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ABSTRACT The standard support vector machine (SVM) performs poorly on the identification problem

of low velocity impact areas due to its lower accuracy rate. Improving SVM’s performance using the

bat algorithm (BA) is feasible, but BA has the premature convergence problem. In this study, a hybrid

bat algorithm with double mutation operations (DMBA), in which the Cauchy mutation operator and the

extremal optimization mutation operator are integrated into BA, is proposed to enhance BA’s ability to

jump out of the local optima. Then, a novel SVM based on this hybrid BA, which is called SVM_DMBA,

is developed to address the identification problem. Compared with the standard SVM and twelve improved

SVM methods which are combined with the standard algorithms, advanced algorithms, and bat variants,

the significant performance of SVM_DMBA is validated using UCI datasets. Moreover, to identify low

velocity impact areas, SVM_DMBA is applied to the low velocity impact localization system based on fiber

Bragg grating (FBG) sensors. The statistical results indicate that SVM_DMBA is a significantly effective

method for identifying the low velocity impact areas and generates higher identification accuracy than

comparativemethods. For 64 low velocity impact areas of 30mm×30mmon an aluminium plate, the average

identification error obtained by SVM_DMBA is 1.615%.

INDEX TERMS Extremal optimization, fiber Bragg grating sensor, hybrid bat algorithm, low velocity

impact areas, support vector machine.

I. INTRODUCTION

Low velocity impact damages often occur on the ship because

of accidents which include collisionswith floating ice, strand-

ing, and explosion. Therefore, the identification of low veloc-

ity impact areas on the ship is important. The location of

impact source can be identified according to impact signals

which are acquired from the sensing system in the struc-

ture. Generally, sensor types in the sensing system for struc-

tural health monitoring (SHM) include piezoelectric sensors

(PZT), fiber optic sensors, and other types of sensors. Ships

always sail in the harsh marine environment, which requires

that sensors have better performance. Compared with the

electrical sensor, the fiber Bragg grating (FBG) sensor is

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuihua Wang .

more suitable for the SHM of ships due to its flexibility,

multiplexing capability, corrosion resistance, small size, and

embedding capability [1]. Several researchers have reported

that the FBG sensor is feasible for SHM using strain moni-

toring [2] and acoustic emission (AE) detection [3], [4].

There have been many studies on impact localization

methods for structures with various materials by using dif-

ferent types of sensors. Among various kinds of methods

available, the triangulation method [5], the neural network

algorithm [6], the time reversal method [7], and the reference

database method [8] are widely used. Support vector machine

(SVM) has been adopted to identify low velocity impact areas

in the plate structure [9], but it presents some limitations due

to its lower accuracy rate [10].

The accuracy rate, which mainly depends on the training

process of SVM, is a crucial value for evaluating SVM’s
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performance. To improve the performance of SVM, a variety

of methods such as gradient descent method [11] and grid

search method [12] have been successfully used. Evolution-

ary computation (EC), as a powerful stochastic optimization

method, has aroused the attention of scientists and begun to be

combined with SVM. For instance, particle swarm algorithm

(PSO) was widely employed to tune SVM’s parameters for

the classification of spot welded joint strength [13], the recog-

nition of anchor rod [14], and the recognition of multiple

fault condition of rolling bearing [15]. The combination of

genetic algorithm (GA) and SVM, in which GA was utilized

to optimize SVM’s parameters, was applied to the power

transformer fault identification [16]. In addition, other meta-

heuristic algorithms such as simulated annealing (SA) [17]

and fruit fly optimization algorithm (FOA) [18] were utilized

to acquire optimal parameters of SVM in classification tasks.

Recently, the bat algorithm (BA), inspired by microbats’

echolocation behavior, was proposed by Yang [19]. Based on

their echolocation capability, microbats can judge the prey’s

distance, shape, and location. Ametaheuristic searching algo-

rithm depends on two crucial components: exploration and

exploitation. Exploration is the search for diverse solutions

in new and undiscovered regions. Exploitation is to look for

the best solution among the explored neighbors. The stan-

dard BA has been proven to be effective and robust on low-

dimensional problems and several real world applications

because of its great global search capability, but it still has

the premature convergence problem. Thus, this study aims to

overcome the disadvantage of the standard BA and combine

improvedBAwith SVM to identify low velocity impact areas.

In this study, a hybrid bat algorithm with double mutation

operations (DMBA) is proposed and incorporated into the

support vector machine (SVM) to enhance SVM’s perfor-

mance. To overcome BA’s defect of trapping in the local

optima, the Cauchy mutation operator and the extremal opti-

mization mutation operator are introduced into the standard

BA. Subsequently, DMBA is applied to the optimization

of kernel parameter g and of penalty parameter c in the

SVM, which is called SVM_DMBA. The performance of

SVM_DMBA is evaluated by real world benchmark datasets

from UCI data repository and compared with that of the

standard SVM and that of twelve improved SVM methods.

Moreover, SVM_DMBA is applied to the low velocity impact

localization system based on fiber Bragg grating (FBG) sen-

sors to identify 64 low velocity impact areas on an aluminium

plate.

