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A Novel SURE-Based Criterion for
Parametric PSF Estimation

Feng Xue and Thierry Blu, Fellow, IEEE

Abstract— We propose an unbiased estimate of a filtered
version of the mean squared error—the blur-SURE
(Stein’s unbiased risk estimate)—as a novel criterion for estimat-
ing an unknown point spread function (PSF) from the degraded
image only. The PSF is obtained by minimizing this new objective
functional over a family of Wiener processings. Based on this
estimated blur kernel, we then perform nonblind deconvolution
using our recently developed algorithm. The SURE-based frame-
work is exemplified with a number of parametric PSF, involving
a scaling factor that controls the blur size. A typical example of
such parametrization is the Gaussian kernel. The experimental
results demonstrate that minimizing the blur-SURE yields highly
accurate estimates of the PSF parameters, which also result in
a restoration quality that is very similar to the one obtained
with the exact PSF, when plugged into our recent multi-Wiener
SURE-LET deconvolution algorithm. The highly competitive
results obtained outline the great potential of developing more
powerful blind deconvolution algorithms based on SURE-like
estimates.

Index Terms— Parametric PSF estimation, SURE, blur-SURE,
Wiener filtering.

I. INTRODUCTION

A
S A STANDARD linear inverse problem, image decon-
volution has been an important image processing topic

for several decades [1]–[3]. In many real applications,
e.g., medical imaging [4], fluorescence microscopy [5], astro-
nomical imaging [6], remote sensing [7] and photography [8],
the point spread fucntion (PSF) may not be easily and accu-
rately obtained. Blind deconvolution amounts to estimating
both the original image and the PSF, given the observed data
only [9].

In order to address the ill-posedness of the problem,
a standard approach consists in enforcing certain regularity
conditions (possibly derived from Bayesian priors) on the
original image and the PSF, and in formulating the problem
as the optimization of a proper objective functional [10], [11].
Recent studies of the standard techniques can be found
in [8] and [12]–[15]. The interested reader may refer
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to [9] and [16]–[18] for a comprehensive review. Other opti-
mization methods are also able to estimate simultaneously both
the original image and the PSF (see [12], [19] for example).

It is, however, also possible to perform the estimation of the
image and the PSF separately; i.e., first estimate the PSF, and
then perform non-blind deconvolution to obtain the restored
image. Compared to the joint estimation, the separate estima-
tion seems more advantageous in practice, because it allows
to apply any developed high-quality non-blind deconvolution
algorithm, once the PSF is estimated [8], [20]. In this work, it
is this approach that we have chosen and since we have already
developed a very efficient non-blind deconvolution algorithm
(see [21]), we are going to focus here on PSF estimation. Note
that the accuracy of PSF estimation is very significant for the
deconvolution performance: an inaccurately estimated kernel
often results in substantial quality loss of the restored image.

A. Non-Parametric PSF Estimation

If the PSF is represented by the discrete pixel values without
any parametric form, the estimation is usually performed
by regularization or Bayesian approach, depending on the
assumption on the unknown PSF. The common choices of the
regularization on the blur kernel include:

• Tikhonov ℓ2-Norm [11], [12]: Effective estimation of
smooth PSF like Gaussian blur;

• TV (Total Variation)-Norm [10], [14]: Suitable for motion
blur and out-of-focus blur;

• Sparsity Prior [8], [22]: Effective for camera shake and
motion blur.

B. Parametric PSF Estimation

In specific applications, the parametric forms of the
PSF can be either theoretically available or practically
assumed [23], [24]. In this context, the PSF is completely char-
acterized by a small number of parameters, which dramatically
reduces the degrees of freedom of PSF estimation [19], [25].
Typical examples of the parametric model can be found in
the applications of linear motion blur [26]–[28], fluorescence
microscopy [5], [19], [29], atmospheric turbulence [30], [31]
and astronomical imaging [6].

For linear motion blur, the blur orientation and length
(i.e. the PSF parameters) can be estimated by cepstrum
analysis [32], steerable filter method [26], or Radon
transform [28]. In the case of a Gaussian kernel, the Gaussian
variance representing blur size is the only parameter to be
estimated. APEX [24] estimated the blur size by fitting the
Gaussian blur to the blurred image, utilizing the property of
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the fast Fourier decrease of the Gaussian kernel. There are
also several local estimation methods based on edge-based
parametric representation [33], see [34]–[36] estimated the
Gaussian blur size by applying a steerable second derivative
of Gaussian operator and measuring the response of the
edge. However, the local-based methods are very sensitive to
the noise corruption: the edge localization and measurement
become less accurate under higher noise level. Note that
all the methods mentioned above were specifically designed
for certain blur types, which precludes a wider range of
degradation scenarios.

