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Abstract

Background: Simple phenomenological growth models can be useful for estimating transmission parameters and

forecasting epidemic trajectories. However, most existing phenomenological growth models only support single-

peak outbreak dynamics whereas real epidemics often display more complex transmission trajectories.

Methods: We develop and apply a novel sub-epidemic modeling framework that supports a diversity of epidemic

trajectories including stable incidence patterns with sustained or damped oscillations to better understand and

forecast epidemic outbreaks. We describe how to forecast an epidemic based on the premise that the observed

coarse-scale incidence can be decomposed into overlapping sub-epidemics at finer scales. We evaluate our

modeling framework using three outbreak datasets: Severe Acute Respiratory Syndrome (SARS) in Singapore, plague

in Madagascar, and the ongoing Ebola outbreak in the Democratic Republic of Congo (DRC) and four performance

metrics.

Results: The sub-epidemic wave model outperforms simpler growth models in short-term forecasts based on

performance metrics that account for the uncertainty of the predictions namely the mean interval score (MIS) and

the coverage of the 95% prediction interval. For example, we demonstrate how the sub-epidemic wave model

successfully captures the 2-peak pattern of the SARS outbreak in Singapore. Moreover, in short-term sequential

forecasts, the sub-epidemic model was able to forecast the second surge in case incidence for this outbreak, which

was not possible using the simple growth models. Furthermore, our findings support the view that the national

incidence curve of the Ebola epidemic in DRC follows a stable incidence pattern with periodic behavior that can be

decomposed into overlapping sub-epidemics.

Conclusions: Our findings highlight how overlapping sub-epidemics can capture complex epidemic dynamics,

including oscillatory behavior in the trajectory of the epidemic wave. This observation has significant implications

for interpreting apparent noise in incidence data where the oscillations could be dismissed as a result of

overdispersion, rather than an intrinsic part of the epidemic dynamics. Unless the oscillations are appropriately

modeled, they could also give a false positive, or negative, impression of the impact from public health

interventions. These preliminary results using sub-epidemic models can help guide future efforts to better

understand the heterogenous spatial and social factors shaping sub-epidemic patterns for other infectious diseases.
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Introduction
The myriad of interrelated, and often unobserved, factors

that influence the propagation of pathogens at different

spatial and temporal scales create major challenges for pre-

dicting the transmission dynamics of infectious disease [1].

The factors influencing infectious disease transmission in-

clude the mode of transmission (e.g., close contact, airborne,

via vector, sexual route), the individual-level network that

captures the dynamics of disease-relevant interactions

(which are often influenced by cultural factors) [2], the nat-

ural history of the disease, variations in the risk behavior of

individuals, reactive public health interventions, the behavior

changes in response to an epidemic, and the background

immunity of the population shaped by genetic factors and

prior exposure to the disease or vaccination campaigns [3–

6]. Our ability to generate accurate epidemic forecasts is

challenged by the sparse data on the individual- and group-

level heterogeneity that affect the dynamics of infectious dis-

ease transmission [7–9].

The accuracy of epidemic forecasts is also hindered by

the lack of detail in the outbreak incidence and contact

data. Usually, forecasting models must be based on ag-

gregated reported incidence cases identified at the onset

of symptoms or diagnosis. Epidemic incidence data is a

valuable epidemiological tool to assess, and forecast,

trends and transmission potential in real time [7, 8, 10–

14]. However, the aggregated case data rarely contain

the information, such as transmission pathways and

other population characteristics, needed to create a real-

istic model for disease transmission [8]. For example,

during the first few months of the 2014–2016 Ebola epi-

demic in West Africa, weekly national-level epidemic

curves for Guinea, Liberia, and Sierra Leone were made

publicly available by the World Health Organization

(WHO) [11]. In contrast, Ebola virus first affected the

village of Gueckedou in Guinea, and the transmission

chains rapidly crossed the nearby porous borders of Si-

erra Leone and Liberia [11]. Therefore, epidemic curves

at finer spatial and temporal resolutions covering the

relevant interacting communities would have been more

pertinent to assess the spreading pattern and guide con-

trol efforts.

Limited epidemic data limits the complexity of the

mathematical models in terms of the number of mecha-

nisms and parameters that can be estimated from data.

These models often use a metapopulation framework to

incorporate population heterogeneity by dividing the

population into socio-demographic groups based on the

Fig. 1 The number of sub-epidemics for epidemic waves associated with different parameters. The number of sub-epidemics comprising an

epidemic wave depends on the parameters K0, q, and Cthr as explained in the main text
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susceptibility, infectivity, mobility patterns, or other

individual characteristics related to the transmission dy-

namics [15–18]. The individuals in the same group are

assumed to be homogenous, and the heterogeneity of

the population is limited by the number of groups.

Even when the number of parameters that can be es-

timated from limited data is small, the model must

include enough complexity to account for the under-

lying transmission dynamics. Past studies indicate that

simple logistic-type growth models tend to underesti-

mate the peak timing and duration of epidemic

outbreaks [19–21]. Also, these simple logistic-type

phenomenological growth models typically can sup-

port only a single-wave epidemic trajectory character-

ized by a single peak in the number of new infections

followed by a “burnout” period, unless there are ex-

ternal driving forces, such as a seasonal variation in

contact patterns.