The rest of this paper is given as follows. Section II pro-

vides relative theories about SVM_DMBA and low veloc-

ity impact localization system. The details about the hybrid

bat algorithm and SVM_DMBA are given in Section III.

Results obtained by SVM_DMBA and comparative methods

in the numerical experiment and identification problem of

low velocity impact areas are discussed in Section IV. Finally,

Section V draws the conclusion and provides the suggestion

for future work.

II. RELATIVE THEORY

A. PRINCIPLE OF FBG SENSOR

The fiber Bragg grating (FBG) sensor is used as a filter to

select and reflect back a part of the input light. The center

wavelength of the reflected light is given by Eq. (1).

λ = 2nneff3 (1)

where λ is the center-reflecting wavelength of an FBG sensor.

Here, nneff is the average refractive index of optic fiber. 3 is

the Bragg grating spacing.

The refractive index and Bragg grating spacing vary as

the temperature and stress-strain change, which results in the

shift of the center-reflecting wavelength. Under normal room

temperature, the experiment is completed in a short time,

so the variation of the center-reflecting wavelength is caused

only by stress-strain. Thus, the shift of the center-reflecting

wavelength is expressed by Eq. (2).

1λε = λε (1 − Pe) (2)

where Pe denotes the photo-elastic constant concerned with

the Pockel and Poisson’s ratio. ε is the stress-strain.

As shown in Eq. (2), the center-reflectingwavelength is lin-

early correlated with the stress-strain. The center-reflecting

wavelength of FBG sensors shifts in response to the stress-

strain, which varies with the low velocity impact process on

an aluminium plate.

B. WAVELET TRANSFORM METHOD

In the literature [20], the wavelet transform method is intro-

duced as follows:

Wf (a, b) = |a|−
1
2

∫ ∞

−∞

f (t)ψ∗

(

t − b

a

)

dt (3)

where a ∈ R+ and b ∈ R denote the scale parameter

and translation parameter, respectively. Here, ψ∗ is the com-

plex conjugation of wavelet function ψ . In this entire study,

Daubechies 4 (DB4) with great orthogonality is chosen as the

mother wavelet.

To discretize the continuous wavelet, a and b are intro-

duced as follows:

a = a
j
0, b = kb

j
0b0 (4)

where k and j are integers, and a0 > 1 is the constant value.

The discrete wavelet transform is defined as Eq. (5).

Wj,k (t) = a
− 1

2

0

∫ ∞

−∞

f (t)ψ∗
(

a
−j
0 t − kb0

)

dt (5)

Then, the reconstruction formula is given by Eq. (6).

f (t) = C

∞
∑

−∞

∞
∑

−∞

Wj,ka
−

j
2

0 ψ

(

a
−j
0 t − kb0

)

(6)

where C is the constant value that is not concerned with the

signal.
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Algorithm 1 The Standard Bat Algorithm

Define the objective function f (X ), X = (x1, x2, · · · , xd )
T

Initialize the bat population Xi and Vi (i = 1, 2, · · · ,N )

Define pulse frequencies fi at Xi
Initialize loudness Ai and pulse emission rate ri
while (t ≤ Maximum number of iterations)

Calculate frequency Eq. (8)

Calculate velocities Eq. (9)

Calculate positions/solutions Eq. (10)

if (rand > ri)

Choose a solution from the best solutions

Obtain a new solution Eq. (11)

end if

if (rand < Ai& f (Xi) < f (X∗))

Adopt the new solutions

Reduce Ai Eq. (12)

Increase ri Eq. (13)

end if

Rank bats and search the current best X∗

t = t + 1

end while

Post-process results and visualization

C. BAT ALGORITHM

The bat algorithm (BA), whose idea comes from microbats’

echolocation capability and social behavior, was developed

for handling global optimization problems [19]. The echolo-

cation process of microbats is idealistically regarded as three

characteristics which are expressed as follows [19]:

• Using their echolocation capability, bats are able to dis-

criminate food/prey and avoid some barriers.

• Bats flight randomly with velocity Vi at position Xi
with a fixed frequency fmin and vary the wavelength

and loudness of echolocation pulse to seek food. The

wavelength and pulse emission rate r ∈ [0, 1] can

automatically change through the distance between bats

and their targets.

• The loudness of the pulse is adjusted from a max-

imum (positive) value A0 to a minimum constant

value Amin.

According to these idealizations, the pseudocode of BA is

described in Algorithm 1. The purpose of an algorithm is to

find high-quality food in a region where food sources are in.

According to Eq. (7), the initial population is acquired from

Nd-dimensional vectors. Subsequently, the quality of food for

each bat is evaluated.

xij = xmind + µ (xmaxd − xmind ) (7)

where i = 1, 2, · · · ,N and j = 1, 2, · · · , d . µ ∈ [0, 1] is a

random value. xmaxd is the upper limit and xmind is the lower

limit in d-dimensional space.

The position (Xi) and velocity (Vi) of each bat (i) varies

with the number of iterations. For a bat at time step (t),

the new position and velocity can be given as follows:

fi = fmin + (fmax − fmin) beta (8)

V t
i = V t−1

i +

(

X t−1
i − X∗

)

fi (9)

X ti = X t−1
i + V t

i (10)

where fi is the frequency of the ith bat. fmin is the minimum

frequency and fmax is the minimum frequency. β ∈ [0, 1]

is the random value. X∗ is the current global best solution

achieved by comparing solutions among N bats.