The regularization or Bayesian approach provides a general
framework for parametric PSF estimation, by substituting the
parametric form of PSF into the objective functional and per-
forming the optimization. In microscopy deconvolution, [19]
derived a maximum-likelihood-based method to estimate
the PSF parameters, based on a diffraction model proposed
in [37]. [29] performed the parametric estimation using
Richardson-Lucy algorithm with TV regularization, assuming
microscopy PSF as Gaussian function. In addition, there are
some empirical approaches to the problem. [31] estimated
the PSF parameters by kurtosis minimization of the restored
image. In the work of [38], the estimated PSF parameter
is selected to be at the maximum point of the differential
coefficients of restored image Laplacian ℓ1-norm curve.
However, the empirical methods need to manually adjust
regularization parameter for restoration, and have no
guarantee on the accuracy of PSF estimation. Note the
work of [39], where the authors proposed GCV (generalized
cross validation) as a criterion of PSF estimation and
theoretically proved its validity. Unfortunately, the introduced
auto-regressive and moving average models complicated the
GCV minimization and brought about high computational
cost. Moreover, the GCV criterion has many local minima
in general. Hence, the minimization algorithm should be
carefully performed to guarantee the global minimum.

C. SURE-Based Approach

A statistical non-Bayesian approach based on the minimiza-
tion of Stein’s unbiased risk estimate (SURE) [40] has been
proposed for solving linear inverse problem under additive
Gaussian noise assumption. SURE, as an unbiased estimate of
the mean squared error (MSE), has been intensively used as a
criterion for signal restoration, e.g. image denoising [41]–[43]
and non-blind image deconvolution [21], [44]–[47]. The key
advantage of the SURE-based approach is that it does not
require any prior knowledge of the original image [42].

In the present paper, we further extend the
SURE-based approach to blind PSF parameter estimation.
More specifically, we propose a filtered version of the
SURE—“blur-SURE”—as a new criterion for PSF estimation.
To exemplify this framework, we consider the parametric
forms of PSF, which involve a scaling factor that controls the
blur size (refer to [14] and [23] for examples), and estimate
the factor from the degraded image only. A typical example
is the Gaussian function. Once the PSF is estimated, we carry
out our developed non-blind deconvolution algorithm [21].

D. Paper Organization

Section II proposes a novel criterion for PSF estimation:
the blur-MSE—a filtered version of the MSE—incorporating
a simple Wiener filtering. In Section III, we present the
blur-SURE—an unbiased estimate of the blur-MSE defined
in Section II, and formulate the PSF estimation as a
blur-SURE minimization. Section IV exemplifies the
blur-SURE framework with several types of PSF, and
proposes an efficient minimization algorithm. Section V
reports and discusses the experimental results.

Throughout this paper, we use boldface lowercase let-
ters, e.g. x ∈ R

N , to denote N-dimensional real vectors,
where N is typically the number of pixels in an image. The
n-th element of x is written as xn . The linear (matrices) and
non-linear transformations R

N → R
M are denoted by boldface

uppercase letters, e.g. H ∈ R
M×N . HT ∈ R

N×M denotes
the transpose of matrix H. Also note that we use the sub-
script (·)0 to denote the true (“ground truth”) quantity of (·);
for example, matrix H0 is the true quantity of H.

II. THE BLUR-MSE AND ITS OPTIMIZATION

A. Problem Statement

Consider the linear model

y = H0x + b, (1)

where y ∈ R
N is the observed data of the original (unknown)

x ∈ R
N , the ground truth (unknown) matrix H0 denotes a

linear distortion, the vector b ∈ R
N is a zero-mean additive

Gaussian noise corruption with covariance matrix C ≻ 0. Our
purpose is to estimate the matrix H0, such that the estimated
H is as close to the true H0 as possible, from the observed
data y only.

The original signal x will be considered deterministic

in most of the paper, with the sole exception of
Section II-C (and the related proof in Appendix), where it
will be nevertheless independent of the noise b. This will be
outlined in the notation of the mathematical expectation: Eb{·},
Ex{·} or Ex,b{·} indicate expectation over noise realizations,
signal realizations, or both.

B. Blur-MSE: An Oracle Criterion for the Estimation of H

Denoting a function (or processing) by f : R
N → R

N ,
applied to the observed data y, the MSE that results from this
processing (assumed to provide an estimate of x) is defined
as [41], [42], [44], [46]:

MSE =
1

N
Eb

{∥∥f(y) − x
∥∥2

}
. (2)

Instead of the standard MSE, we consider the following
“blurred” (filtered) version:

blur-MSE =
1

N
Eb

{∥∥Hf(y) − H0x
∥∥2

}
(3)

as an oracle criterion for estimating H. We call this objective
functional blur-MSE, since it measures the difference between
two distorted (blurred) data: Hf(y) and H0x. Assuming H0x
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is known, we formulate the estimation of H as the following
minimization problem:

min
H

1

N

∥∥HfH(y) − H0x
∥∥2

where the subscript H in fH emphasizes the dependence
of the processing f on the matrix H. Particularly, in
the context of deconvolution, the processing f could be
any non-blind deconvolution algorithms (e.g. multi-Wiener
SURE-LET [21] or BM3D [48] algorithm), depending on the
matrix H. Experimentally, we found that given the process-
ing fH, the blur-MSE minimization yields a highly accurate
estimate of H0.

