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Abstract
Background: One in three clinical trial patients with major 
depressive disorder report symptomatic improvement with 
placebo. Strategies to mitigate the effect of placebo re-
sponses have focused on modifying study design with vari-
able success. Identifying and excluding or controlling for in-
dividuals with a high likelihood of responding to placebo 
may improve clinical trial efficiency and avoid unnecessary 
medication trials. Methods: Participants included those as-
signed to the placebo arm (n = 141) of the Establishing Mod-
erators and Biosignatures for Antidepressant Response in 
Clinical Care (EMBARC) trial. The elastic net was used to eval-

uate 283 baseline clinical, behavioral, imaging, and electro-
physiological variables to identify the most robust yet parsi-
monious features that predicted depression severity at the 
end of the double-blind 8-week trial. Variables retained in at 
least 50% of the 100 imputed data sets were used in a Bayes-
ian multiple linear regression model to simultaneously pre-
dict the probabilities of response and remission. Results: 
Lower baseline depression severity, younger age, absence of 
melancholic features or history of physical abuse, less anx-
ious arousal, less anhedonia, less neuroticism, and higher av-
erage theta current density in the rostral anterior cingulate 
predicted a higher likelihood of improvement with placebo. 
The Bayesian model predicted remission and response with 
an actionable degree of accuracy (both AUC > 0.73). An inter-
active calculator was developed predicting the likelihood of 
placebo response at the individual level. Conclusion: Easy-
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to-measure clinical, behavioral, and electrophysiological as-
sessments can be used to identify placebo responders with 
a high degree of accuracy. Development of this calculator 
based on these findings can be used to identify potential 
placebo responders. © 2018 S. Karger AG, Basel

Introduction

Major depressive disorder (MDD) affects 1 in 6 adults 
during their lifetime and is estimated to cost the USA over 
USD 200 billion per year [1, 2]. Yet, only one third of MDD 
patients achieve remission under any given antidepressant 
treatment [3], with over one third of the patients not re-
sponding to 2 or more antidepressants [4, 5]. Despite sub-
stantial financial investments [6, 7], efforts to improve 
MDD treatment outcomes by developing nonmonoami-
nergic antidepressants have failed. High placebo response 
rates have been a common factor in the failure of several 
novel antidepressant medications in phase 2 and 3 clinical 
trials [8, 9]. With limited/variable success, attempts to mit-
igate the increase in placebo response rate over the last 
three decades [10] have focused mainly on study design-
related issues such as: (1) increasing the sample size to ac-
count for smaller drug-placebo difference; (2) incorporat-
ing a placebo lead-in period; (3) controlling measurement 
factors by using central raters or standardized interviews; 
or (4) implementing innovative study designs such as the 
sequential parallel comparison design [11–14]. A patient-
centered approach, which identifies the individual charac-
teristics that define placebo responders, may offer an alter-
native way to reduce the placebo response rate in clinical 
trials. These characteristics may be useful, additionally, in 
clinical practice, where efforts to maximize the placebo re-
sponse can improve treatment outcomes [15]. 

The efforts to identify predictors of placebo response 
have been limited by the focus on subjective disease sever-
ity assessment and demographic features. This has fre-
quently resulted in conflicting findings that often did not 
consider a wide variety of potential predictors from be-
havioral and biological domains. Among individual fac-
tors, low pretreatment symptom severity has been associ-
ated with higher likelihood of placebo response [16, 17]. 
However, other factors such as gender and age, while sig-
nificant in venlafaxine versus placebo studies [18], did 
not replicate in a meta-analysis by Holmes et al. [19]. The 
neurobiological basis of the placebo response is charac-
terized by an increase in the metabolic activity of the fron-
tal and striatal cortical regions [20] and increased endog-

enous opioid release in the subgenual anterior cingulate 
cortex, nucleus accumbens, midline thalamus, and amyg-
dala [21, 22]. The placebo response has also been linked 
to increased baseline resting state functional connectivity 
of the rostral anterior cingulate cortex (rACC) within the 
salience network [23] and to increased pretreatment 
rACC activity in 2 EEG studies [24, 25]. Previous studies 
of neuroimaging biomarkers of placebo response have 
been limited by small sample sizes and a lack of compar-
ison with other clinical and biobehavioral markers [21, 
23]. Despite extensive research to characterize placebo re-
sponders, a set of clinical and objective predictors and 
tools to filter out this subgroup from clinical trials has yet 
to be agreed upon and implemented. There is also a po-
tential real-world clinical implication. A portion of treat-
ment-seeking depressed individuals might not need a 
long-term antidepressant prescription if they are placebo 
responders. Hence, by identifying such placebo respond-
ers in advance, briefer low cost, low side effect interven-
tions may be recommended for these particular patients.  

