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derived from the S. venezuelae phage, SV1
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Abstract

Background: Integrating vectors based on the int/attP loci of temperate phages are convenient and used widely,

particularly for cloning genes in Streptomyces spp.

Results: We have constructed and tested a novel integrating vector based on g27, encoding integrase, and attP

site from the phage, SV1. This plasmid, pBF3 integrates efficiently in S. coelicolor and S. lividans but surprisingly fails

to generate stable integrants in S. venezuelae, the natural host for phage SV1.

Conclusion: pBF3 promises to be a useful addition to the range of integrating vectors currently available for

Streptomyces molecular genetics.
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Background
Bacteria in the genus Streptomyces are a prolific source

of natural products, many of which are used in the clinic

as antibiotic, anticancer, immune-modulatory or other

therapeutic agents. Furthermore these soil bacteria have

an unusual life style; vegetative growth is mycelial and

when nutrients become scarce a sporulation cycle initi-

ates [1]. The phages that infect these bacteria have been

exploited in the development of vectors for genetic en-

gineering of Streptomyces and closely related genera, in

particular in the study of natural product pathways [2].

The development of integrating vectors that integrate

via site-specific recombination between a site on the

plasmid vector, the attP site and a site in the bacterial

chromosome, the attB site have been widely adopted by

researchers wishing to genetically manipulate Strepto-

myces genes [3]. The int/attP site from the integrating

plasmid, pSAM2, was first exploited in a novel vector

that could integrate into the endogenous attB site in

the Streptomyces genome [4]. The advantage of the integra-

tion vectors over freely replicating plasmid vectors are the

very low copy number (usually single or two copies inte-

grated in tandem), the ease of construction of plasmids,

which can be done in E. coli, and the simple method of

plasmid transfer into Streptomyces via conjugation [5].

The idea of using phage integrases by the research

group at Eli Lilley, led to the development of integrating

vectors encoding the int/attP locus from the Strepto-

myces phage ϕC31 [6-8]. The recombination event that

leads to phage integration is a conservative reciprocal

DNA cleavage and rejoining mechanism occurring at the

centre of the attP and attB sites producing the integrated

plasmid flanked by hybrid attP/B sites called attL and

attR [7]. Phage integrases are known to be highly direc-

tional, with tight control over integration versus excision.

Integration (or attB x attP) is the default reaction for

phage integrases whilst excision (attL x attR) requires ac-

tivation by a recombination directionality factor (RDF) or

Xis [9,10]. Consequently the integration vectors based on

the ϕC31 int/attP system and lacking any other phage

genes are 100% stable in most Streptomyces species. The

ϕC31 integrating vectors integrated with higher efficiency

and were more stable than the pSAM2-derived integration

vectors and are now widely adopted by researchers in

Streptomyces genetics. The use of the ϕC31 integration sys-

tem is also being widely adopted for genome engineering

in eukaryotes, in particular in tissue culture and model or-

ganisms such as the mouse and Drosophila [11].

In 2003 the int/attP locus from the phage ϕBT1 was

used to generate an alternative suite of phage-derived in-

tegration vectors for Streptomyces [12]. These vectors

were demonstrated to be completely orthogonal to the

ϕC31 derived plasmids and plasmids derived from the
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two phage int/attP loci could be used in combination with-

out loss of integrating efficiency. The ϕBT1 int/attP inte-

gration vectors are also widely used in the Streptomyces

community. Recently vectors based on phage TG1 have

been developed for use in Streptomyces avermitilis [13].

Here we present a new integrating vector derived from

S. venezuelae phage SV1 [14,15]. We demonstrate the ef-

ficient integration of the plasmid into several Streptomy-

ces spp. although, surprisingly, we failed to obtain stable

integrants in S. venezuelae.

Results and discussion
The genome of phage SV1 was sequenced previously

and, consistent with the temperate nature of the phage,

g27 encodes an integrase [15]. Gp27 is a serine integrase,

whose closest homologue in the database is from Strep-

tomyces prunicolor (WP_019054986.1; 54% identity). SV1

is only distantly related (between 11 and 13% identical) to

ϕC31, TG1 and ϕBT1 integrases so the SV1 integration

system encoded by SV1 g27/attP is therefore very likely to

be another orthologous system to ϕC31 and ϕBT1 integra-

tion systems.