We put forward a sub-epidemic modeling frame-

work that supports diverse epidemic wave trajector-

ies, including stable incidence patterns with sustained

or damped oscillations. We divide the population

Fig. 2 Epidemic wave profiles or the taxonomy of overlapping sub-epidemic waves. Five representative epidemic waves comprised of sub-epidemics

characterized by the following parameters: r = 0.15, p = 0.9, K = 2000. a The first panel shows a stationary 300-day endemic wave

comprising 10 sub-epidemics with a cumulative case threshold Cthr of 20 cases and parameter q = 0. b The second panel displays a

temporary endemic wave comprising 5 sub-epidemics with a cumulative case threshold Cthr of 20 cases and parameter q = 0. c The

third panel shows an epidemic wave comprising 10 declining sub-epidemics with a cumulative case threshold Cthr of 20 cases where

subsequent sub-epidemics decline exponentially with rate q = 0.3. d The fourth panel displays an epidemic wave with sustained

oscillations composed of three sub-epidemics with a high cumulative case threshold Cthr of 800 without the effects of interventions

(q = 0). e Finally, the fifth panel shows an epidemic wave with damped oscillations comprising two sub-epidemics where the second

one is affected by interventions or behavior changes (q = 0.6) and is triggered once the first one has accumulated 40% of its total size
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into groups, and use overlapping sub-epidemics in

these groups as the mathematical building blocks to

understand and forecast an epidemic observed at

coarser scales. Hence, the coarse-scale-observed epi-

demic is created from the aggregation of overlapping

sub-epidemics in the groups that follow a regular

structure. These sub-epidemics are usually unob-

served and shaped by population heterogeneity. The

groups are determined by the susceptibility of the

underlying populations (e.g., spatially clustered

pockets of susceptible individuals), population mobil-

ity patterns, the natural history of the disease, infec-

tions moving across different risk groups, varying

public health interventions, and rapidly changing en-

vironmental factors, to name a few. This approach

allows the model forecast to depend upon changes in

the composition of individual groups based on tem-

poral changes of healthcare, or local behavior

changes that impact the case incidence for a given

spatial area or subpopulations such as schools or

socio-demographic groups.

In heterogenous populations, the coarse-scale epi-

demic incidence can rarely be characterized by a sim-

ple mathematical function. The overlapping sub-

epidemic building block approach helps us understand

how to decompose the larger-scale epidemic wave

patterns into multiple incidence curves that could be

shaped by multiple factors. The coarse-scale epidemic

wave can be investigated as the aggregation of regular

and overlapping sub-epidemics that are related to

each other in some systematic fashion. This reduces

the number of free parameters that are necessary to

relate sub-epidemics to each other.

After describing the sub-epidemic modeling frame-

work, we will apply the approach to describe and

generate short-term forecasts for past outbreaks. In

this process, we also systematically compare the good-

ness of fit and the forecasting performance of the

sub-epidemic wave model with that of simpler growth

models.

Mathematical framework of epidemic waves composed of

overlapping sub-epidemics

We model each group sub-epidemic by a generalized-

logistic growth model (GLM) which has displayed

promising performance for short-term forecasting the

trajectory of emerging infectious disease outbreaks

[20–22]. The GLM is given by the following differen-

tial equation:

dCðtÞ
dt

¼ rCpðtÞð1− CðtÞ
K0

Þ

where
dCðtÞ
dt

describes the incidence curve over time t.

The cumulative number of cases at time t is given by

C(t), while r is a positive parameter denoting the growth

rate ((people)1 − p per time), K0 is the final epidemic size,

and p ∈ [0, 1] is the “scaling of growth” parameter. If p =

0, this equation describes a constant incidence over time,

while if p = 1 the equation becomes the well-known ex-

ponential growth model. Intermediate values of p(0 <

p < 1) describe sub-exponential (e.g., polynomial) growth

patterns.

Next, we model an epidemic wave comprising a set of

n overlapping sub-epidemics that follow a regular struc-

ture using the following system of coupled differential

equations:

Table 1 Quality of the model fits to outbreak data. The sub-epidemic model yielded the best fit to the daily incidence curves based

on four performance metrics described in the text. Values highlighted in italics correspond to the best performance metric for a

given outbreak

Model Mean absolute error (MAE) Mean squared error (MSE) Mean interval score (MIS) Percentage coverage of the
95% prediction interval

SARS in Singapore

Sub-epidemic wave 1.7 6.2 10.9 90.0

Richards 2.1 8.1 15.5 85.7

Logistic 2.0 9.8 22.7 84.3

Plague in Madagascar

Sub-epidemic wave 5.9 50.8 37.7 80

Richards 7.0 77.7 63.0 70

Logistic 16.4 408.6 452.0 26

Ebola in DRC

Sub-epidemic wave 8.0 117.8 89.6 75.0

Richards 13.2 276.2 251.6 40.6

Logistic 18.1 467.7 463.2 28.1
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dCi tð Þ