The new solution of each bat in the exploitation process is

obtained by Eq. (11).

xnew = xold + εAt (11)

where ε ∈ [0, 1] is a random value and At =
〈

Ati
〉

is the

average loudness at this time step.

The loudness Ai and pulse emission rate ri are updated in

the process of iterations. As the distance between bats and

their prey decreases, Ai decreases, whereas ri increases. They

are calculated in terms of Eq. (12) and Eq. (13), respectively.

At+1
i = αAti (12)

r t+1
i = r0i

[

1 − exp (−γ t)
]

(13)

where α and γ are both fixed values. For any 0 < α < 1 and

γ > 0, Ati → 0 and r ti → r0i as t → ∞. In general, the initial

loudness A0i belongs to [1, 2] and the initial pulse emission

rate r0i belongs to [0, 1].

D. SUPPORT VECTOR MACHINE

The support vector machine (SVM) was proposed based on

statistical learning theory, which is an approximate structural

risk minimization method and a powerful tool for classifi-

cation tasks [21], [22]. Compared with other classification

methods, SVM shows greater efficiency and accuracy in

dealing with the large quantity of sample data because there

is no distinct effect of sample size on SVM’s performance.

Consider the sample data and sample category are {xi, yi},

where i = 1, 2, · · · , l, yi ∈ {−1, 1}, and l is the number

of sample data. For the soft margin classification, the primal

problem of SVM is defined as follows:














min
1

2
‖ω‖2 + c

l
∑

i=1

εi

s.t. yi (ω · x + b∗) ≥ 1 − εi (εi ≥ 0)

(14)

where ω and b∗ denote the weight vector and the bias vector,

respectively. Here, εi and c denote a slack factor and the

penalty parameter, respectively.

Then, using SVM to handle classification problems can be

presented as the dual optimization problem which is given by

Eq. (15).


























min
1

2

j
∑

i=1

l
∑

j=1

yiyjαiαjK
(

xi, xj
)

−

l
∑

i=1

αi

s.t.

l
∑

i=1

αiyi = 0 (0 ≤ αi ≤ c)

(15)
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where αi denotes the Lagrange multipliers. K
(

xi, xj
)

denotes

the kernel function which commonly involves linear func-

tion, polynomial function, Gaussian function, and radial basis

function (RBF). In this paper, we choose RBF as the kernel

function because RBF has a faster learning speed and greater

classification capability. The RBF is given by Eq. (16).

K
(

xi, xj
)

= exp
(

−g
∥

∥xi − xj
∥

∥

2
)

(16)

where g is the kernel parameter.

The classification results of sample data are calculated

according to the decision function expressed as follows:

f (x) = sgn

(

l
∑

i=1

α∗
i yiK

(

xi, xj
)

+ b∗

)

(17)

III. NOVEL SVM BASED ON HYBRID BAT ALGORITHM

A. HYBRID BAT ALGORITHM WITH DOUBLE MUTATION

OPERATIONS

The standard bat algorithm may encounter the premature

convergence problem in solving complex optimization prob-

lems [23]. In this study, we have introduced two mutation

operators into BA to enhance its performance in jumping out

of the local optima. These two mutation operators involve

the Cauchy mutation operator and the extremal optimization

mutation operator. The pseudocode of the hybrid bat algo-

rithm with double mutation operations (DMBA) is displayed

in Algorithm 2.

1) CAUCHY MUTATION OPERATOR

ACauchy mutation operator based on the Cauchy probability

distribution has been introduced in designing a fast evolu-

tionary programming [24]. Other than the Gaussian prob-

ability distribution, the Cauchy probability distribution has

a longer two-tail, and thus the population generated by the

Cauchy mutation operator is significantly different from its

parents [25]. In other words, the bound of the random value

is wider, which means that this mutation operator can offer

more chances for solutions to escape from the local optima.

The definition of Cauchy density function is given by

Eq. (18) [26].

f (x) =
1

π

t

t2 + x2
(18)

where x ∈ [−∞,∞], and t > 0 is the scale factor.

Then, the Cauchy distributed function is described by

Eq. (19) [26].

Ft (x) =
1

2
+

1

π
arctan

(x

t

)

(19)

During early iterations, the global search capability of

BA must be enhanced to enlarge bats’ search space. Thus,

the Cauchy mutation operator is embedded into BA to com-

pulsively perform the mutation of the position of each bat

using Eq. (20).