The DNA upstream and downstream of SV1 g27 was

studied for a likely attP site. Precedent dictates that attP

is normally upstream or downstream of the integrase

gene but in some mobile genetic elements, such as

SCCmec, can be located quite distal from their cognate

integrase genes [11,16]. In SV1 the attP site is unlikely

to be upstream of g27 as the upstream gene, g28, over-

laps with g27 by the sequence 5′ATGA, which couples

the start codon (ATG) of g27 with the stop codon of g28

(TGA). Downstream of g27 is a non-coding region of

342 bp before the start of the downstream gene, g26.

The attP sites for the serine integrases commonly com-

prise a perfect inverted repeat flanking a spacer of at

least 20 bp [11]. Within the g26-g27 intergenic region in

SV1 there are two perfect inverted repeats (IRs); the IR

distal to g27 has a spacer of 5 bp and the IR proximal to

g27 has a 22 bp spacer. Moreover the IR proximal to g27

has a 10 bp perfect inverted repeat so, together with the

spacer DNA, the length of this DNA element is 42 bp

which is the same length as the ϕC31 attP site. The

length attP sites used by other serine integrases is between

42 and 69 bp [11,17]. The attP site in SV1 is therefore

likely to be located between nucleotides 20504 and 20545

and is downstream of the integrase gene, g27.

As the SV1 g27 is likely to be expressed as part of an

operon, we decided to test its integrating properties by

swapping the ϕC31 int ORF expressed from the tcp830

promoter in pEY25 for the SV1 g27/attP locus (Figure 1).

Primers were designed to clone the SV1 g27/attP locus

20487 to 22295 comprising the putative attP site and

the g27 ORF in both orientations downstream of the

tcp830 promoter in pEY25, to generate pMS98 and

pBF1 (Figure 1). Both plasmids were introduced into

E. coli ET12567 (pUZ8002) and used in conjugation reac-

tions with S. coelicolor J1929. Surprisingly the numbers

of exconjugants were not significantly different for pBF1

(in which the SV1 g27 is co-directional with the tcp830

promoter) and pMS98 (in which the SV1 g27 is oriented

towards tcp830) and this occurred with or without addition

of anhydrotetracycline (Table 1). In fact exconjugants con-

taining pBF1 tended to overproduce the two pigments acti-

norhodin and undecylprodigiosin indicating a possible

stress response, perhaps due to overexpression of SV1 inte-

grase. We assume that there are fortuitous sequences

upstream of the g27 gene in pMS98 that resemble both

promoter and ribosome binding sites for integrase expres-

sion after conjugation to Streptomyces. The low frequency

of exconjugants from E. coli containing pEY25 in this ex-

periment is likely to be due to the absence of the ϕC31

attP site (Figure 1).

To validate the integration of the plasmids via SV1

g27/attP site into the S. coelicolor genome, we have iden-

tified the integration site of SV1 phage using an inverse

PCR technique. Genomic DNA from an exconjugant of

S. coelicolor J1929 containing the integrated pMS98 was

cut with a restriction enzyme for which there is no recog-

nition site within pMS98 and self-ligated. Primers read-

ing outwards from the SV1 plasmid into the S. coelicolor

J1929 genome were then used to generate a PCR product

(Figure 2). The plasmid pMS98 was found to have inte-

grated into SCO4383 encoding a putative 4-Coumarate-

CoA Ligase, a key enzyme in the phenylpropanoid

pathway that, at least in plants, is important in secondary

metabolism pathways for flavonoids and monolignols

[18]. Based on the DNA sequence of this PCR product,

we constructed two further primers against the integra-

tion region (SC04383) to amplify attB, attR, and attL

(using S. coelicolor DNA, and S. coelicolor J1929:pMS98

genomic DNA as templates) (Figure 3). The resulting

DNA sequences confirmed that the SV1 attB site is

within SCO4383 and the attP site is located, as predicted,

downstream of the SV1 g27 gene (Figure 4). The attP

and the attB have similar features to those observed in

the other serine integrase attachment sites; they both con-

tain inverted repeats but these are different in the attB and

attP sequences, and there is an identical sequence of 4 bp

in the centre of both substrates where the recombination

occurs (Figure 4) [11,12].