dt
¼ rAi−1 tð ÞCi tð Þ

p 1−
Ci tð Þ

K i

� �

where Ci(t) tracks the cumulative number of infec-

tions for sub-epidemic i and Ki is the size of the ith

sub-epidemic where i = 1…n. Thus, the model reduces

to the simple logistic-type model when n = 1. To

model the onset timing of the (i + 1)th sub-epidemic,

we employ an indicator variable given by Ai(t) so that

the sub-epidemics comprising an epidemic wave fol-

low a regular structure because the (i + 1)th sub-

epidemic is triggered when the cumulative number of

cases for the ith sub-epidemic exceeds a total of Cthr

cases and overlapping because the (i + 1)th sub-

epidemic takes off before the ith sub-epidemic com-

pletes its course. Hence,

Ai tð Þ ¼
1 Ci tð Þ > Cthr

0 Otherwise
i ¼ 1; 2; 3;…n

�

where 1 ≤ Cthr < K0 and A1(t) = 1 for the first sub-

epidemic. Moreover, the size of the ith sub-epidemic

(Ki) declines exponentially at rate q for subsequently oc-

curring sub-epidemics due to multiple factors including

seasonal transmission effects, a gradually increasing ef-

fect of public health interventions or population

Fig. 3 Best fit of the sub-epidemic model to the SARS outbreak in Singapore. Our sub-epidemic model yielded the best fit to the incidence curve

of the SARS outbreak (Table 1). Moreover, the model successfully predicts the 2-wave pattern of the outbreak. Further, parameter estimates are

well identified as indicated by their relatively narrow confidence intervals. For instance, the 95% confidence interval for the size of the initial sub-

epidemic ranges between 106 and 143 cases. The top panels display the empirical distribution of r, p, K, and q. Bottom panels show the model fit

(left), the sub-epidemic profile (center), and the residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and

95% prediction interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual bootstrapped curves

assuming a Poisson error structure. Different sub-epidemics comprising the epidemic wave are plotted using different colors
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behavior changes that mitigate transmission. If q = 0, the

model predicts an epidemic wave comprising sub-

epidemics of the same size. Note that alternative de-

cline functions could be considered such as harmonic

or hyperbolic decline functions. Assuming that subse-

quent sub-epidemic sizes decline exponentially, we

have:

K i ¼ K 0e
−q i−1ð Þ

where K0 is the size of the initial sub-epidemic (K1 =

K0). Hence, when q > 0, the total number of sub-

epidemics supported by the model depends on Cthr, q,

and, K0 because the (i + 1)th sub-epidemic is only trig-

gered if Cthr ≤ Ki (Fig. 1). Moreover, the total size of an

epidemic wave composed of n overlapping sub-

epidemics is simply given by:

K tot ¼
X

n

i¼1

K0e
−q i−1ð Þ ¼

K0 1−e−qnð Þ

1−e−q

In the absence of control interventions or behavior

change (q = 0), the total epidemic size is given by:

K tot ¼ nK0

The initial number of cases given by C1(0) = I0 where I0
is the initial number of cases in observed case data. Then,

the cumulative curve of the epidemic wave denoted by

Ctot(t) is obtained by aggregating all of the n overlapping

sub-epidemics comprising the epidemic wave:

Ctot tð Þ ¼
X

n

i¼1

Ci tð Þ

Epidemic wave profiles

We use our model to characterize five broad profiles

of overlapping sub-epidemics shaping epidemic

waves: (1) stationary endemic waves, (2) single-peak

epidemic waves composed of a finite number of sub-

epidemics with or without the mitigative effects of

control interventions and/or behavior changes, and

(3) epidemic waves with oscillatory behavior com-

posed of a finite number of sub-epidemics with or

Fig. 4 Fit of the simple logistic growth model to the SARS outbreak in Singapore. This simple model was unable to reproduce the bimodal shape of

the outbreak. The top panels display the empirical distribution of r and K. Bottom panels show the model fit (left), the sub-epidemic profile (center),

and the residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% prediction interval (dashed red lines)

are also shown. Cyan curves are the associated uncertainty from individual bootstrapped curves assuming a Poisson error structure
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without the mitigative effects of control interventions

and/or behavior changes.

Parameter uncertainty and identifiability

Lack of identifiability or non-identifiability arises

when one or more parameter estimates are associated

with large uncertainties. This may be attributed to

the model structure (structural identifiability) or due

to the lack of information in a given dataset, which could

be associated with the number of observations and

the spatial-temporal resolution of the data [23, 24].

Because the time series of incident cases in the ob-

served epidemic wave is an aggregation of the over-

lapping sub-epidemics, different sub-epidemic profiles

may give rise to indistinguishable aggregated epidemic

waves. This can happen if the parameters are corre-

lated and different combinations of parameters result

in the same fit of the data but have different forecasts.

For a given epidemic wave, the number of sub-

epidemics could be correlated with the size of individ-

ual sub-epidemics and parameter Cthr which sets the

timing of the subsequent sub-epidemic. For example,

given a fixed sub-epidemic size, as Cthr increases, a

smaller number of sub-epidemics can be fit to the

epidemic wave.

When a parameter is associated with substantial un-

certainty, researchers may decide to constrain its range

to lie within a plausible or realistic range and as close as

Fig. 5 Best fit of the sub-epidemic wave model to the plague epidemic in Madagascar. This model yielded the best fit to the weekly incidence

curve. Moreover, our results predict an epidemic wave comprised by 5 sub-epidemics of decreasing size. Further, parameter estimates are well

identified as indicated by their relatively narrow confidence intervals. For instance, the 95% confidence interval for the size of the initial sub-

epidemic ranges between 634 and 761. The top panels display the empirical distribution of the parameter estimates (r, p, K, and q). Bottom panels

show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles correspond to the data points. The best model

fit (solid red line) and 95% prediction interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual

bootstrapped curves assuming a Poisson error structure. Different sub-epidemics comprising the epidemic wave are plotted using different colors
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possible to a best guess based on demographic and epi-

demiological data. For instance, the size of the first sub-

epidemic should not be too small (e.g., K0 > 100). More-

over, by design the number of sub-epidemics comprising

an epidemic wave in our model is constrained by Cthr <

K0. Further, the cumulative case threshold Cthr could be

further constrained so that it does not exceed the cumu-

lative number of cases at peak incidence.