X ti = X ti (1 + Cauchy (0, 1)) (20)

Algorithm 2 DMBA

Define the objective function f (X ), X = (x1, x2, · · · , xd )
T

Initialize the bat population Xi and Vi (i = 1, 2, · · · ,N )

Define pulse frequencies fi at Xi
Initialize loudness Ai and pulse emission rate ri
Define INV-iteration interval

while (t ≤ Maximum number of iterations)

Calculate frequency Eq. (8)

Calculate velocities Eq. (9)

Calculate positions/solutions Eq. (10)

Perform the Cauchy mutation operator on the new

solution Eq. (20)

if (rand > ri)

Choose a solution from the best solutions

Obtain a new solution Eq. (11)

end if

if (rand < Ai& f (X ti ) < f (X t−1
i ))

Adopt the new solutions

Reduce Ai Eq. (12)

Increase ri Eq. (13)

end if

if (f (X ti ) < f (X∗))

Update the current best X∗

end if

if(iteration mod INV=0)

Evaluate local fitness Cij for each component

(i = 1, 2, · · · ,N ; j = 1, 2, · · · , d)

Find k satisfying Cik ≤ Cij for all i and j

(k = 1, 2, · · · , d)

Choose X ′ ∈ Neigh(X ) such that xik must change its

state

if (f (X ′) < f (X ti ))

Update X ti
end if

if (f (X ti ) < f (X∗))

Update the current best X∗

end if

end if

t = t + 1

end while

Post-process results and visualization

where Cauchy (0,1) is the random value achieved by Eq. (19)

in which t is equal to 1.

2) EXTREMAL OPTIMIZATION MUTATION OPERATOR

During later iterations, bats are around the global best solu-

tions as the diversity of the population decreases, which

means that it is necessary to reinforce the local search capa-

bility of BA to search for the best solutions. Additionally,

the premature convergence problem may occur when there

is no change in the global best solution after a certain num-

ber of iterations. Thus, to achieve better quality solutions,

the extremal optimization (EO) algorithm with a great local
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Algorithm 3 The Extremal Optimization Algorithm

Randomly initialize the configuration X

Set the optimal solution Xbest = X

while (t ≤ Maximum number of iterations)

Evaluate local fitness Ci for each variable

xi (i = 1, 2, · · · , d)

Find j satisfying Cj ≤ Ci for all i, i. e., xj has the

‘‘worst fitness’’ Choose X ′ ∈ Neigh(X ) such that xj
changes its state

Adopt X = X ′ unconditionally

if (f (X ) < f (Xbest ))

Xbest = X

f (Xbest ) = f (X )

end if

t = t + 1

end while

Return Xbest and f (Xbest )

search capability is chosen as the mutation operator to com-

bine with BA.

Based on Bak-Sneppen model of self-organized critical-

ity, Boettcher and Percus developed the EO algorithm [27].

Unlike other intelligent algorithms, EO is a local search

method where poor individuals are partly eliminated and

replaced to produce new individuals in the population evolu-

tion. The EO algorithm to solve the unconstrained minimiza-

tion problem is described in Algorithm 3.

In this method, the new best solution is obtained by search-

ing near the current best solution. Due to the small muta-

tion size of the EO mutation operator, BA’s performance in

escaping from the local optima is greatly enhanced. This

method is suitable for exploitation during later iterations.

Therefore, as the second mutation operator, the EO algorithm

is embedded into BA.

To handle d-dimensional unconstrained minimization

problems, the local fitness is calculated. Then, the worst com-

ponent in each component of a solution is determined. For

the jth component of a solution, its fitness value is generally

regarded as the mutation cost [28]. Therefore, in the DMBA,

the local fitness Cij of each component xij(i = 1, 2, · · · ,N ;

j = 1, 2, · · · , d) is given by Eq. (21).

Cij = f
(

Xij
)

− f (Xbest) (21)

where Xij is the new solution achieved executing the mutation

operation only on xij and fixing the other components. f (Xij)

is the fitness value of Xij, whereas f (Xbset ) is the fitness value

of the global best solution Xbest .

Note that executing the EOmutation operator will increase

the computation time if BA is not stuck at the local optima.

To control the frequency of launching the EO mutation

operator in the DMBA, a strategy that the EO mutation

operator is executed every INV-iterations is utilized in this

paper [29].

FIGURE 1. The flowchart of the proposed SVM_DMBA.

B. COMBINATION OF SVM AND DMBA

The determination of parameters has a significant influence

on the identification accuracy and the convergence rate of

SVM. In the SVM, there are two parameters to be optimized,

including the kernel parameter g and the penalty parameter

c [30]. The kernel parameter g has an effect on the kernel

mapping distribution of the sample, and the penalty parameter

c has an effect on the clash between algorithm complexity and

identification accuracy [15].

Generally, in the SVM, as the kernel parameter g is smaller

and the penalty parameter c is larger, the nonlinear fitting

capability is better, whereas the training time is longer. Small

kernel parameter g means less smoothness, and the gen-

eralization capability decrease as the penalty parameter c

increase. In other words, determining the appropriate combi-

nation of g and c is important because it significantly affects

the use of SVM to perform great identification accuracy for

impact areas.

Since the time consumption is too long when common

techniques such as grid search and random search are used to

handle a large number of sample data [31], these techniques

are not applicable to the identification of low velocity impact

areas. To obtain better identification performance, DMBA is

employed to optimize g and c during the training process of

SVM, which is called SVM_DMBA. The correct identifica-

tion rate is regarded as the fitness value in DMBA, which is

obtained by the 5-fold cross validation on the training sample

set [15]. Fig. 1 shows the flowchart of SVM_DMBA.