However, since the ‘arbitrary’ processing fH can be very
complicated, our approach, to be described below, is to
restrict f to a subclass of processings—typically, Wiener
filterings—that also depend on H, and then minimize this
blur-MSE (actually, an estimate of this blur-MSE) over H.
In this simplified setting, we will be able to demonstrate the
link between the result of this minimization and the ground
truth PSF.

C. The Blur-MSE Minimization With Exact Wiener Filtering

In this Section only, x will be assumed to be random, with
covariance matrix A = Ex{xxT}. Let us consider the linear
processing denoted by f(y) = WHy, where the notation WH

emphasizes that the matrix W is related to H. It is well-known
that for the linear model (1) with the known matrix H, the
ideal linear processing WH that minimizes the MSE averaged
over realizations of the signal Ex

{
1
N

Eb

{
‖WHy − x‖2

}}
, is

Wiener filtering, expressed as [2]:

WH = AHT(
HAHT + C

)−1
(4)

in matrix notation, where the covariance matrix of the noise
is C = Eb{bbT}. Now, if we base our processing on
Wiener filtering (4), then the following theorem shows that
the solution H that minimizes the blur-MSE (3) is related in
a simple way to the true matrix H0.

Theorem 2.1: Consider only linear processings of the form
f(y) = WHy, where WH is defined as (4). Minimizing with
respect to H the averaged blur-MSE:

min
H

Ex

{
1

N
Eb

{∥∥HWHy − H0x
∥∥2

}}
, (5)

yields HAHT = H0AHT
0 .

See Appendix A for a proof. Note that Theorem 2.1 is
valid for any linear distortion H, not limited to convolution
operation. In the case of convolution, we obtain the following
corollary, as a Fourier description of Theorem 2.1.

Corollary 2.1: When H is a convolution matrix, and when
both the signal x and the noise b are stationary, the
Wiener filtering WH defined as (4) can be rewritten as:

WH (ω) =
H ∗(ω)

|H (ω)|2 + C(ω)/A(ω)

using the Fourier variable ω = (ω1, ω2). Here, H (ω) is
the Fourier representation of H, A(ω) and C(ω) are the

Fig. 1. Behaviour of the line ω = (ω1, 0) of the band-indicator U(ω)
in (6): correct |H (ω1, 0)| = |H0(ω1, 0)| yields the minimum blur-MSE in (5)
(example: Cameraman blurred by Gaussian kernel).

power spectral densities of signal x and noise b, respectively.
Thus, the blur-MSE minimization (5) yields that, for all
ω ∈ [−π, π]2

H (ω) ·
H ∗(ω)

∣∣H (ω)
∣∣2 + C(ω)/A(ω)︸ ︷︷ ︸

U (ω)

= H0(ω) ·
H ∗

0 (ω)
∣∣H0(ω)

∣∣2
+ C(ω)/A(ω)︸ ︷︷ ︸

U0(ω)

(6)

in the frequency domain, which is equivalent to
|H (ω)| = |H0(ω)| for all ω ∈ [−π, π]2.

This corollary is easily proved by the fact that under the
assumptions of convolution operation and stationary process,
all the matrices involved in the blur-MSE can be diagonalized
by the discrete 2D Fourier transformation.

Let us call U(ω) = H (ω)WH (ω) in (6) a frequency-

band indicator or band indicator for short,1 as it marks a
certain frequency band as 0 or 1 with a narrow transition
between the two values (see Fig. 1 for example). Corollary 2.1

states that: (1) the blur-MSE minimization is essentially
equivalent to matching the frequency band indicator U(ω)

to the ground truth U0(ω); (2) the blur-MSE minimization
results in the magnitudes of the frequency responses alone
to be matched: |H (ω)| = |H0(ω)|. Obviously, the blur-
MSE criterion cannot be used to identify frequency responses
whose phase variations are not linked to amplitude variations
(the same is true for GCV criterion [39]). Hence, we con-
sider only zero-phase blur models in this paper. Since many
real-life blurs—linear motion, out-of-focus, and atmospheric
turbulence blurs—have zero phase, this assumption is rather
unrestrictive [39].