The goal of this report is to identify a parsimonious set 
of markers among assessments across units of analyses 
(clinical, demographic, neuroimaging, electrophysiologi-
cal, behavioral, and cognitive assessments) that most 
strongly predict the likelihood of placebo response and 
can be implemented in research settings and clinical prac-
tice. Traditional approaches to handling a statistical prob-
lem like this – such a stepwise regression or factor analy-
sis – are not well equipped to handle a rich database with 
(1) a large number of predictors relative to the number of 
subjects or (2) missing data. To attain this goal of identi-
fying the parsimonious set of markers, we utilized data 
from the Establishing Moderators and Biosignatures for 
Antidepressant Response in Clinical Care (EMBARC) 
trial to systematically explore 283 variables using an ad-
vanced variable selection method to identify the variables 
that most strongly predict the likelihood of improvement 
with placebo. Next, we used a novel Bayesian method to 
simultaneously predict the degree of symptom change, as 
well as the probability of remission and response using 
these variables. Such a method allows flexibility in the 
definition of “placebo response” and can be implemented 
using a simple web-based tool. 

Methods

Participants
Participants for this report were recruited as part of the  

EMBARC trial, which is a 2-stage, multisite, double-blind ran-
domized controlled study designed to evaluate possible modera-
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tors and mediators of antidepressant treatment response in pa-
tients with MDD. The study design has been described in detail by 
Trivedi et al. [26]. Data for this report were obtained from partici-
pants (n = 141) who were assigned to the placebo arm during stage 
1 of the EMBARC trial and received at least 1 placebo dose. Stage 
1 of the EMBARC trial included an 8-week double-blind placebo-
controlled trial of sertraline that enrolled 309 participants. Par-
ticipants were 18–65 years old with MDD diagnosed by the Struc-
tured Clinical Interview for DSM-IV Axis I Disorders (SCID). A 
complete list of inclusion/exclusion criteria and their justification 
has been previously published [26]. Briefly, participants had to 
have a Quick Inventory of Depressive Symptomatology Self-Re-
port (QIDS-SR) score ≥14 at both screening and randomization 
visits. Only patients whose first major depressive episode began 
before the age of 30, with either a chronic current episode (dura-
tion ≥2 years) or recurrent MDD (at least 2 lifetime episodes) were 
eligible. Participants were recruited from 4 clinical sites (UT 
Southwestern, Massachusetts General Hospital, Columbia Uni-
versity, and University of Michigan) after approval from the insti-
tutional review boards at each site and after obtaining written in-
formed consent from each participant. In the EMBARC trial, 141 
participants were assigned to placebo and received at least 1 dose 
and constitute the sample for this report.

Outcome 
The 17-item Hamilton Rating Scale for Depression (HAMD17): 

the 17 items of this clinician-rated scale to assess depression sever-
ity have 3–5 choices which are scored either from 0 to 2 or 0 to 4 
[27]. The individual items are summed to measure depression se-
verity [none (< 6), mild (6–13), moderate (14–18), severe (19–23), 
and very severe (> 23)] [27]. In the EMBARC trial, the HAMD17 
was administered at each study visit (baseline and weeks 1, 2, 3, 4, 
6, and 8 of stage 1). For the purpose of this report, the primary 
outcome was the last observed HAMD17 score, which also contrib-
uted to the definitions of outcome of remission (defined as last 
observed HAMD17 ≤7) and response (a decrease in HAMD17 of 
≥50% at the last observation as compared to the baseline). In total, 
126 subjects completed 8 weeks of treatment, 5 had their last ob-
served value at week 6, 4 each at weeks 3 and 4, and 1 each at weeks 
1 and 2. 