IV. EXPERIMENTS AND DISCUSSIONS

In this work, two experiments were carried out. The first

numerical experiment based on benchmark datasets from the

UCI data repository was executed to evaluate SVM_DMBA’s
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TABLE 1. Classical benchmark datasets from the UCI data repository.

performance on real world application problems. Addition-

ally, the second experiment was implemented to emphasize

the feasibility and effectiveness of SVM_DMBA on the iden-

tification problem of low velocity impact areas. These two

experiments were performed through MATLAB R2015b on

Intel (R) Core (TM) i7-8700CPU@3.20GHzwith 16.00GB

of RAM and Windows 10 64-bit operating system.

A. PERFORMANCE ANALYSIS OF SVM_DMBA

To validate the performance of SVM_DMBA on the real

world application problem, the publicly available real world

benchmark datasets chosen from the UCI data repository

[32] (http://archive.ics.uci.edu/ml/index.php) were used in

this experiment. Table 1 lists the details of ten benchmark

datasets. Each dataset was randomly divided into two parts

that 70% of each dataset was employed for the training sam-

ple set and 30% of each dataset was used as the test sample

set. The appropriate parameters were selected by using the

training sample set during the training process, meanwhile,

the classification error was measured by using the test sample

set during the test process.

In this experiment, to analyze the contribution of differ-

ent modifications, BA was combined with Cauchy mutation

operator, which was called BACA; BA was combined with

EO mutation operator, which was called BAEO. These two

comparative algorithms were utilized to optimize parameters

of SVM and compare with DMBA. Four standard algorithms

including BA, GA [33], PSO [34], and differential evolution

(DE) [35] were embedded into SVM, which were called

SVM_BA, SVM_GA, SVM_PSO, and SVM_DE. Addition-

ally, three advanced algorithms, which were composed of

chicken swarm optimization (CSO) [36], ant lion optimizer

(ALO) [37], and grey wolf optimizer (GWO) [38], were

adopted. These advanced algorithms were combined with

SVM as follows: SVM_CSO, SVM_ALO, and SVM_GWO.

Since a majority of BA variants were proposed to improve

BA’s performance, three improved bat algorithms were also

chosen as the comparative methods to optimize the SVM.

These BA variants were hybrid bat algorithm (HBA) [39], bat

algorithm based on iterative local search and stochastic iner-

tia weight (ILSSIWBA) [40], and directional bat algorithm

(dBA) [41]. For the HBA, three effective modifications were

proposed. For the ILSSIWBA, the iterative local search and

stochastic inertia weight were incorporated with BA. For the

dBA, the directional echolocation was introduced into BA.

Then, these improved SVMmethodswere called SVM_HBA,

SVM_ILSSIWBA, and SVM_dBA.

For a fair comparison, the population size N was set

to 10 and the maximum number of iterations tmax was set to

100 for DMBA and comparative algorithms. Other parame-

ters of these algorithms were set as follows:

• DMBA: The proposed algorithm was implemented with

α = γ = 0.9, fmin = 0, fmax = 1, A0 = 0.95, r0 = 0.85,

and INV = 10.

• BA: As mentioned in the literature [42], the standard BA

was executed with α = γ = 0.9, fmin = 0, fmax = 1,

A0 = 0.95, and r0 = 0.85.

• GA: The crossover probability pc was set to 0.95 and the

mutation probability pm was set to 0.05 [33].

• PSO: The acceleration coefficients c1 and c2 were set to

1.5 and 1.2. The inertia weight ω ∈ [0.4, 0.9] was the

monotone decreasing function [34].

• DE: As described in the literature [35], this standard

algorithm was carried out with the cross rate CR ∈

[0.2, 0.9] and the scale factor F ∈ [0.4, 1].

• CSO: We executed this algorithm with the number of

the roosters RN = 0.2 ∗ N , the number of the hens HN

= 0.6 ∗ N , the number of the chicks CN = N-RN-HN,

the number of the mother hens MN = 0.1 ∗ N , the time

steps G = 10, and the parameter FL ∈ [0.5, 0.9] [36].

• HBA: It was applied with α = γ = 0.9, fmin = 0, fmax =

1, A0 = 0.95, r0 = 0.85, the limiting threshold LT = 5,

and the maximum limiting thresholdMLT = 2 [39].

• ILSSIWBA: This algorithm described in the literature

[40] was considered with fmin = 0, fmax = 2, A0 = 0.9,

the lower limit of loudnessA∞ = 0.6, r0 = 0.1, the

upper limit of pulse rate r∞ = 0.7, the minimum factor

of the stochastic inertia weight µmin = 0.4, the maxi-

mum factor of the stochastic inertia weight µmax = 0.9,

and the deviation between the stochastic inertia weight

and its mean σ = 0.2.

• dBA: The considered algorithm was implemented as it

was shown in the literature [41] with r0 = 0.1, r∞ =

0.7, A0 = 0.9, A∞ = 0.6, fmin = 0, and fmax = 2.

• The parameters of BAEO and BACA were the same as

those of DMBA and BA, respectively.

• ALO has no special parameters besides the population

size and the maximum number of iterations [37], and

GWO has two random generated parameters [38].