Plasmid pMS98 was modified to remove unnecessary

DNA, the attR site from ϕC31, and the tcp830 promoter

to generate pBF3 (Figure 1). This novel integration vec-

tor has unique XhoI, XbaI, KpnI and PvuII sites for

cloning. To test whether pBF3 could integrate into a

range of Streptomyces genomes it was introduced by

conjugation into S. coelicolor, S. lividans, S. venezuelae,

S. avermitilis and S. albus. Conjugation frequencies of
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pBF3 into S. coelicolor and S. lividans were reminiscent

of those obtained with ϕBT1 and ϕC31 integration plas-

mids; the numbers of hygromycin resistant exconjugants

for S. coelicolor J1929, S. coelicolor M512, and S. lividans

TK24 were greater than 1 × 105 (Table 2), and the inte-

grations were stable after two rounds of sporulation

without selection (see below). When S. venezuelae was

used as the recipient, the hygromycin resistant excon-

jugants were, although numerous, very small and the

integrations were not stable as after two rounds of

sporulation, hygromycin resistance was lost. A BLAST

search using the SV1 attB site from S. coelicolor revealed

that highly similar sequences were indeed present in

S. lividans and S. avermilitis but no homologous se-

quences were found in S. albus or S. venezuelae. Despite

the presence of a putative attB site for SV1 in S. avermitilis

the frequency of conjugation and integration of pBF3 was

very low (Table 2).

The sequences of the SV1 attB and attP sites are dis-

tinct from the recombination sites for the other known

phage integrases. We showed previously that integrating

vectors derived using integrases from ϕC31 and ϕBT1

do not interfere with each other with respect to the fre-

quency of integration or their stability [12]. We therefore

tested whether the integration frequencies of ϕC31 or

ϕBT1 derived integrating vectors were affected if the re-

cipient already contained pBF3 integrated at the SV1 attB

site. Conjugations were performed using E. coli donors

containing either pSET152 (encoding ϕC31 int/attP) or

pRT801 (encoding ϕBT1 int/attP), both plasmids confer-

ring apramycin resistance, and S. coelicolor M512 contain-

ing pBF3 as recipient. Selection was for both hygromycin

Figure 1 Plasmids constructed during the course of this work. pMS98 and pBF1 are derivatives of the plasmid pEY25, in which the φC31 int

gene (blue arrow) is replaced with the SV1 g27 (encoding SV1 integrase; yellow arrow) and attP (red arrow) in orientations in which the SV1 g27

genes is being expressed from the tcp830 promoter (pBF1) or is orientated opposite to the tcp830 promoter (pMS98). pBF3 is a derivative of

pMS98 in which the tcp830 promoter and the φC31 attR sites have been removed. The hygromycin resistance gene is represented by the pale

red arrow and the tcp830 promoter by the green arrow. oriT is in grey.
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and apramycin. There was no great reduction in the conju-

gation frequency compared with the use of plasmid-free

S. coelicolor M512 as a recipient (Table 2). SV1 vectors can

therefore be used in combination without interference with

ϕC31 and ϕBT1 derived vectors.

Hygromycin resistant colonies obtained after conjuga-

tion of E. coli containing pBF3 with S. coelicolor J1929,

S. coelicolor M512, S. lividans TK24 and S. venezuelae

were allowed to sporulate and were subcultured twice

on medium without selection. Genomic DNA was iso-

lated and analysed by Southern blotting (Figure 5). The

expected 4.3 kbp band, indicative of integrated pBF3,

was observed in the DNA from S. coelicolor and S. livi-

dans exconjugants. The absence of the 4.3 kbp band

from the S. venezuelae genomic DNA indicated that pBF3

did not persist in this strain and was lost. Stable hygromy-

cin resistant S. venezuelae exconjugants were obtained with

the ϕBT1 and ϕC31 derived vectors (pMS82 and ϕC31,

respectively; Table 2). Paradoxically a lysogen of SV1 in

S. venezuelae is perfectly stable and grows like the non-

lysogen. We deduce that the interruption in SCO4383

caused by the integrating plasmid is toxic, but the toxicity

is ameliorated by a prophage-encoded gene or by an un-

known cis effect within the integrated prophage. Notably

SV1 does not encode a homologue to SCO4383, or frag-

ments of SCO4383 that could compensate for its trunca-

tion by integration of SV1 derived integrating vectors.

Conclusions
The activity of a novel phage integration system from

bacteriophage SV1 has been demonstrated in S. coeli-

color and S. lividans and the attP and attB sites identified.

We believe that the new integrating vector pBF3 will be of

use in the genetic manipulation of these and other Strepto-

myces strains. More generally the characterization of a new

integrase and its substrates will provide biologists with new

tools for DNA assembly in the genomes of a wide range of

microorganisms and other model organisms.