Baseline Assessments 
Clinical and Demographic. 42 clinical and demographic vari-

ables were identified a priori. In addition to standard demograph-
ic characteristics (e.g., sex, age), clinical factors previously reported 
to have predictive power for treatment outcome were assessed for 
moderating effects [28]. Clinical variables were derived from the 
HAMD17, Altman Self-Rating Mania Scale, Anger Attacks Ques-
tionnaire, Childhood Trauma Questionnaire, Concise Associated 
Symptoms Tracking, Concise Health Risk Tracking, Edinburgh 
Handedness Inventory, Family History Screen, Mood and Anxiety 
Symptom Questionnaire (MASQ-30), NEO Five-Factor Invento-
ry, QIDS-SR, Self-Administered Comorbidity Questionnaire, 
Snaith-Hamilton Pleasure Scale, Social Adjustment Scale Short 
Form, SCID, and Wechsler Abbreviated Scale of Intelligence. Six-
teen of the variables had at least some missing data, with the per-
centage ranging from 0.7 to 11.3%.

Behavioral and Cognitive Performance. 14 behavioral and cog-
nitive performance measures were assessed for moderating effects. 
Reaction time, psychomotor slowing, cognitive control, working 

memory, and reward learning were derived from the following 
tasks: Choice Reaction Time; Word Fluency Test; “A not B” Work-
ing Memory task, Flanker, and Probabilistic Reward Task [29]. All 
variables had at least some missing data, ranging from 0.7 to 17.7%.

Electrophysiological. 15 EEG measures, derived from a pretreat-
ment EEG recording, were preselected for moderator analysis. 
These included resting (task-free) measures of power in the alpha 
(recorded during eyes-closed and eyes-open) and theta (eyes-
closed) bands, loudness dependence of auditory evoked potentials, 
and theta current density extracted from the rACC [25]. For details 
regarding paradigms and methods, see Tenke et al. [30]. All vari-
ables had at least some missing data, ranging from 5.0 to 20.6%.

Neuroimaging. 212 structural or functional imaging variables 
were analyzed for moderating effects [26]. Structural imaging vari-
ables included volumetric magnetic resonance imaging (MRI) as-
sessments using FreeSurfer and diffusion tensor imaging [31, 32]. 
Functional imaging variables were collected from MRI during 
resting state (2 separate blocks collected on the same day; pre- and 
post-task), the Reward Processing Task, and the Emotional Recog-
nition Task. All variables had at least some missing data, ranging 
from 28.4 to 34.8%.

Statistical Analysis Plan
To accomplish the goals of the analysis, three statistical prob-

lems had to be addressed: performing variable selection, account-
ing for missing data, and estimating the magnitude and direction 
of the regression coefficients for the variables with the most predic-
tive power after dealing with the first two listed problems. Online 
supplementary Figure 1 (for all online suppl. material, see www.
karger.com/doi/10.1159/000491093) displays the progression of 
the analysis. A high-level summary of the analysis plan is given 
below; for a more detailed description (with more technical aspects 
addressed), see the online supplementary file. 

Variable Selection Method
With the goal to identify a parsimonious set of variables that 

predict response to placebo, the elastic net [33] – a penalized re-
gression technique that is becoming increasingly popular in the 
statistical literature [34] with respect to variable selection – was 
used. This procedure introduces bias to the regression estimates in 
the form of shrinkage – that is, it pulls the estimates towards 0 – 
while simultaneously reducing the variance of the estimates in or-
der to increase the overall predictive power. The elastic net was 
selected over other methods such as random forests, support vec-
tor machines, gradient boosting machines, and multivariate adap-
tive regression splines, to ensure the analysis would result in an 
easily interpretable linear model. The aforementioned alterna- 
tives – while popular as tools for prediction – often require large 
amounts of data [35] and can be difficult to interpret due to the 
inclusion of complex, nonlinear interactions [36]. The elastic net 
was implemented via the glmnet package [37] in R 3.3.3 [38].

Approach for Missing Data
Due to missing values of predictor baseline variables, multi-

variate imputation by chained equations was used [39, 40] under 
the assumption that the data were missing at random [41] to gen-
erate a total of 100 imputed data sets. No imputation was used for 
the outcome variable, (as described above in the “Outcome” sub-
section) the last observed HAMD17 score. As there is no univer-
sally accepted approach to apply variable selection methods in the 



Trivedi et al.Psychother Psychosom 2018;87:285–295288
DOI: 10.1159/000491093

context of multiply imputed data [42–44], the elastic net ran inde-
pendently on each of the 100 data sets, and we noted the number 
of times each variable was selected. The variables retained in at 
least 50% of imputed data sets were used in a Bayesian linear re-
gression model.