For parameters of the standard SVM, the penalty param-

eter c was set to 1, and the kernel parameter g was equal

to 1
/

d (d was the dimension of sample data) [15]. During

the optimization process, the penalty parameter c and the

kernel parameter g, whose lower bounds and upper bounds

were [0.1, 0.01] and [100, 1000], were optimized by the

above thirteen optimization algorithms. For each dataset, the

procedures of all methods were carried out 30 times. The

mean value and the standard deviation of classification errors

are recorded in Tables 2-5.
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TABLE 2. Comparison of the standard SVM with improved SVM methods based on two mutation operators on classical benchmark datasets. The
‘‘p-value’’ is the result of the Wilcoxon test at a 0.05 level of significance (Time in seconds).

TABLE 3. Comparison of SVM_DMBA with improved SVM methods based on the standard algorithms on classical benchmark datasets. The ‘‘p-value’’ is
the result of the Wilcoxon test at a 0.05 level of significance (Time in seconds).

TABLE 4. Comparison of SVM_DMBA with improved SVM methods based on the advanced algorithms on classical benchmark datasets. The ‘‘p-value’’ is
the result of the Wilcoxon test at a 0.05 level of significance (Time in seconds).

In this study, the nonparametric Wilcoxon test with a level

of significance of 0.05 [43] was employed to compare the

mean values of the classification errors achieved by the stan-

dard SVM and different improved SVM methods. The p-

values of a two-sidedWilcoxon signed rank test are illustrated

in Tables 2-5. At the bottom of these Tables, the computation

time obtained by SVM_DMBA and comparative algorithms

for all problems is listed. The best results are bold.

In Table 2, SVM_BA obtained better results than the

standard SVM only for Ecoli and Abalone, which indicates

that BA has a limited ability to optimize SVM due to BA’s

premature convergence problem. However, improved SVM

methods based on two mutation operators showed better

performance than SVM_BA for a majority of problems,

especially SVM_DMBA. Compared with the standard SVM,

SVM_BACA had better results for four problems (Segmen-

tation, Ecoli, Abalone, and Robot Navigation); SVM_BAEO

had better results for five problems (Segmentation, Vowel,

Diabetes, Abalone, and Robot Navigation), and it was

similar to SVM for four problems (Zoo, Iris, Wine, and
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TABLE 5. Comparison of SVM_DMBA with improved SVM methods based on the bat variants on classical benchmark datasets. The ‘‘p-value’’ is the result
of the Wilcoxon test at a 0.05 level of significance (Time in seconds).

Ecoli); SVM_DMBA achieved better results for seven

problems (Wine, Segmentation, Ecoli, Vowel, Diabetes,

Abalone, and Robot Navigation), whereas the performance

of SVM_DMBA was not significantly different from that of

SVM and that of SVM_BAEO for Zoo and Iris.

The Wilcoxon signed rank test results showed that there

was a significant difference between the standard SVM and

SVM_BA,whereas SVMwas similar to other improved SVM

methods. Thus, we can note that the proposed modifications

can effectively overcome BA’s disadvantage, and the combi-

nation of two mutation operators compared with the single

mutation operator has a remarkable influence on improving

the performance of BA. Additionally, EO mutation operator

has the strongest contribution among these two mutation

operators.

As shown in Table 3, compared with improved SVM

methods based on three standard algorithms, SVM_DMBA

obtained better results for seven classification problems (Zoo,

Iris,Wine, Vowel, Diabetes, Abalone, andRobot Navigation).

SVM_DMBA outperformed significantly SVM_DE for all

test datasets, whereas it was worse than SVM_GA only for

Ecoli and SVM_PSO for Segmentation and Glass.

Table 4 indicated that SVM_DMBA was superior to

improved SVMmethods based on three advanced algorithms

for four problems (Wine, Segmentation, Ecoli, and Abalone).

In addition, the performance of SVM_DMBA was similar to

that of all comparative methods for Iris and that of compar-

ative methods expect for SVM_ALO for Zoo. SVM_ALO

obtained better results for Glass and Robot Navigation,

SVM_CSO obtained better results only for Diabetes, and

SVM_GWO obtained better results only for Vowel.

In Table 5, for Zoo and Iris, there was no significant

difference between SVM_DMBA and improved SVM meth-

ods based on three bat variants. For four test datasets

(Wine, Segmentation, Diabetes, and Abalone), SVM_DMBA

achieved better results than SVM_HBA, SVM_dBA,

and SVM_ILSSIWBA. Nevertheless, SVM_DMBA was

worse than SVM_HBA for Glass and Ecoli, and it

was worse than SVM_ILSSIWBA for Vowel and Robot

Navigation.

FIGURE 2. Sketch of the low velocity impact localization system.

TABLE 6. Wavelengths and locations of four FBG sensors.

Through analyzing the p-values in Tables 3-5, for solv-

ing classification problems, SVM_DMBA was signifi-

cantly different from SVM_GA, SVM_PSO, SVM_DE, and

SVM_dBA, but similar to other improved SVM methods.

By analyzing computation time obtained by SVM_DMBA

and all comparative methods, we can note that combining

SVM with optimization algorithms will strongly increase

the complexity of SVM. In addition, SVM_DMBA required

the shortest computation time compared with SVM_HBA,

SVM_dBA, and SVM_ILSSIWBA, but SVM_DMBA’s com-

putation time was longer than that of other nine SVM vari-

ants.