Parameter estimation

Our parameter estimation approach has been described

in prior publications (e.g., [19, 25]). Calibrating our sub-

epidemic modeling framework to time series data

requires estimating 5 model parameters namely

Θ = (Cthr, q, r, p, K). Model parameters were estimated

via least-square fitting of the model solution to the ob-

served incidence data [26]. This is achieved by searching

for the set of parameters Θ̂ ¼ ðθ̂1; θ̂2;…; θ̂mÞ that

minimize the sum of squared differences between the

observed incidence data yti ¼ yt1 ; yt1 ;…; ytn and the cor-

responding mean incidence curve denoted by f(ti,Θ).

That is, the objective function is given by

Θ̂ ¼ arg min
X

n

i¼1

f ti;Θð Þ−yti
� �2

where ti are the time points at which the time series data

are observed, and n is the number of data points available

Fig. 6 Best fit of the sub-epidemic model to the Ebola epidemic in DRC. Based on the first 28 weeks of the Ebola epidemic in DRC (06

Sep 2018 to 11 Mar 2019), our sub-epidemic model yielded the best fit to the incidence curve. Moreover, our results predict an epidemic

wave comprised by 4 sub-epidemics of stable size (~ 250 cases) as the parameter q is estimated to be very low, suggesting a stable

incidence pattern. Further, parameter estimates are well identified as indicated by their relatively narrow confidence intervals. For instance,

the 95% confidence interval for the sub-epidemic size ranges from 232 to 275. The top panels display the empirical distribution of r, p, K,

and q. Bottom panels show the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles correspond to the

data points. The model fit (solid red line) and 95% prediction interval (dashed red lines) are also shown. Cyan curves are the associated

uncertainty from individual bootstrapped curves assuming a Poisson error structure. Different sub-epidemics of the epidemic wave profile

are plotted using different colors
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for inference. Hence, the model solution f ðti; Θ̂Þ yields

the best fit to the time series data yti . We solve the nonlin-

ear least squares problem using the trust-region reflective

algorithm. We used parametric bootstrap, assuming a

Poisson error structure, to quantify the uncertainty in the

parameters obtained by a nonlinear least squares fit of the

data, as described in refs. [19, 25]. Our best-fit model solu-

tion is given by f ðt; Θ̂Þ where Θ̂ is the vector of parameter

estimates. Our MATLAB (The Mathworks, Inc) code for

model fitting along with outbreak datasets is publicly

available [27].

The model confidence intervals of the parameters and

95% prediction intervals of the model fits were obtained

using parametric bootstrap [19]. That is, we re-estimated

the parameters Θ̂i where i = 1, 2, …, S. Here, S is the num-

ber of bootstrap realizations, and the uncertainty around

the mean of model fit is defined by f ðt; Θ̂1Þ; f ðt; Θ̂2Þ;…; f

ðt; Θ̂SÞ . This information can be further used to generate

95% prediction intervals. Note that these model confi-

dence intervals are for the model, not the true underlying

epidemic. Since the model is only an approximation of the

underlying transmission dynamics, the model discrepancy

can result in the observations and forecasts that are out-

side these model confidence intervals. The uncertainty of

the model forecasts, f ðt; Θ̂Þ , is estimated using the vari-

ance of the parametric bootstrap samples

f t; Θ̂1

� �

; f t; Θ̂2

� �

;…; f t; Θ̂S

� �

where Θ̂i denotes the estimation of parameter set Θ

from the ith bootstrap sample. The 95% prediction inter-

vals of the forecasts in the examples are calculated from

the 2.5% and 97.5% percentiles of the bootstrap

forecasts.

Assessing model performance

In order to evaluate the performance of our sub-epidemic

wave model in its capacity to describe and forecast inci-

dence patterns in the short term, we compared it to the

well-known two-parameter logistic growth model and the

three-parameter Richards model [28, 29]. While the logis-

tic growth model is nested within our sub-epidemic mod-

eling framework, the Richards model is not. The logistic

growth model (LM) is given by:

dC tð Þ

dt
¼ rC tð Þ 1−

C tð Þ

K0

� �

The Richards model with three parameters (r, a, K) is

given by:

Table 2 Short-term forecasting performance in the context of the SARS outbreak in Singapore. The sub-epidemic model

outperformed the simpler growth models in terms of all of the performance metrics in short-term forecasts. Values highlighted in

italics correspond to the best performance metric at a given forecasting horizon

Model Mean absolute error (MAE) Mean squared error (MSE) Mean interval score (MIS) Percentage coverage of the
95% prediction interval

4 days ahead

Sub-epidemic wave 3.6 28.1 40.6 76.1

Richards 3.7 28.8 79.1 63.3

Logistic 3.8 31.1 60.3 69.4

6 days ahead

Sub-epidemic wave 4.0 39.5 46.9 76.3

Richards 4.1 39.7 87.9 60.4

Logistic 4.1 42.0 66.0 69.3

8 days ahead

Sub-epidemic wave 4.4 55.7 54.1 75.6

Richards 4.4 54.5 94.7 59.4

Logistic 4.4 56.9 71.1 68.9

10 days ahead

Sub-epidemic wave 4.9 83.5 60.3 74.0

Richards 4.8 79.3 99.0 58.9

Logistic 4.8 81.7 77.2 68.0
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dC tð Þ

dt
¼ rC tð Þ 1−

C tð Þ

K 0

� �a� �

where the parameter a is a positive constant.