To exemplify this corollary, Fig. 1 shows the band-indicator
matching as in (6), when the image Cameraman (shown
in Fig. 8) is blurred by Gaussian kernel. For the sake of
clarity, we have chosen to show only one line ω = (ω1, 0)

of the band-indicator. We can see that the minimum blur-
MSE is reached when the two band-indicators match perfectly;
i.e., U(ω) = U0(ω), and the derived equality |H (ω)| =

|H0(ω)| holds. If |H (ω)| �= |H0(ω)|, the corresponding band-
indicator U(ω) does not match the exact U0(ω) well, and the
blur-MSE is not minimized.

1Regarding the terminology of U(ω), refer to [4], where the authors named
U(ω) as combined response.
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Fig. 2. Close match between the blur-SURE and the blur-MSE: Cameraman

blurred by three filters, under various noise variances σ2.

III. BLUR-SURE: A NOVEL BLIND CRITERION

FOR PSF ESTIMATION

A. Blur-SURE: An Unbiased Estimate of the Blur-MSE

Unfortunately, it is not possible to minimize directly the
blur-MSE in practice, since H0x is unknown. However, based
on the linear model (1), the blur-MSE can be replaced by
an unbiased statistical estimate—the “blur-SURE”—involving
only the measurements y, as summarized in the following
theorem.

Theorem 3.1: Let f(y) = [ fn(y)]1≤n≤N be a (weakly)
differentiable N-dimensional vector function which does not
increase too fast,2 and such that Eb{|∂yk fn(y)|} is finite for
k, n = 1, 2, . . . , N .

Then, given the linear model (1), the following random
variable:

ǫ =
1

N

{∥∥Hf(y) − y
∥∥2

+ 2divy

(
CHf(y)

)
− Tr

(
C

)}
(7)

is an unbiased estimator of the blur-MSE (3), i.e., Eb{ǫ} =
1
N

Eb

{∥∥Hf(y) − H0x
∥∥2

}
, where Tr denotes matrix trace, and

the divergence divyv =
∑N

n=1 ∂vn/∂yn for ∀v ∈ R
N .

See Appendix B for a sketch of the proof (for a rigorous
proof of Stein’s Lemma with weak hypotheses, see [40], [43]).
Note the difference with other flavours of SURE: instead of
estimating (and minimizing) a distance between f(y) and x,
we estimate a distance between Hf(y) and H0x—with dif-
ferent PSF. It is this key difference that allows to retrieve a
reliable estimate of H0.

This theorem is valid for any linear distortion H and
any processing f , under the assumption of additive Gaussian
noise b. Since the blur-SURE depends only on the observed
data y, it can be a practical substitute to the blur-MSE.
In particular, if the processing f is the Wiener filtering (4),
and if the Gaussian noise b is independent and identically
distributed (i.i.d.) with variance σ 2, the blur-SURE becomes:

ǫ =
1

N

∥∥HWHy − y
∥∥2

+
2σ 2

N
Tr(HWH) − σ 2 (8)

which is the unbiased estimate of the blur-MSE given in (5).
We obtain this equation from divy(HWHy) = Tr(HWH)

and by specifying the covariance matrix C = σ 2I in (7).
The blur-SURE is all the closer to the blur-MSE as the number
of image pixels increases (law of large numbers). Fig. 2
shows the curves of the blur-MSE and the blur-SURE under
different noise variance σ 2, taking three PSF as examples

2Typically, ‖f(y)‖2 ≤ const × exp(a‖y‖2) for some a < 1/(2σ 2).

(the image size of Cameraman is 256 × 256 pixels):
(1) finite rational filter h0(i, j) = (1 + i2 + j2)−1 for
i, j = −7, . . . , 0, . . . , 7; (2) separable filter with filter
[1, 4, 6, 4, 1]/16 along both horizontal and vertical directions;
(3) 9 × 9 uniform filter.

As can be seen in (8), the blur-SURE requires the estimation
of the noise variance σ 2. In all that follows, we will always
use the MAD (median absolute deviation) of the first high-high
wavelet (Daubechies 6) subband of the blurred image [49] for
that purpose, even when this variance is known.