In summary, compared with the standard algorithms,

advanced algorithms, and bat variants, DMBA has greater

ability to optimize the performance of SVM in classification
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FIGURE 3. Diagram of the low velocity impact localization system.

FIGURE 4. Original impact signal received by the sensor FBG1 and frequency characteristics in the area 19.

tasks. Furthermore, SVM_DMBA compared with the stan-

dard SVM and other improved SVM methods can be con-

sidered as the best performing method for solving real world

classification problems.

B. APPLICATION OF SVM_DMBA ON THE IDENTIFICATION

OF LOW VELOCITY IMPACT AREAS

1) LOW VELOCITY IMPACT LOCALIZATION SYSTEM

The low velocity impact localization system consists of an

optical sensing interrogator, an aluminium plate, four FBG

sensors, a low velocity impact device, and a data analysis

system. The optical sensing interrogator is the Micron Optics

si155, which has the wavelength accuracy of 2 pm/3 pm and

the full spectrum at 5 kHz with 80 nm on 4 parallel chan-

nels simultaneously. An aluminium plate with dimensions of

500 mm× 500 mm× 2 mm was chosen as the test specimen

and fixed on the experiment table by the fixture. In the center

of the test specimen, there was a square monitoring area of

240 mm × 240 mm which was divided into 64 square areas

of 30 mm × 30 mm. Each square area as a category was

marked as S = (1, 2, · · · , 64).

Four FBG sensors with the same grating length (10 mm)

were symmetrically located on the centerline of the monitor-

ing area. The center-reflecting wavelength and locations of

four FBG sensors are listed in Table 6. To generate the low

velocity impact sources, a steel ball with the weight of 36 g

was chosen as the low velocity impact device. The steel ball

fell down in free fall from the impact height of 200mm,which

resulted in the impact energy of 0.07056 J and the impact

velocity of 1.98m/s. The sketch and diagram of the low veloc-

ity impact localization system are shown in Figs. 2 and 3,

respectively.

2) FEATURE EXTRACTION

In the experiment of identifying the low velocity impact

areas, the target feature to be extracted is the frequency

characteristic of the low velocity impact signals. To verify the

effectiveness of the extracted feature, a steel ball was used

to sequentially impact the square areas marked 19, 22, 43,

and 46 on the aluminium plate. The impact signals received

by the sensor FBG1 were selected to analyze the relationship

between impact areas and extracted features.

8294 VOLUME 8, 2020



Q. Liu et al.: Novel SVM Based on Hybrid BA and Its Application to Identification of Low Velocity Impact Areas

FIGURE 5. Approximation coefficients and detail coefficients of impact signal received by the sensor FBG1 in the
area 19.
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FIGURE 6. Reconstructed signal without the baseline and frequency characteristics in the area 19.

TABLE 7. Comparison of SVM with improved SVM methods on the
identification of low velocity impact areas (Time in seconds).

Fig. 4 (a) shows the low velocity impact signal received

by the sensor FBG1 in the monitoring area marked 19, and

Fig. 4 (b) shows its frequency characteristic achieved by

Fourier transform. We noted that the low velocity impact

signal received by the sensor FBG1 was deteriorated by the

baseline of 1570.339 nm. Consequently, a wavelet transform

method mentioned in Section 2.2 was used to remove the

interference of the baseline in the signal.

The original impact signal with the baseline was decom-

posed through the wavelet transform method in which the

wavelet decomposition scale was set to 11 to obtain the

high-frequency detail coefficients Cdi (i = 1, 2, · · · , 11)

and the low-frequency approximation coefficients Cai(i =

1, 2, · · · , 11). The approximation coefficients and the detail

coefficients were depicted in Fig. 5. As shown in Fig. 5,

the interference of the baseline was involved in the low-

frequency wavelet coefficients. Therefore, only the approx-

imation coefficients were set to zero, and the detail

coefficients were maintained. Then, the low velocity impact

signal without the baseline was obtained by executing the

operation of wavelet reconstruction. The low velocity impact

signal without the baseline and its frequency characteristic

are presented in Fig. 6 (a) and Fig. 6 (b), respectively.

To clearly analyze the relationship between the impact area

and the frequency characteristic, the frequency characteris-

tics, whichwere transformed from the impact signals received

by the sensor FBG1 in four symmetric impact areas (19, 22,

43, and 46) and five adjacent impact areas (11, 18, 19, 20, and

27), were depicted in Fig. 7 and Fig. 8. As shown in Fig. 7,

the frequency characteristic curves obtained from four sym-

metric impact areas were similar, but the amplitude values in

different impact areas under the same frequency were slightly

different. Additionally, Fig. 8 shows the difference between

the frequency characteristic curves obtained from five adja-

cent impact areas, and the difference between the amplitude

values in different impact areas under the same frequency can

be clearly observed. Thus, extracting the frequency character-

istic of the low velocity signal as the feature value is effective

for identifying the low velocity impact areas.