To assess both the quality of the model fit and the

short-term forecasts, we employed four performance

metrics: the mean absolute error (MAE), the mean

squared error (MSE), the coverage of the 95% prediction

intervals, and the mean interval score (MIS) [30].

The mean absolute error (MAE) is given by:

MAE ¼
1

n

X

n

i¼1

f ti; Θ̂
� �

−yti

�

�

�

�

Here yti is the time series of incident cases describing

the epidemic wave where ti are the time points of the

time series data [31]. Similarly, the mean squared error

(MSE) is given by:

MSE ¼
1

n

X

n

i¼1

f ti; Θ̂
� �

−yti
� �2

In addition, we assessed the coverage of the 95% pre-

diction interval, e.g., the proportion of the observations

that fell within the 95% prediction interval and a metric

that addresses the width of the 95% prediction interval

as well as coverage via the mean interval score (MIS)

[30, 32] which is given by:

MIS ¼
1

h

X

h

i¼1

U ti−Ltið Þ þ
2

0:05
Lti−yti
� �

Ι yti < Lti
� 	

þ
2

0:05
yti−U ti

� �

Ι yti > U ti

� 	

where Lt and Ut are the lower and upper bounds of

the 95% prediction interval and Ι{} is an indicator func-

tion. Thus, this metric rewards for narrow 95% predic-

tion intervals and penalizes at the points where the

observations are outside the bounds specified by the

Fig. 7 Representative 10-day ahead forecasts of the sub-epidemic model to the SARS outbreak in Singapore. The model was able to capture the

two-wave pattern once the model is calibrated using data that includes the early surge of the second sub-epidemic. Black circles correspond to

the data points. The model fit (solid red line) and 95% prediction interval (dashed red lines) are also shown. The vertical line indicates the start

time of the forecast
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95% prediction interval where the width of the predic-

tion interval adds up to the penalty (if any) [30].

The mean interval score and the coverage of the 95%

prediction intervals take into account the uncertainty of

the predictions whereas the MAE and MSE only assess

the closeness of the mean trajectory of the epidemic to

the observations [8]. These performance metrics have

also been adopted in international forecasting competi-

tions [32].

Application to epidemic outbreaks

We apply our modeling framework to describe and

short-term forecast three real outbreaks namely severe

acute respiratory syndrome (SARS) in Singapore, plague

in Madagascar, and the ongoing Ebola outbreak in the

Democratic Republic of Congo (DRC).

SARS outbreak in Singapore

We obtained the daily number of new SARS cases by date

of symptom onset of the 2003 SARS outbreak in Singapore

[33] (Additional file 1). This outbreak involved three major

hospitals in Singapore, and the incidence curve exhibited

two overlapping waves that peaked in mid-March and early

April (2003), respectively. These two small waves largely

correspond to sub-epidemics stemming from different

healthcare settings [33]. This epidemic lasted a total of 70

days. For each model, we generated a total of 46 short-term

forecasts from day 15 until day 60. We evaluated 4, 6, 8,

and 10 days ahead forecasts.

Ebola outbreak in DRC, September, 2018, to mid-April, 2019

We obtained a weekly incidence curve according to

the date of symptom onset for the second wave of

the ongoing Ebola outbreak in the DRC from the

WHO Situation Reports and Disease Outbreak News

covering the reporting period: September 2018 to

mid-April 2019 [34]. The incidence curve of the epi-

demic was further adjusted for reporting delays as

described in ref. [35]. Briefly, the curve of crude in-

cidence by date of symptom onset was adjusted for

reporting delays using a nonparametric method that

adapts survival analysis and life table techniques for

use with right truncated data [36, 37]. This epidemic

has become the second largest Ebola outbreak in

history with 1186 reported cases as of April 11,

2019, despite active ring vaccination efforts in the

region [34]. The outbreak was first reported on Au-

gust 1, 2018, by the WHO, spreading in the urban

areas of the provinces of North Khivu and Ituri in

the northeast region that borders Uganda [38]. Un-

fortunately, armed conflict in the Ebola-affected zone

is hindering rapid response activities including case

detection, contact tracing, isolation, and vaccination.

Prolonged transmission has been primarily attributed

to poor infection control practices in healthcare

Table 3 Short-term forecasting performance in the context of the plague outbreak in Madagascar. Although the sub-epidemic

model consistently outperformed the simpler models in terms of the quality of fit to the plague outbreak, the sub-epidemic model

did not always outperform the Richards model based on all performance metrics in short-term forecasts. Values highlighted in italics

correspond to the best performance metric at a given forecasting horizon

Model Mean absolute error (MAE) Mean squared error (MSE) Mean interval score (MIS) Percentage coverage of the
95% prediction interval

2 weeks ahead

Sub-epidemic wave 11.3 216.8 64.4 86

Richards 13.2 275.0 101.3 76

Logistic 27.9 878.1 714.0 14

3 weeks ahead

Sub-epidemic wave 12.8 353.5 90.4 86.7

Richards 14.9 392.0 112.0 74.7

Logistic 29.7 1003.0 792.0 12.0

4 weeks ahead

Sub-epidemic wave 14.4 549.7 115.9 85.0

Richards 16.4 508.0 137.9 70.0

Logistic 31.3 1112.4 862.2 11.0

5 weeks ahead

Sub-epidemic wave 16.3 878.5 138.8 85.6

Richards 17.5 624.6 164.6 65.6

Logistic 32.3 1197.0 919.1 10.4
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settings, delays in case detection and isolation, com-

munity resistance, and violent attacks targeting

health workers and health centers [38]. For each

model, we conducted a total of 19 forecasts from

week 8 to week 26 of the epidemic. We assessed 2,

3, 4, and 5 weeks ahead forecasts.