Model for Prediction of Placebo Outcomes
To estimate the magnitude and direction of the regression coef-

ficients for the variables selected by the elastic net, we employed a 
Bayesian linear regression model that kept the same outcome vari-
able; this is beneficial for several reasons. First, we can mitigate 
some of the concerns that would arise were we to instead apply 
ordinary least squares regression after choosing variables via the 
elastic net [45, 46] by assigning prior distributions to the regres-
sion parameters that mimic the shrinkage that occurs when apply-
ing the elastic net to all variables. For more details, see the supple-
mentary file or Makalic and Schmidt [47]. Next, we can simultane-
ously account for the multiply imputed data [48] by running 
separate analyses and then mixing posterior draws from each run 
[49, 50] to create a more comprehensive, singular posterior distri-
bution. Finally, we can sample from the posterior distribution of 
the regression parameters to estimate the predicted HAMD17 score 
at the end of stage 1 (i.e. the outcome variable) and construct a 
posterior distribution of these predicted scores. This distribution 
can then be used to estimate the probability of remission (by cal-
culating the proportion of posterior distribution scores ≤7 in the 

distribution) and response (by calculating the proportion of pos-
terior distribution scores ≤50% of the baseline HAMD17 value) for 
each subject. 

To correct for some of the biases that exist when training and 
testing a model on the same data, each imputed data set was boot-
strapped 20 times (resulting in 2,000 imputed/bootstrapped data 
sets: 100 data sets × 20 bootstraps), and the Bayesian model was 
subsequently fit on each bootstrapped data set to better estimate 
the variability of the selected predictors; the posterior draws were 
then mixed as described earlier. While 20 bootstrap repetitions are 
smaller than one might typically see, given that there were 100 im-
puted data sets and 2,000 draws from the posterior distributions 
for each imputed/bootstrapped pair, we ended with a total of 4 
million data points – making more than 20 bootstrap replications 
nearly computationally intractable. The Bayesian regression mod-
el was implemented using the bayesreg package in R [47].

To understand the individual contributions, predictions were 
made with each variable at a time (univariate area under the curve, 
AUC) and the decrement to overall model-fit was estimated after 
removal of variables one at a time.

Sensitivity Analysis
In addition to the a priori cutoff of retention in at least 50% of 

the data sets in the elastic net model for selection of variables in the 
previously described Bayesian model, the percentage of time each 
variable was retained was plotted to visually identify dropoffs in 
clustering of candidate variables. Visual inspection of this ordered 
index suggested two additional thresholds: variables retained in 
100% of elastic net run and those retained in 30% of the runs; see 
supplementary Figure 2 for the ordered index. AUC curves are 
presented along with the comparison of these three thresholds 
(100, 50, and 30%) using the DeLong test [51], implemented in the 
pROC package in R [52].

Visualization of Study Findings
To demonstrate the practical application of the Bayesian linear 

regression model in clinical practice, an interactive calculator was 
developed using the Shiny package in R [53].

Results

Of the 141 participants randomized to the placebo arm 
of the EMBARC trial, the mean (standard deviation) 
HAMD17 at baseline was 18.6 (4.3) and at study exit it was 
12.0 (7.5). At study exit, 47/141 (33.3%) attained remis-
sion, and 55/141 (39.0%) attained response. Baseline  
clinical and sociodemographic features are presented in 
Table 1.

Prediction of Placebo Outcomes
After applying the elastic net to 100 imputed data sets, 

8 out of 283 variables were retained in at least 50% of the 
runs. These variables, listed in Table 2, included baseline 
HAMD17, age, anhedonia, and anxious arousal as mea-
sured by MASQ, neuroticism, the presence of melanchol-

Table 1. Baseline sociodemographic and clinical features of  
EMBARC trial participants randomized to placebo who received 
at least 1 dose (n = 141)

Categorical variables, n (%)
Gender

Male 52 (36.9)
Female 89 (63.1)

Race
White 98 (69.5)
Black 23 (16.3)
Other 20 (14.2)

Employment status
Employed 78 (55.3)
Unemployed 58 (41.1)

Continuous variables (mean ± SD)
Age, years 37.4±12.9
Age of onset, years 16.4±5.6
Years of education 15.2±2.7
Number of MDEa 4±9
Duration of current episode, months 41.5±75.8
QIDS-SR 17.8±2.7
HAMD17 18.6±4.3