3) RESULTS AND DISCUSSION OF IDENTIFYING LOW

VELOCITY IMPACT AREAS

There are two crucial components for SVM: the training pro-

cess and the test process. The training process is to establish

the identification model, and the test process is to validate

the accuracy of the identification model. Four groups of

low velocity impact signals were obtained by using the steel

ball to sequentially impact 64 square monitoring areas on

the aluminium plate for 4 independent times. Among these

groups of signals, a group of signals was randomly selected

as the test sample set, whereas the rest of signals were chosen

as the training sample set. The frequency characteristics of

impact signals received by FBG sensors were used as the

input of SVM, and the categories of low velocity impact areas

were used as the output of SVM. Since a large number of fea-

ture values increased the computational time, the frequency

characteristics were extracted from the middle part of impact

signals received by four FBG sensors at regular intervals.

Then, the number of input feature values was 256.
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FIGURE 7. Comparison of frequency characteristics of impact signals received by the sensor FBG1 in areas 19, 22, 43, and 46.

FIGURE 8. Comparison of frequency characteristics of impact signals received by the sensor FBG1 in areas 11, 18, 19, 20, and 27.

To evaluate the performance of SVM_DMBA, the standard

SVM, SVM_BA, SVM_BACA, SVM_BAEO, SVM_DE,

SVM_PSO, SVM_GA, SVM_CSO, SVM_GWO, SVM_

ALO, SVM_HBA, SVM_dBA, and SVM_ILSSIWBA were

chosen as the comparative methods. The parameter settings

of these methods were the same as mentioned in Section 4.1.

The procedures of all methods were carried out 30 times.

Table 7 shows the mean value and the standard deviation

(Std.) of identification errors. The computation time obtained

by these methods is listed at the bottom of Table 7. The best

results are bold.

As illustrated by Table 7, compared with the standard

SVM, all improved SVM methods obtained better results

whereas they took much longer computation time. The

identification accuracy and robustness of SVM_DMBA are

superior to those of twelve comparative SVM variants,

especially SVM_GA and SVM_DE, which demonstrates

that DMBA can significantly improve the performance of

SVM on identifying the low velocity impact areas. Never-

theless, SVM_DMBA required much longer runtime than

SVM, SVM_BA, SVM_BACA, SVM_BAEO, SVM_GA,

SVM_PSO, SVM_CSO, SVM_GWO, SVM_ALO, and

FIGURE 9. Process of optimizing SVM by DMBA and comparative
algorithms.

SVM_ILSSIWBA because of the introduction of BA and two

mutation operations.

Fig. 9 describes the process of optimizing SVM by using

DMBA, three standard algorithms, three advanced algo-

rithms, and six improved bat algorithms. As we observed

previously, SVM_DMBA with c = 17.719 and g = 0.0117
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FIGURE 10. Result of identifying the low velocity impact areas by using
SVM_DMBA.

converges faster than other improved SVM methods. The

identification results of the test sample set obtained by

SVM_DMBA are described in Fig. 10, which indicates that

SVM_DMBA is an effective method for identifying the low

velocity impact areas on the aluminium plate and the average

identification error is 1.615%.

V. CONCLUSION

In this paper, a hybrid bat algorithm with double mutation

operations (DMBA) is proposed to reinforce the performance

of the standard bat algorithm (BA). Two mutation operations

are introduced into BA: the Cauchymutation operator and the

extremal optimization mutation operator. The Cauchy muta-

tion operator with the large mutation size focus on extending

the search space of the bat during the early iterations, whereas

the extremal optimization mutation operator with the small

mutation size focus on searching the best solutions during

the later iterations. To enhance the accuracy rate of support

vector machine (SVM) in the identification problem of low

velocity impact areas, a novel SVM based on this hybrid bat

algorithm (SVM_DMBA) is further developed. A numerical

experiment based on real world benchmark datasets from the

UCI data repository is executed to evaluate SVM_DMBA’s

performance. The standard SVM and twelve improved SVM

methods based on the standard algorithms, advanced algo-

rithms, and bat variants are selected as comparative methods.

The statistical result of the two-sidedWilcoxon test illustrates

that SVM_DMBA is superior to other comparative methods.

Furthermore, in a low velocity impact localization system

based on FBG sensors, SVM_DMBA is utilized to identify

impact areas on an aluminium plate, and the frequency char-

acteristics are extracted as the feature value and used as the

input of SVM_DMBA. The statistical results indicate that

the proposed SVM_DMBA has the best performance, and

the average identification error is 1.615% for 64 low velocity

impact areas of 30 mm × 30 mm on the aluminium plate.

According to the above analysis, there are still a few prob-

lems to be solved. SVM_DMBA shows better performance

on both the numerical experiment and the identification

problem of low velocity impact areas, but it requires longer

runtime than the standard SVM. We should enhance SVM’s

performance without increasing the complexity in the future

work. Extracting appropriate features of the low velocity

signal is important for improving identification accuracy, and

less number of features can effectively reduce the runtime of

the methods. The better feature extraction method should be

further researched to obtain less and useful feature values.

Additionally, compared with the identification problem of

single impact source, the identification problem of multiple

impact sources is more complex because of mixture signals.

Thus, the future work should also focus on the effective signal

processing method and the modification of SVM to identify

the multiple impact source.
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