Plague outbreak in Madagascar

We analyzed the main epidemic wave of the 2017

plague epidemic in Madagascar which was retrieved

from the WHO reports. The epidemic wave consists

of weekly confirmed, probable and suspected plague

cases during September–November 2017 [39]. The

epidemic comprises 50 incidence weeks. For each

model, we generated a total of 26 forecasts from week

10 to week 35 of the epidemic. We assessed 2, 3, 4,

and 5 weeks ahead forecasts.

Results
Figure 2 displays five representative epidemic waves

comprised of overlapping sub-epidemics characterized

by the following parameters: r = 0.15, p = 0.9, K = 2000.

Specifically, the first panel shows a stationary 300-day

endemic wave comprising 10 sub-epidemics with a cu-

mulative case threshold Cthr of 20 cases and parameter

q = 0. Note that the last few sub-epidemics have not

completed their course by the end of the simulation

period. The second panel displays a temporary endemic

wave comprising 5 sub-epidemics with a cumulative case

threshold Cthr of 20 cases and parameter q = 0. This

epidemic wave profile differs from the previous one in

that all of the sub-epidemics have completed their

course within the first 250 days of the simulation. The

third panel shows an epidemic wave comprising 10 de-

clining sub-epidemics with a cumulative case threshold

Cthr of 20 cases where subsequent sub-epidemics

Fig. 8 Representative 5-week ahead forecasts of the sub-epidemic model to the plague outbreak in Madagascar. The model was able to

outperform simpler growth models in short-term forecasts based on the MAE, the MIS, and the coverage of the 95% prediction interval (Table 3).

Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval (dashed red lines) are also shown. The

vertical line indicates the start time of the forecast

Chowell et al. BMC Medicine          (2019) 17:164 Page 12 of 18



declines exponentially with rate q = 0.3. The fourth panel

displays an epidemic wave with sustained oscillations

composed of three sub-epidemics with a high cumulative

case threshold Cthr of 800 without the effects of inter-

ventions (q = 0). That is, each new sub-epidemic is not

triggered until the previous sub-epidemic has accumu-

lated 90% of its final sub-epidemic size. Finally, the fifth

panel represents an epidemic wave with damped oscilla-

tions comprising two sub-epidemics where the second

one is affected by interventions or behavior changes (q =

0.6) and is triggered once the first one has accumulated

40% of its total size.

Quality of the model fits to outbreak data

The sub-epidemic model consistently yielded the best fit

to the daily incidence curves for each of the three out-

breaks (SARS, plague, and Ebola) based on the four per-

formance metrics (MAE, MSE, MIS, and the coverage of

the 95% prediction interval) as shown in Table 1. For

the SARS outbreak in Singapore, the sub-epidemic

model was able to successfully capture the two-wave

pattern of the SARS outbreak, and the model parameter

estimates were well identified (Fig. 3). In contrast, the

simpler single-peak growth models were unable to re-

produce the bimodal shape of the outbreak, yielding

poorer performance (Table 1 and Fig. 4). For the plague

outbreak in Madagascar, the sub-epidemic model also

outperformed the other simple models (Table 1) and

captured an epidemic wave comprised by 5 sub-

epidemics of decreasing size (Fig. 5). Further, parameter

estimates for this outbreak were also well identified as

indicated by their relatively small uncertainty (Fig. 5).

For instance, the 95% confidence interval for the size of

the initial sub-epidemic ranges between 634 and 761.

During the first 28 weeks of the ongoing Ebola epidemic

in DRC (06 Sep 2018 to 11 Mar 2019), our sub-epidemic

model outperformed the simpler models (Table 1 and

Fig. 6). For instance, the sub-epidemic model yielded a

Fig. 9 Sub-epidemic profiles of the epidemic wave forecasts for the plague epidemic in Madagascar displayed in Fig. 8. The epidemic wave

model predicts a “traveling wave” composed of asynchronous sub-epidemics when the model is fitted to the weekly incidence just before or

around the epidemic peak. Once the declining phase of the epidemic is apparent, the model predicts a slowly declining tail of the epidemic

wave with some relatively mild oscillations. Black circles correspond to the data points. Different colors represent different sub-epidemics of the

epidemic wave profile. The vertical line indicates the start time of the forecast
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much lower MIS and much higher coverage of the 95%

prediction interval compared to simpler growth models

(Table 1). Moreover, our results predict an epidemic wave

consisting of 4 sub-epidemics of stable size (~ 250 cases)

as the parameter q is estimated to be very low, suggesting

a stable incidence pattern (Fig. 6). Further, parameter esti-

mates are well identified as indicated by their relatively

narrow confidence intervals. For instance, the 95% confi-

dence interval for the initial sub-epidemic size ranges

from 232 to 275. However, some of the most recent inci-

dence data points lie substantially above the upper bound

of the 95% prediction interval. These anomalies suggest

that substantial changes in the underlying dynamics (be-

yond stochasticity) have occurred more recently.