EMBARC, Establishing Moderators and Biosignatures for 
Antidepressant Response in Clinical Care; SD, standard deviation; 
MDE, major depressive episode; QIDS-SR, Quick Inventory of 
Depressive Symptomatology Self-Report version; HAMD17, 17-
item Hamilton Rating Scale for Depression. a Median and inter- 
quartile range reported due to outlying values.
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ic features, history of physical abuse, and average theta 
current density in the rACC. These variables were then 
entered in a Bayesian linear regression model to predict 
final HAMD17 scores at the end of stage 1 of the EMBARC 
trial. Table 2 gives the posterior median values for the 
chosen set of predictors. Higher posterior median values 
predicted higher HAMD17 scores at the end of stage 1 of 
the EMBARC trial, thus signifying worse outcomes. For 
example, a 1-unit increase in baseline HAMD17 was as-
sociated with a final HAMD17 score that was (on average) 
0.52 points higher, holding all other predictors in the 
model constant. Thus, while higher baseline depression 
severity, age, neuroticism, anxiety, and anhedonia sever-
ity, as well as the presence of melancholic features and 
history of physical abuse, predicted worse outcomes with 
placebo, larger values of pretreatment theta current den-
sity localized to the rACC predicted better outcomes with 
placebo. 

Taking advantage of the posterior distribution of the 
predicted HAMD17 scores in the Bayesian framework, the 
probability of remission (HAMD17 ≤7) and response (re-
duction of HAMD17 by ≥50%) at the end of stage 1 of the 
EMBARC trial were estimated simultaneously and com-
pared with the observed values at individual participant 
level; the receiver operating curve for both remission and 
response are shown in Figure 1. The AUC values (0.758 
for remission and 0.728 for response) indicate a moderate 
fit, supporting the validity of using a Bayesian linear re-
gression model to derive these values. 

In univariate analyses to predict remission, baseline 
depression severity had the highest AUC and the greatest 

decrement in AUC to the model, as shown in Table 2. 
Two other variables with significant univariate AUC (i.e., 
their bootstrapped confidence interval did not include 
0.50) were age and history of physical abuse. Notably, the 
highest univariate AUC (0.635 for baseline depression se-
verity) was substantially lower than the AUC including all 
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Table 2. Posterior median values of variables selected by elastic net that were included in the Bayesian linear regression model to predict 
treatment outcomes with placebo

Variable Posterior
median

95% CI Univariate AUC
for remission

Decrement in AUC for
remission upon removal

Baseline HAMD17 score 0.52 0.186, 0.877 0.635 (0.541 to 0.729) 0.092 (–0.003 to 0.187)
Age 0.12 0.016, 0.222 0.611 (0.517 to 0.705) 0.058 (–0.032 to 0.148)
Melancholic depression indicatora 2.06 –0.764, 4.959 0.388 (0.309 to 0.468) 0.003 (–0.077 to 0.083)
Anhedoniab 0.13 –0.123, 0.367 0.537 (0.454 to 0.619) 0.017 (–0.067 to 0.100)
Anxious arousalc 0.22 –0.085, 0.537 0.545 (0.444 to 0.646) 0.014 (–0.072 to 0.100)
Neuroticismd 0.12 –0.092, 0.336 0.505 (0.411 to 0.600) 0.004 (–0.077 to 0.084)
Physical abusee 0.18 –0.185, 0.543 0.625 (0.533 to 0.718) –0.010 (–0.090 to 0.070)
rACC theta current density –5.93 –13.417, 1.166 0.510 (0.412 to 0.608) 0.019 (–0.067 to 0.105)

HAMD17, 17-item Hamilton Rating Scale for Depression; rACC, rostral anterior cingulate. a Based on specifier questions on the 
SCID. b Anhedonic depression scale from the Mood and Anxiety Symptom Questionnaire. c Anxiety specific scale (anxious arousal) 
from the Mood and Anxiety Symptom Questionnaire. d Based on 12 neuroticism items from the NEO Five-Factor Inventory. e Scale 
from the Childhood Trauma Questionnaire.

Fig. 1. Receiver operating characteristic curves for Bayesian mod-
el with an a priori threshold of 50% variable retention.
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8 variables (0.758 for remission), thus highlighting the 
predictive utility of our multivariate model (Tables 2, 3).