B. Approximation of the Exact Wiener Filtering

In practice, the exact Wiener filtering WH in the
blur-SURE cannot be used, since the power spectral den-
sity A(ω) is unknown. However a basic observation is that
for natural images with strong low frequencies and weak
high frequencies, C(ω)/A(ω) increases (roughly) quadrati-
cally with the frequency. For this reason, we choose to replace
C(ω)/A(ω) by λ‖ω‖2, where λ is a parameter to be estimated.
Here, ω = (ω1, ω2) are the (zero-centered) 2D DFT frequency
variables and ‖ω‖2 = ω2

1 + ω2
2; for instance, assuming that

the size of the image is (K , L), with K and L even, then
ω1 = 2πk/K , for k = −K/2,−K/2 + 1, . . . , K/2 − 1 and
ω2 = 2πl/L, for l = −L/2,−L/2 + 1, . . . , L/2 − 1. Then,
we obtain the approximated Wiener filtering WH,λ(ω) as:

WH,λ(ω) =
H ∗(ω)

|H (ω)|2 + λ‖ω‖2
(9)

Due to the parameter λ introduced, we formulate the
PSF estimation as the result of the minimization of the blur-
SURE over both H and λ, i.e.,

min
H,λ

1

N

∥∥HWH,λy − y
∥∥2

+
2σ 2

N
Tr(HWH,λ) − σ 2

︸ ︷︷ ︸
blur-SURE: ǫ(H, λ)

(10)

Although we are not exactly in the conditions of Corollary

2.1, we still expect the solution H (ω) of (10) to satisfy
|H (ω)| ≈ |H0(ω)|, and also, with the obtained λ, to constitute
the best approximation of the exact band indicator U0(ω):

UH,λ(ω) =
|H (ω)|2

|H (ω)|2 + λ‖ω‖2

︸ ︷︷ ︸
approximated band-indicator

≈

∣∣H0(ω)
∣∣2

∣∣H0(ω)
∣∣2

+ C(ω)/A(ω)
= U0(ω)

︸ ︷︷ ︸
exact band-indicator

(11)

Fig. 3 shows the different approximations of the band-
indicator, when Cameraman is blurred by a Gaussian kernel.
We can see that it is only when both H and λ are obtained
by minimizing the blur-SURE that we obtain the best band
indicator matching.

Finally, we summarize the blur-SURE framework in Fig. 4.
Also note that the blur-MSE minimization serves as an oracle

counterpart of the blur-SURE minimization (10).
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Fig. 3. Approximation of the band-indicator UH,λ(ω) (11): the
blur-SURE minimization yields the best match between band-indicators
(example: Cameraman blurred by Gaussian kernel). Only the line ω = (ω1, 0)
is shown here.

Fig. 4. PSF estimation flowchart: joint minimization of the blur-SURE over
the parameters of H and λ, as shown in (10).

IV. EXAMPLES OF PARAMETRIC PSF ESTIMATION

This section will exemplify the blur-SURE minimization
framework with several typical parametric forms of PSF.
Throughout all the tests in this section, the test image we used
is Cameraman (see Fig. 8), and the variance of the Gaussian
noise is σ 2 = 1.0.

A. Blur-SURE Parametric PSF Estimation

We assume that the PSF H = Hs can be completely
represented by a small number of unknown parameters
s = [s1, s2, . . . , sP ]T [19], [25]. We denote the ground truth
parameter by s0. Therefore, following (10), we formulate the
parameter estimation as:

min
s,λ

1

N

∥∥HsWs,λy − y
∥∥2

+
2σ 2

N
Tr(HsWs,λ) − σ 2

︸ ︷︷ ︸
blur-SURE: ǫ(s, λ)

(12)

B. Examples of Parametric PSF Estimation

We consider the following typical PSF.
1) Gaussian Kernel: Characterized by:

hs(i, j ; s) = M · exp

(
−

i2 + j2

2s2

)
(13)

with variance s2, where (i, j) denotes the 2D coordinates,
M is a normalization coefficient such that

∑
i, j hs(i, j) = 1.

s is the unknown parameter to be estimated.
To experimentally justify Corollary 2.1, we use the exact

Wiener filtering (4) to perform the blur-MSE and blur-SURE
minimizations. Fig. 5-(1) demonstrates the perfect estimation
of s0. If we apply the approximated Wiener filtering (9),
Fig. 5-(2) shows that: (1) the blur-SURE is a reliable estimator
of the blur-MSE, and the estimated s ≈ s0; (2) the band-
indicator is well approximated with the optimal λ and s

obtained by minimizing the blur-SURE.

Fig. 5. Example of Cameraman blurred by Gaussian kernel with true
s0 = 2.0 and noise variance σ 2 = 1.0 (only one line of the band indicators
are shown).

Fig. 6. Blur-SURE minimization with optimal λ: example of Cameraman
blurred by two non-Gaussian kernels with true scaling factor s0 = 2.0 and
noise variance σ 2 = 1.0.