Short-term forecasting performance

For the SARS outbreak in Singapore, our sub-

epidemic model outperformed the simpler growth

models in terms of the mean interval score and the

coverage of the 95% prediction interval across the 4,

6, 8, and 10 days ahead short-term forecasts

(Table 2). However, at longer forecast horizons (8

and 10 days), the MAE and the MSE tended to be

lower for the Richards model. Unlike the sub-

epidemic model (Fig. 7), the simpler models were

unable to forecast the second surge in case incidence

of the SARS outbreak. Further, the quality of the fit

provided by the simpler models during the

calibration period deteriorates as the number of data

points increases.

For the plague outbreak in Madagascar, the sub-

epidemic model consistently outperformed the simpler

models in short-term forecasts (2, 3, 4, and 5 weeks

ahead) based on the MAE, the MIS, and the coverage

of the 95% prediction interval (Table 3). In terms of the

MSE, the sub-epidemic model outperformed the sim-

pler models at forecasting horizons of 2 and 3 weeks,

whereas the Richards model outperformed the other

models at forecasting horizons of 4 and 5 weeks

(Table 3, Figs. 8 and 9).

For the ongoing Ebola outbreak in DRC, the sub-

epidemic model consistently outperformed the other

models in short-term forecasts (2, 3, 4, and 5weeks

ahead) based on all of the performance metrics (Table 4).

We found that the sub-epidemic model predicts a travel-

ing wave with some oscillatory behavior that is shaped

by a sub-epidemic profile of consecutive outbreaks

(Fig. 10). However, the last forecast shows that the epi-

demic wave model was unable to capture a significant

increase in the incidence pattern associated with a fourth

sub-epidemic (Fig. 11).

Discussion
We have introduced a sub-epidemic wave modeling

framework based on the premise that overlapping

and regular sub-epidemics, which are often unob-

served, can determine the shape of the trajectory of

Table 4 Short-term forecasting performance in the context of the Ebola outbreak in DRC. For the ongoing Ebola outbreak in DRC,

the sub-epidemic model consistently outperformed the other models in short-term forecasts based on all of the performance

metrics. Values highlighted in italics correspond to the best performance metric at a given forecasting horizon

Model Mean absolute error
(MAE)

Mean squared error
(MSE)

Mean interval score
(MIS)

Percentage coverage of the
95% prediction interval

2 weeks ahead

Sub-epidemic wave 9.3 131.9 67.4 86.1

Richards 11.0 205.0 172.4 63.9

Logistic 21.3 555.2 538.5 13.9

3 weeks ahead

Sub-epidemic wave 10.9 194.7 104.8 79.6

Richards 12.8 277.6 217.1 59.3

Logistic 23.8 689.0 658.4 9.26

4 weeks ahead

Sub-epidemic wave 12.3 258.5 153.1 75.0

Richards 14.8 368.1 275.7 51.4

Logistic 26.0 828.9 768.9 7.0

5 weeks ahead

Sub-epidemic wave 14.1 337.9 207.1 68.9

Richards 17.0 473.5 338.6 43.3

Logistic 28.1 975.4 874.3 5.6
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epidemic waves that are observed at larger spatial

scales. We demonstrated the framework by assessing

the quality of model fit to observed case incidence

data and performance in short-term forecasts for

SARS in Singapore, plague in Madagascar, and the

ongoing Ebola outbreak in DRC (September 2018 to

mid-April 2019). We hope that our work will motivate the

advancement of modeling frameworks and forecasting

competitions that are needed for advancing the field of

disease forecasting.

Our findings indicate that the sub-epidemic model

outperformed simpler phenomenological growth

models in short-term forecasts based on performance

metrics that account for the uncertainty in predic-

tions and was a better fit to epidemic trajectories

from empirical outbreak data. The sub-epidemic

modeling framework supports a diversity of epidemic

growth dynamics including stable incidence patterns

with sustained or damped oscillations. For example,

the epidemic wave model successfully captured the

bimodal pattern of the SARS outbreak in Singapore,

and the short-term sequential model forecasts was

able to forecast the second surge in case incidence

for this outbreak. The second wave of the epidemic

cannot be predicted by the simpler logistic growth

models unless there is an external forcing term.

The sub-epidemic model for the Ebola epidemic in

DRC indicates that the national incidence curve fol-

lows a stable incidence pattern with periodic behavior

that can be decomposed into overlapping sub-

epidemics. In particular, the epidemic wave model

outperformed simpler phenomenological growth

models in short-term forecasts of the Ebola epidemic

in DRC. However, the model was unable to capture a

significant recent increase in the incidence pattern,

which highlights the need to strengthen public health

interventions in the region in order to bring the epi-

demic under control. Such a significant increase in

the incidence pattern could result from the deterior-

ation in the effectiveness of contact tracing efforts

Fig. 10 Representative 5-week ahead forecasts of the sub-epidemic model to the ongoing Ebola epidemic in DRC. Overall, we found that the

epidemic wave model predicts a “traveling wave” with some oscillatory behavior that is shaped by a sub-epidemic profile of consecutive

outbreaks. More specifically, the model consistently outperformed the simpler growth models in short-term forecasts based on all of the

performance metrics (Table 4). However, the last forecast was unable to capture a significant increase in the incidence pattern associated with

the fourth sub-epidemic of the epidemic wave profile shown in Fig. 11. Black circles correspond to the data points. The model fit (solid red line)

and 95% prediction interval (dashed red lines) are also shown. The vertical line indicates the start time of the forecast
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and systematic vaccination refusals associated with

community mistrust exacerbated by intermittent at-

tacks to health workers and treatment centers.