Methods
Bacterial strains and culture

E. coli strain DH5α was used for plasmid construction.

E. coli strain ET12567 (pUZ8002) is a methylation-

defective strain (dam-13: Tn9 dcm-6 hsdM) and was

used as the conjugation donor in plasmid conjugations

from E. coli to Streptomyces [20].

Six Streptomyces strains were used as recipients for

intergeneric conjugation: Streptomyces coelicolor J1929

(contains ΔpglY conferring sensitivity to ϕC31 and ϕBT1;

Figure 2 Rescue of the integrated plasmid and determination of the sequence of attB. The structure of the rescued plasmid, pMS98R, by

digestion of genomic DNA from an S. coelicolor J1929 pMS98 exconjugant with StuI and self-ligation. The two primers PB3 and PB3rev were used

to amplify the DNA reading out from the attL and attR sites produced on integration of pMS98 into the attB site. The PCR amplified DNA generated

was separated by electrophoresis on a 0.8% agarose gel. The size of the band obtained is in agreement with the predicted 1548 bp fragment, after

performing the manipulations in silico using the published S. coelicolor genome sequence [19].

Table 1 Conjugation frequnecies of various integrating

plasmids into S. coelicolor J1929

E. coli ET12567
(pUZ8002) donor
containing:

Origin of integrase
and attP

Hygromycin resistant
exconjugants/108

spores

pMS98 SV1 2.4 × 106

pBF1 SV1 1.1 × 107

pBF1* SV1 9.9 × 106

pBF3 SV1 1.4 × 107

pEY25 φC31 (int only) 9 x103

*The SV1 integrase was induced with 1 μg/ml anhydrotetracycline.
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[21]) Streptomyces coelicolor M512 (ΔredD ΔactII-ORF4

SCP1− SCP2− Pgl+) [22], Streptomyces avermitilis MA-

4680 [23], Streptomyces venezuelae 10712 [24], Strepto-

myces albus J1074 [25], Streptomyces lividans TK24

(str-6 SLP2−, SLP3−)[26].

The E. coli strains DH5α [27] and ET12567(pUZ8002)

[20,26] were grown in Luria-Bertani broth (LB) or on LB

agar at 37°C. Streptomyces strains were grown in Soya

Mannitol (SM) agar at 30°C for routine maintenance [26].

Conjugations were performed on SM containing 10 mM

MgCl2 and Yeast extract malt extract medium was used

for the preparation of genomic DNA [26]. Antibiotic

concentrations for E. coli were 150 μg/ml hygromycin,

50 μg/ml apramycin, 50 μg/ml kanamycin, 25 μg/ml

chloramphenicol and 100 μg/ml hygromycin, 50 μg/ml

apramycin and 25 μg/ml nalidixic acid for selection with

Streptomyces.

DNA manipulation

Plasmids preparations, E. coli transformations, DNA di-

gestion by restriction enzymes, DNA fragment isolation

and purification, and gel electrophoresis were carried

A

B

Figure 4 Sequences of the attB, attP, attL and attR sites used by SV1 integrase. Panel A. The crossover site occurs within the 4 bp

sequence in black and the positions of the inverted repeats are underlined in the attP and attB sites. Panel B. The results of a BLAST search for

the SV1 attB site in Streptomyces genomes deposited in the nucleotide sequence database. The default settings did not identify an SV1 attB site

from S. venezuelae or S. albus.

Figure 3 Validation of the position of the integrated plasmid, pMS98, in the S. coelicolor genome. Primers PB4 and PB4rev were designed

to flank the SV1 attB site and were predicted to amplify a 867 bp fragment as shown in the agarose gel depicted on the left. Using pairs of

primers PB4rev with PB3rev and PB3 with PB4, the attL and attR sites were amplified from S. coelicolor J1929:pMS98 genomic DNA. Fragments of

the predicted sizes were obtained as depicted in the agarose gel (right).
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out according to Sambrook et al. [27]. In-Fusion® cloning

(Clontech®) was generally used for joining DNA fragments.

DNA preparation from Streptomyces was performed fol-

lowing the Streptomyces manual [26].

Southern blotting was performed, according to the

manufacturer’s instructions, on Hybond-N nylon mem-

brane (Amersham) using a fragment of DNA derived from

the hygromycin resistant gene as the probe. The AlkPhos

Direct Labeling and Detection System with CDP-Star kit

(Amersham) was used for detection. 1 μg of NruI (New

England Biolabs) digested genomic DNA was loaded onto

a 0.8% agarose gel in TBE buffer and electrophoreses over-

night prior to capillary blotting.