2) Non-Gaussian PSF With Scaling Factor s: From (13),
we can see that s plays the role of a dilation/scaling factor
in a Gaussian function. Here, we consider the following two
typical non-Gaussian functions with scaling factor s:

• jinc function,3 which is frequently used for describing the
optical diffraction [51], given as:

hs(r; s) = M ·

[
2J1(r/s)

r/s

]2

(14)

where J1(·) is first-order Bessel function. It is an isotropic

function of radius r =
√

i2 + j2.
• anisotropic Gaussian function given as:

hs(i, j ; s) = M · exp

(
−

(i cos θ − j sin θ)2

s · σ 2
1

−
(i sin θ + j cos θ)2

s · σ 2
2

)
(15)

where θ denotes the main direction w.r.t. the hori-
zontal line, σ1 and σ2 stand for the blur sizes along
two perpendicular directions. Here, we set σ1 = 1.0,
σ2 = 2.0 and θ = π/4 in our example.

Fig. 6 shows the blur-SURE minimizations and band-
indicator approximations under jinc function and anisotropic

Gaussian kernel, respectively. We can see that the blur-SURE
minimization yields a highly accurate estimate of the scaling
factor and the best approximation of the band-indicator.

3The terminology jinc stems from optics, due to the structural similarity to
sinc function, see [50].
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Fig. 7. Minimization of the blur-SURE ǫ(s, λ) over s and λ. Top: given s,
the optimal λ is a function of s whose log10 is approximated by linear
interpolation. Bottom: minimization of ǫ(s, λ(s)). Experiment: Cameraman
blurred by three kernels with true s0 = 2.0: (left) Gaussian kernel, (middle)
jinc function and (right) anisotropic Gaussian kernel.

Here, we stress that the blur-SURE approach also works for
other types of PSF with two or more unknown parameters,
for example, [52] estimated motion direction and blur length
for linear motion deblurring, based on the blur-SURE criterion.

C. An Efficient Minimization Algorithm

Considering the blur-SURE minimization over two scalar
variables (PSF parameter s and regularization parameter λ),
the most straightforward way is to perform exhaustive search
over all the possible values of s and λ in a certain range.
If we take 50 discrete points for s and λ to process the image of
size 256×256, the exhaustive search requires 50×50 = 2500
computations of the blur-SURE.

The exhaustive search is essentially equivalent to what
follows: for each fixed s, obtain the corresponding optimal λ

by minimizing the blur-SURE, and then, insert the function
λ = λ(s) into the blur-SURE. Thus, the minimization has to
be performed over only one variable s. Experimentally, we
found an approximate linear relation between the logarithm
of λ and the associated optimal blur size s. Hence, we perform
linear interpolation of log10(λ(s)) over very few sampling
points. We show the shape of this function (see the dashed
curves) and its linear interpolation (see the navy blur curve)
in Fig. 7 for the Gaussian, jinc, and anisotropic Gaussian
kernels. It enables us to develop a more efficient algorithm
than exhaustive search (see Algorithm 1). Fig. 7 (bottom)
shows the line searches for minimizing the blur-SURE
ǫ(s, λ(s)) w.r.t. s, where the corresponding optimal λ = λ(s)

is given in Fig. 7 (top). Compared to the exhaustive search,
Algorithm 1 requires only 5 × 50 + 50 = 300 computations
of the blur-SURE, i.e., roughly 8 times less. However, the
efficiency of this algorithm reduces when the PSF has more
than one parameter. In that case, quasi-Newton methods or
alternating minimizations can be substituted.

Finally, we would like to note that the blur-SURE can
be directly computed in the Fourier domain: there is no
need to transform the Fourier coefficients back to the image
domain. Thus, the computational complexity of the blur-SURE
is further greatly reduced.

Algorithm 1 Algorithm by Approximating the Function
λ = λ(s)

Fig. 8. Original images. (a) Cameraman 256 × 256; (b) Lena 256 × 256;
(c) House 256 × 256; (d) Bridge 512 × 512; (e) Mandrill 512 × 512;
(f) California 512 × 512.

Fig. 9. Estimation of the standard deviation s (vertical axis) of a Gaussian
PSF vs. BSNR (horizontal axis): comparison with state-of-the-art estimation
methods (ground truth: s0 = 1.0, horizontal black line).

V. RESULTS AND DISCUSSIONS

We are going to evaluate the quality of our PSF paramet-
ric estimation. For this, we will consider the deconvolution
efficiency, see Fig. 4. For computing it, we will use our
multi-Wiener SURE-LET algorithm. We have demonstrated
in [21] that this algorithm reaches the state of the art in
deconvolution.



XUE AND BLU: NOVEL SURE-BASED CRITERION FOR PARAMETRIC PSF ESTIMATION 601

Fig. 10. Estimation of the standard deviation s (vertical axis) of a Gaussian
PSF vs. BSNR (horizontal axis): comparison with state-of-the-art estimation
methods (ground truth: s0 = 2.0, horizontal black line).