Further, the probability threshold for classifying sub-
jects as remitters or responders can be optimized based 
on the desire of individual clinician or researcher. The 
four quantities often of interest in classification problems 
are: sensitivity (in this case, the percentage of correctly 
identified remitters from the entire population of remit-
ters), specificity (the percentage of correctly identified 
nonremitters from the entire population of nonremit-
ters), positive predictive value (the percentage of predict-
ed remitters who are truly remitters), and negative pre-
dictive value (the percentage of predicted nonremitters 
who are truly nonremitters). Assuming a high certainty 
(minimum of 70%) to accurately identify participants 
likely to be a remitter – that is, when you predict someone 
to be a remitter you will be correct 70% of the time – the 
optimal probability threshold as identified by the Opti-
malCutpoints package in R will make correct predictions 
73.3% of the time and with 23.4% sensitivity [54]. Such a 
threshold might be desirable for a clinician, who would 
hope to be quite confident in the likelihood of placebo 
response before making a treatment decision for his/her 
patients. Clinical researchers, on the other hand, might be 
more interested in capturing a larger percentage of pla-
cebo responders (i.e., increased sensitivity) – at the cost 
of more false positives – in order to screen them out of 
clinical trials to get a purer estimate of a treatment effect.

Sensitivity Analyses
In contrast to the 8 variables retained with the a priori 

threshold of 50%, only 3 variables (baseline HAMD17, 
age, and presence of melancholic features) were retained 
in all of the 100 elastic net runs, and 15 variables were  
retained in at least 30% of the runs. The additional 7  
variables retained in 30% of the runs that indicated im-
provement in depression severity included lower base- 

line self-reported depression severity, higher openness  
to experience, shorter duration of major depressive epi-
sode, higher resting-state functional connectivity be-
tween right ventral striatum and dorsal anterior cingu-
late, higher resting-state functional connectivity between 
left and right ventral striatum as well as left and right in-
sula, and higher flanker accuracy effect (calculated as:  
accuracycongruent trials − accuracyincongruent trials). 

The bootstrapped Bayesian linear regression models 
with ridge priors were conducted and the estimated root 
mean squared error (RMSE) for the HAMD17 at the end 
of stage 1 of the EMBARC trial, as well as AUC values for 
the probability of remission and response, were com-
pared between the a priori threshold of 50% retention as 
well as 100% retention and 30% retention (Table 3). The 
comparison of AUC of the a priori threshold with 100% 
retention to 50% retention (p = 0.076) and 50% retention 
to 30% retention (p = 0.055) showed modest evidence of 
statistical significance while that of 100 and 30% was 
stronger (p = 0.012). With respect to RMSE, the 50% re-
tention group had an 8% improvement in accuracy over 
the 100% retention group, with the 30% retention group 
showing a 13% improvement in accuracy. Considering all 
this information (including the costs of measuring the 
predictors in each group), the a priori defined threshold 
of retention in 50% of the models provided the best com-
bination of practical and statistical utility.

Visualization of Study Findings
The Shiny package in R [53] was used to adapt the 

Bayesian linear regression model using the 8 variables 
identified by the a priori threshold of 50% retention in 
elastic net runs. This interactive calculator allows the user 
to adjust the predictor values (based on the range ob-
served in the EMBARC trial) and obtain a distribution of 
posterior predicted HAMD17 scores at the end of the 
8-week placebo administration. The posterior distribu-
tion of HAMD17 simultaneously allows estimation of the 
probability of remission and response. A screenshot of 
this calculator is presented in Figure 2 and will be made 
available to the broad scientific community using a web-
based interface.

Discussion

In this large sample of depressed outpatients, a system-
atic exploration of a broad range of clinical and biological 
markers identified baseline depression severity, age, neu-
roticism, anhedonia, anxious arousal, presence of melan-

Table 3. Comparison of model fit statistics for different thresholds 
for inclusion of variables in a Bayesian linear regression model for 
prediction of outcomes with placebo

Metric 100%
retention

≥50% 
retention

≥30% 
retention

Root mean squared error 6.94 6.38 6.01
AUC (remission) 0.686 0.758 0.793
AUC (response) 0.649 0.728 0.772

AUC, area under the curve.
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cholic features, history of physical abuse, and theta current 
density in the rACC as predictors of placebo response in a 
double-blind randomized clinical trial. These markers can 
be implemented within a Bayesian framework to simulta-
neously predict the likelihood of response as well as remis-
sion with an easy-to-use calculator. Clinicians or clinical 
researchers could use this calculator to make more in-
formed decisions about whether to prescribe a treatment 
or enroll subjects in clinical trials with a placebo arm.

