracy (%)

Bayesian model [40] 82.9
Scene classification using machine performance [41] 81.0

Scene classification with weighted method [42] 84.7
Proposed Method 88.75
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Table 6. Confusion matrix of accuracy for object classification of outdoor scenes for the proposed approach using the Corel-10k dataset.

rh de ca wt bu el ai tr ti bi wl do bo fl be sk la ct bd fi

rh 0.87 0 0 0 0 0.9 0 0 0.2 0 0.1 0.1 0 0 0 0 0 0 0 0
de 0.3 0.76 0 0 0 0.5 0 0 0.8 0 0.4 0.2 0 0 0 0 0 0.2 0 0
ca 0 0 0.83 0 0.7 0 0.6 0 0 0 0 0 0.4 0 0 0 0 0 0 0
wt 0 0 0 0.91 0.1 0 0 0 0 0 0 0 0.1 0 0 0.7 0 0 0 0
bu 0 0 0 0.3 0.84 0 0.7 0 0 0.3 0 0 0.4 0 0 0 0 0 0 0
el 0.5 0 0 0 0 0.93 0 0 0.1 0 0.1 0 0 0 0 0 0 0 0 0
ai 0 0 0.3 0 0.5 0 0.90 0 0 0 0 0 0.2 0 0 0 0 0 0 0
tr 0 0 0 0.2 0 0 0 0.91 0 0 0 0 0 0.6 0 0.1 0 0 0 0
ti 0.1 0 0.2 0 0 0.3 0 0 0.89 0 0.4 0 0 0 0 0 0 0.1 0 0
bi 0 0 0.9 0 0.2 0 0.4 0 0 0.79 0 0 0.6 0 0 0 0 0 0 0
wl 0 0.1 0 0 0 0.1 0 0 0.6 0 0.88 0.4 0 0 0 0 0 0 0 0
do 0 0.2 0 0 0 0 0 0 0.6 0 0.2 0.87 0 0 0 0 0 0.3 0 0
bo 0 0 0 0.4 0.5 0 0.3 0 0 0.3 0 0 0.83 0 0 0 0 0 0 0.2
fl 0 0 0 0 0 0 0 0.9 0 0.2 0 0 0 0.84 0 0.2 0.3 0 0 0

be 0.2 0 0 0 0 0.3 0 0 0.3 0 0 0.2 0 0 0.90 0 0 0 0 0
si 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0.89 0.1 0 0 02
sk 0 0 0 0.9 0 0 0 0 0 0 0 0 0.1 0 0 0 0.88 0 0 0.2
la 0 0 0 0.6 0 0 0 0.4 0 0 0 0 0 0.3 0 0 0.4 0.83 0 0
bd 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.5 0 0.4 0 0 0.83 0.3
fi 0 0 0 0.9 0 0 0 0 0 0.2 0 0 0.2 0.4 0 0 0.5 0.1 0 0.77

rh = rhino; de = deer; ca = car; wt =water; bu = building; el = elephant; ai = airplane; tr = tree; ti = tiger; bi = bike; wl =wolf; do = dog; bo = boat; fl = flower; be = beer; sk = sky; la = land;
ct = cat; bd = bird; fi = fish.

Table 7. Comparison of the proposed method with other state-of-the art methods using the Corel-10k dataset.

Methods Classification Accuracy (%)

VLAD [43] 80.0
TNNVLAD [44] 81.0

VLAD + LLC [45] 83.7
Proposed Method 85.75
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Table 8. Confusion Matrix of scene classification accuracy for the proposed approach using the CVPR

67 indoor scene dataset.

Class Accuracy % Class Accuracy % Class Accuracy %

kitchen 0.89 grocery store 0.79 nursery 0.83
bedroom 0.85 florist 0.82 train station 0.82
bathroom 0.87 church inside 0.83 laundromat 0.79
corridor 0.76 auditorium 0.82 stairs case 0.81
elevator 0.80 buffet 0.77 gym 0.78

locker room 0.78 class room 0.81 tv studio 0.76
waiting room 0.81 green house 0.75 pantry 0.80
dining room 0.83 bowling 0.79 pool inside 0. 77
game room 0.79 cloister 0.83 inside subway 0.79

garage 0.82 concert hall 0.81 wine cellar 0.77

lobby 0.77 computer room 0.80
fast food

restaurant
0.76

office 0.79 dental office 0.84 bar 0.82
mall 0.81 library 0.79 clothing store 0.81

Laboratory wet 0.77 inside bus 0.77 casino 0.83
jewelry shop 0.79 closet 0.81 deli 0.79

museum 0.82 studio music 0.79 book store 0.80
living room 0.77 lobby 0.80 children room 0.82

movie theater 0.83 prison cell 0.84 hospital room 0.79
toy store 0.80 hair saloon 0.80 kinder garden 0.77

operating room 0.82 subway 0.81 shoe shop 0.76

airport inside 0.79 warehouse 0.77
restaurant

kitchen
0.78

art studio 0.80 meeting room 0.82 bakery 0.79
video store 0.76

Mean Scene Classification Accuracy = 80.02 %

5. Conclusions

In this work, we proposed a new effective scene classification system that segments single/multiple

objects and classifies complex indoor-outdoor scenes. With the proposed system, object segmentation

problems were explored using two robust algorithms—MFCS and MSS. In addition, object similarity

was examined by multiple kernel learning. Logistic regression was used for complex scene classification.

Experimental evaluations reveal that our proposed system consistently outperforms others state-of-art

systems in terms of computation, segmentation and accuracy.

In future research work, we will analyze scenery images in depth to improve the accuracy of

scene classification and we will work to decrease the computational complexity of scene classification.

We will work in future on deep learning for indoor-outdoor scene classification to further improve

classification accuracy and to expand the applicability of our work.
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