Fig. 11. Estimation of the scale factor s (vertical axis) of a jinc PSF vs. BSNR
(horizontal axis): comparison with the GCV, kurtosis and DL1C methods
(ground truth: s0 = 2.0, horizontal black line). APEX is not applicable for
jinc kernel.

TABLE I

COMPARISON OF THE COMPUTATIONAL TIME OF VARIOUS PSF

ESTIMATION TECHNIQUES (SECONDS)∗

A. Experimental Setting

We consider the following convolution kernels described
above, with scaling factor s:

• Gaussian function by (13);
• Non-Gaussian functions: jinc function by (14) and

anisotropic Gaussian function by (15).
The blurred images are subsequently contaminated by i.i.d
Gaussian noise with various variance σ 2, such that the blur
signal-to-noise ratio (BSNR), defined as

BSNR = 10 log10

(
‖H0x − mean(H0x)‖2

Nσ 2

)
,

is 40, 30, 20 and 10 dB, respectively. The test dataset4 contains
six 8-bit images of size 256 × 256 or 512 × 512 displayed

4All 512×512 images are available at http://decsai.ugr.es/cvg/CG/base.htm.

Fig. 12. Estimation of the scale factor s (vertical axis) of an
anisotropic Gaussian PSF vs. BSNR (horizontal axis): comparison with GCV
(ground truth: s0 = 2.0, horizontal black line). Other methods are severely
underperforming.

Fig. 13. Plugging the estimate of a Gaussian PSF (ground truth s0 = 1.0)
into a state-of-the-art non-blind deconvolution algorithm [21]: comparison
of PSNR loss (reference: deconvolution using s0) between PSF estimation
methods. Note that some methods may be out of graph boundaries.

Fig. 14. Plugging the estimate of a Gaussian PSF (ground truth s0 = 2.0)
into a state-of-the-art non-blind deconvolution algorithm [21]: comparison
of PSNR loss (reference: deconvolution using s0) between PSF estimation
methods. Note that some methods may be out of graph boundaries.

in Fig. 8, covering a wide range of natural images (people,
animal, building, remote sensing, etc.). As emphasized above,
we separate the PSF estimation and deconvolution. For the PSF
estimation, we present our estimated PSF parameter, compared
to the ground truth parameter s0. The deconvolution perfor-
mance is measured by the peak signal-to-noise ratio (PSNR),
defined as

PSNR = 10 log10

(
2552

‖̂x − x‖2/N

)
,



602 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 2, FEBRUARY 2015

Fig. 15. Restoration of Bridge: a visual example for comparison
between various PSF estimation methods, followed by the same SURE-LET
deconvolution algorithm [21].

Fig. 16. Restoration of Lena: visual comparison between APEX-SECB [24],
oracle SeDDaRA [56], Molina et al. work [11], our proposed blur-SURE
method, and non-blind SURE-LET method [21].

where x̂ is the image deconvolved using the estimated
PSF parameters. Note that all the results reported in this
section have been averaged over 10 noise realizations.

B. Gaussian Function: Estimation of Standard Deviation s

Figures 9–10 report the estimated Gaussian blur sizes under
two true s0 = 1.0 and 2.0. We also compare our esti-
mation results with other state-of-the-art methods, including
GCV-based [39], APEX [24], kurtosis-based [31] and
DL1C [38]. Note that we optimized the configuration of
GCV and APEX to get the best estimation results. For kurtosis
and DL1C, we use the default settings as suggested by the
authors. Unfortunately, DL1C fails to estimate the blur size
at higher noise levels (e.g. BSNR < 20–25 dB). Hence,
Figs. 9–11 are unable to show DL1C results over the whole
BSNR range 10–40 dB. In addition, we could not compare
our results with edge-based approaches [34]–[36], because

Fig. 17. Restoration of House: visual comparison between
SeDDaRA [54], [55], oracle SeDDaRA [56], Molina et al. work [11],
AMIA [58] and our proposed blur-SURE method.

Fig. 18. Text restoration: the estimated Gaussian widths (modelization of
the defocusing) are s = 1.62, s = 2.33 and s = 3.50, for images a, b and c,
respectively.

these algorithms are too local, which results in substantial
spatial variations: they do not provide a global blur size
estimate.

From Figures 9–10, we can see that for all the test images:
(1) our approach generally yields more accurate and consistent
estimation of the blur size s than other methods, in terms
of the error defined by e = |s − s0|; (2) without tuning
any parameters, the blur-SURE approach automatically yields
estimates that are within a few percents of the ground truth;
(3) the blur-SURE approach is very robust to the noise
corruption, even under high noise level.
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Fig. 19. Restoration of Jupiter: visual comparison between GCV [39], SeDDaRA [54], Molina et al. work [11], MIA [57], APEX-SECB [24] and our
proposed blur-SURE method. The estimated Gaussian widths are s = 1.92, s = 2.30 and s = 2.41, by GCV, APEX and blur-SURE, respectively.