The current findings are consistent with previous re-
ports that have found that higher baseline depression se-
verity is associated with lower likelihood of improvement 
in the placebo arm [10, 17]. The most powerful single 
variable predicting poorer outcome in response to pla-
cebo treatment was greater depression severity. This is a 
very important finding, as enrichment in terms of sever-
ity of illness can be easily implemented in the context of 
a clinical trial. The failure to reduce placebo response by 

implementing a greater illness severity threshold for in-
clusion in studies has been attributed to the “grade infla-
tion” when the severity of illness is determined only by 
clinicians at the site, where the bias towards enrollment 
can be significant, thereby driving up severity measures 
[12]. Independent verifications of subject severity at entry 
by themselves can reduce the placebo response by allow-
ing a greater depression severity enrichment [55].

The finding that higher theta current density in the 
rACC predicts greater improvement with placebo differs 
from previous work by Korb et al. [56] which did not find 
any difference in rACC theta density between placebo re-
sponders and nonresponders. This difference may be re-
lated to the smaller sample size of the study of Korb et al. 
Moreover, in a later study, the same group reported that 
increased rACC theta current density predicted a greater 
placebo response. Notably, in the International Study to 
Predict Optimized Treatment in Depression (iSPOT-D) 

Fig. 2. An interactive web-based calculator 
to predict the likelihood of placebo re-
sponse.

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e



Trivedi et al.Psychother Psychosom 2018;87:285–295292
DOI: 10.1159/000491093

trial, higher rACC theta was associated with worse out-
comes in depressed outpatients treated with either escita-
lopram, sertraline, or placebo [57]. Theta current density 
and other objective biomarkers, such as resting-state con-
nectivity, may offer greater predictive value at more cost 
but may prove promising over costly drug treatments that 
are potentially ineffective or harmful to the outcome.

There are several strengths of this report. The a priori 
defined threshold of 50% retention in elastic net runs has 
identified clinical and demographic assessments as well 
as electrophysiological measures, which are relatively in-
expensive and easily implemented. The more expensive 
neuroimaging variables were retained when the threshold 
for inclusion was more liberal, i.e., included in ≥30% of 
elastic net runs. Arguably, the most meaningful benefit of 
fitting the model in the Bayesian framework was to take 
advantage of the posterior distribution of the predicted 
HAMD17 scores to simultaneously predict the likelihood 
of response and remission. In a more traditional analysis, 
three separate models would have to be run to accomplish 
this: a multiple linear regression to predict HAMD17 at 
exit and two logistic regression models, one with remis-
sion as the outcome and one with a response as the out-
come. Additionally, the interactive calculator informed 
by our predictive model provides a web-based tool, which 
could be easily implemented in clinical practice or re-
search settings to predict the likelihood of a placebo re-
sponse at the individual level.

These findings should be interpreted in the context of 
certain limitations. Response to placebo is a complex phe-
nomenon and may be related to a multitude of factors 
such as treatment setting, environmental factors, and ill-
ness or patient characteristics [58] that were not assessed 
in the EMBARC study. Consistent with the recommenda-
tions of Fava et al. [58], future clinical trials should com-
prehensively capture the “multifactorial ingredients of 
treatment outcome” to better understand the nondrug 
contributions to improvement with antidepressant treat-
ments. Next, the mean HAMD-17 score in this report is 
lower than that typically reported for randomized con-
trolled trials of antidepressant medications. Further, 
while extensive, the variable selection procedure may 
have missed some additional clinical or biological fea-
tures that could increase the predictive ability of placebo 
response. However, when identified, such features may 
be integrated into future iterations of the calculator. The 
choice of elastic net was deliberate to maximize the prac-
tical application of these findings; nonetheless, this meth-
od may have missed more complicated (i.e., nonlinear) 
interactions between features that might be uncovered 

with other variable selection methods such as random 
forest. Lastly, due to the unique combination of variables 
collected for the EMBARC trial, we cannot validate the 
model on an external data set. The cross-validation and 
bootstrap procedures employed add strength to the anal-
ysis, but there is no substitute for external validation.

To conclude, a set of 8 clinical and biological markers 
can predict treatment outcomes with placebo with a fair 
degree of accuracy. It is also possible to further increase 
the accuracy of prediction if all 15 variables are included. 
By integrating these markers in an easy-to-use interactive 
calculator, the findings of this report can be implemented 
in research and clinical care.
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