Reporting delays tend to introduce substantial un-

certainty in case incidence during the most recent

weeks of an ongoing epidemic outbreak [35–37] and

could potentially distort the incidence curve of the

epidemic, and in turn, misconstrue estimates of trans-

mission potential and forecasts of the outbreak trajec-

tory. In the context of the ongoing Ebola epidemic in

DRC [35], reporting delays are influenced by commu-

nity mistrust in the government and public health au-

thorities [40] as well as the effectiveness of control

interventions (e.g., contact tracing and vaccinations)

taking place in a conflict zone. Indeed, violent attacks

continue to hamper the ongoing Ebola outbreak re-

sponse, with recent attacks targeting Ebola treatment

centers mainly located in Congo’s eastern areas of

Butembo and Katwa [41, 42].

Our sub-epidemic modeling framework can capture

a rich spectrum of epidemic dynamics compared to

simple susceptible-infectious-removed (SIR) compart-

mental models which support early exponential

growth in naïve populations and near symmetric epi-

demic trajectories [43, 44]. Our epidemic wave model

supports traveling waves with oscillatory behavior

with or without the effects of control interventions.

Indeed, in large susceptible populations and in the

absence of control interventions, traditional SIR com-

partmental models with homogenous mixing predict

unabated exponential growth during the early epi-

demic growth phase in the absence of susceptible de-

pletion and control interventions or behavior changes.

Moreover, when calibrated with the trajectory of the

initial growth phase, traditional models (e.g., logistic

growth type models) tend to predict a near immediate

decline in the epidemic trajectory [19] while our epi-

demic wave model forecasts traveling waves of vari-

able shapes including resurgent epidemics stemming

from the aggregation of asynchronous sub-epidemics

[45]. Finally, post-peak forecasts using the epidemic

wave model display an epidemic tail that tends to

Fig. 11 Sub-epidemic profiles of the epidemic wave forecasts for the Ebola epidemic in DRC displayed in Fig. 10. The sub-epidemic profiles of

the forecasts derived for the ongoing Ebola outbreak in DRC exhibit consecutive and relatively stable sub-epidemics. Black circles correspond to

the data points. Different colors represent different sub-epidemics of the epidemic wave profile. The vertical line indicates the start time of the

forecast. The sub-epidemic model was unable to capture a significant increase in the incidence pattern associated with the fourth sub-epidemic

of the epidemic wave profile
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decline more slowly than predicted by traditional

single-epidemic homogenous mixing SIR models [43].

Our findings highlight how overlapping sub-epidemic

structures could give rise to oscillatory behavior or resur-

gence patterns in epidemic trajectories. This observation

has significant implications for interpreting apparent noise

in incidence data since the oscillations could be dismissed

as the result of data overdispersion when in fact the oscil-

lations stem from mechanisms underlying the transmis-

sion dynamics. More importantly, a real-time temporary

downturn in case incidence resulting from oscillatory be-

havior could give the false impression of a positive effect

of public health interventions.

Our epidemic wave model is phenomenological in the

sense that multiple factors could be responsible for the

predicted sub-epidemic profile ranging from the epi-

demiology of the disease to population mobility patterns,

the distribution of risk behavior, and the effects of public

health interventions. Prior studies have put forward rela-

tively simple models that incorporate population struc-

ture and support traveling epidemic waves or disease

resurgence patterns [45–51]). One such model is the

household-community transmission model with overlap-

ping communities that has been used to investigate

transmission and control of Ebola epidemics [48]. In this

model, outbreaks not only spread more slowly but the

size of those epidemics is smaller compared to the

homogenous mixing SIR models.

While the sub-epidemic wave model introduced in this

paper is relatively simple, our work should motivate fur-

ther development of more realistic multiscale models

based on the sub-epidemic building block, perhaps by

incorporating more complex dynamics for the gener-

ation of sub-epidemic profiles. For instance, in real-time

epidemic forecasting applications, it could be possible to

relax the assumptions regarding the regularity in the

timing and evolution of sub-epidemic sizes in our model

by relying on additional data stemming from field inves-

tigations. For instance, additional data could inform the

timing and relative size of unfolding sub-epidemics. Fur-

thermore, future work could investigate the forecasting

performance of the sub-epidemic model with that of

mechanistic models developed for specific diseases and

contexts. Among mechanistic models, one could con-

sider metapopulation transmission models that integrate

sub-epidemics shaped by dynamic transmission rates or

effective population sizes that fluctuate due to interven-

tions or behavior changes.

Additional file

Additional file 1: Incidence outbreak data for three real outbreaks. Daily

number of new SARS cases by date of symptoms onset of the 2003 SARS

outbreak in Singapore as explained in the text, weekly incidence curve

according to the date of symptoms onset for the second wave of the

ongoing Ebola outbreak in the DRC from the WHO Situation Reports

and Disease Outbreak News covering the reporting period:

September 2018 to mid-April 2019 as explained in the text, and

weekly incidence curve of the 2017 plague epidemic in Madagascar

as explained in the text. (XLS 32 kb)
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