Polymerase Chain Reaction (PCR) was carried out using

Phusion® High-Fidelity DNA Polymerase (New England

Biolabs) according to the manufacturer’s instructions.

Plasmid constructions

pEY25 is a derivative of pAV11, an integration vector

that encodes the ϕBT1 int/attP locus and the anhy-

drotetracycline inducible promoter, tcp830. To generate

pEY25 the ϕBT1 int gene was deleted and the ϕC31 int

gene was placed under the control of the tcp830 promoter.

pMS98 was constructed by PCR amplification of SV1 g27/

attP locus using primers MS409 (5′ GCTTCATATGAAA

CGAGACCTACCAAG) and MS410 (5′CGTTAGATCT

TCGCGCTCCGATGTGGTC) and In-Fusion® cloning into

pEY25 cut with NdeI and BglII to replace the ϕC31 int

gene. pBF1 was constructed in the same way but using

primers PBF1for (5′ AAGGAGATATACATATGAAACG

AGACCTACCAAGC- 3′) and PBF1rev (5′ CCATGAG

CCAAGATCTTCGCGCTCCGATGTGGTCC- 3′). pBF3

was constructed as follows to remove unnecessary ele-

ments of pBF1: pBF1 was first cut with AvrII, and Acc65I,

and the ends filled in with DNA Polymerase I, Large

(Klenow) Fragment (New England Biolabs) to generate

blunt ends for ligation. This blunt ended fragment was

then self-ligated using Quick ligase enzyme (New England

Biolabs) to produce pBF2. To remove the tcp830 promoter,

pBF2 was digested with NdeI, and AseI and the 5985 bp

fragment was self-ligated to form pBF3.

Inverse PCR

Inverse PCR was performed to identify the integration

site of SV1 within Streptomyces coelicolor J1929. This

procedure is designed for amplifying anonymous flank-

ing genomic DNA regions. Genomic DNA was prepared

from a strain containing the integrated plasmid, pMS98,

digested with an enzyme that does not cut within the

plasmid (StuI) and then ligation of DNA under dilute

Figure 5 Southern blot to demonstrate the presence of the predicted hygromycin gene fragment in S. coelicolor and S. lividans

exconjugants. Two independent exconjugants derived from an E. coli donor containing pBF3 and S. coelicolor, S. lividans and S. venezuelae as

recipients were initially selected using the hygromycin resistance marker on pBF3 but then subsequently maintained without selection. Genomic

DNA was then prepared from each line. The hyg gene was detected in S. coelicolor:pBF3 and S. lividans:pBF3 lines but not in the S. venezuelae

lines indicating that pBF3 is not stably maintined in S. venezuelae.

Table 2 Conjugation frequencies per 108 spores of integrating plasmids into Streptomyces species

Streptomyces recipient: E. coli donor, ET12567 (pUZ8002) containing plasmids:

pBF3 (SV1 g27/attP) pMS82 (ϕBT1 int/attP) pSET152 (φC31 int/attP) pRT801 (φBT1 int/attP)

S. coelicolor J1929 2.5 × 106 3.6 × 106 6 × 105 ND1

S. coelicolor M512 1.7 × 107 6 × 107 6 × 106 ND

S. lividans 1.4 × 105 9.5 × 105 2.3 × 105 ND

S. venezuelae 10712 3.3 × 104 1.7 × 107 9.8 x 104 ND

S. avermitilis 40 3 × 105 1.8 x 103 ND

S. albus J1074 4.6 × 102 5 × 105 1 x 103 ND

S. coelicolor M512: pBF3 - - 4 x 106 2.8 x 105

1Not Done.
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DNA conditions to favour circularization. Finally, PCR

amplification was performed using oligonucleotides PB3

for (5′ GTACGTCGGAGGTCTAGAGA) and PB3rev

(5′ GCAGCTTCGAGTTTCATCCCG) that prime DNA

synthesis from the known sequence within pMS98. To

confirm the SV1 integration site, primers PB4 for (5′ CA

CAGCCCCAACACCGTC) and PB4 rev (5′ -GTCGG

TGAGGGAGACGATG) were designed to amplify the po-

tential SV1 attB from the S. coelicolor J1929 DNA. These

primers were also used with PB3 and PB3rev to amplify

the potential attR, attL from the exconjugants S. coelicolor

J1929 pMS98 DNA.
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