Table I shows the computation time comparisons. We can
see that the blur-SURE approach is substantially faster than
others.

C. Non-Gaussian Functions: Estimation of the

Scaling Factor s

Table II shows the estimation of the scaling factor of the
(non-Gaussian) blur functions by the blur-SURE minimization,
where the italic numbers stand for the oracle results (blur-MSE
minimization). Similar to Figures 9–10, Figures 11–12 report
comparisons between various methods, for s0 = 2.0 in the
case of the jinc and anisotropic Gaussian PSF.

APEX [24] is not applicable for these kernels, while
kurtosis-based [31] and DL1C [38] methods perform very
poorly for estimating anisotropic Gaussian kernel. Hence, we
do not report their results here. Again, the accuracy, consis-
tency and robustness w.r.t. noise of our algorithm compares
very favorably with other methods.

D. PSF Estimation Accuracy and Blind

Deconvolution Performance

We now evaluate the importance of PSF estimation on
deconvolution quality. In order to be fair, we have applied
the same non-blind deconvolution algorithm (multi-Wiener
SURE-LET [21]) after performing PSF estimation using each
method. Figures 13–14 show the corresponding deconvolution
results in terms of PSNR loss with respect to the “oracle”
multi-Wiener SURE-LET deconvolution (using the exact blur
kernel). We can see that (1) more accurate PSF estimation
always yields better deconvolution performance; (2) the blur-
SURE approach, though not always superior, consistently

outperforms other methods on average: its PSNR loss is always
kept within 0.1–0.2 dB. Other methods produce poor results
from time to time. Extensive experiments (results not shown
here) on other types of PSF (e.g. jinc and anisotropic Gaussian
kernels) and other non-blind deconvolution algorithms
(e.g. BM3D [48]) show the same trend as in Figures 13–14.
Fig.15 shows a visual example of Bridge, blurred by jinc

kernel with scaling factor s0 = 2.0. We always perform the
same SURE-LET deconvolution algorithm [21] after different
PSF estimation methods.

E. Comparison of Blind Deconvolution Algorithms

Involving Parametric PSF

Our main motivation for PSF estimation is to enable us
to perform blind deconvolution. For this reason, we would
like to compare our results to the ones produced by state-
of-the-art blind deconvolution algorithms. As mentioned ear-
lier, after PSF estimation using the blur-SURE method, we
use the multi-Wiener SURE-LET algorithm [21] to per-
form deconvolution. The other algorithms considered in our
tests are:

• APEX-SECB [24] (Parametric): In the work of [24],
the PSF estimation by APEX is followed by SECB
deconvolution method [53].

• SeDDaRA (Non-Parametric):

1) The work of [54] and [55]: An approach proposed
in [55] is used to optimize the parameter involved
in [54].

2) The work of [56]: It uses the unknown original
image x to optimize the results, denoted by oracle

SeDDaRA.
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TABLE II

ESTIMATION OF THE SCALING FACTOR s OF A NON-GAUSSIAN PSF

TABLE III

BLIND DECONVOLUTION: GAUSSIAN PSF WITH STANDARD DEVIATION s0 = 2.0

• The work of [11] (Non-Parametric): It has two variants,
depending on the assumptions of the distributions of orig-
inal image and PSF: BR (both distributions are random)
and BD (both distributions are degenerate). We use the
parameters as recommended in [11].

• MIA [57] and AMIA [58] Algorithms (Non-Parametric):
Two multiplicative iterative algorithms.

Note that in this paper, the blur-SURE approach is mainly
exemplified with atmospheric/optical blurring, which are fre-
quently encountered in microscopy, remote sensing and out-
of-focus imaging. For this reason, we do not include motion

deblurring algorithms (see [8], [22], [59]–[63]) in our com-
parisons, because their results would be poor when applied to
these PSF.

From Table III, we observe that our proposed method
outperforms the other methods substantially. Figs. 16–17 show
two visual comparisons between the existing methods. We can

see that our novel PSF estimation method is the source a blind
deconvolution algorithm that achieves similar visual quality as
the non-blind algorithm [21].

Table IV shows the comparison of computational times.
We can see that the proposed approach is substantially faster
than all the other blind deconvolution methods.

F. Blind Deconvolution of Real Images

In our last set of experiments, the method is applied to two
real observed images: Text captured by a digital camera and
Jupiter captured by a telescope.

Text Image Text: Three images with different focal lengths
(luminance shown in Fig. 18) were captured by a dig-
ital camera. We used the Gaussian assumption to mod-
elize the out-of-focus blur (in agreement with [64]), and
compared our results with the algorithms of [11]. The
improved legibility of our result is obvious, even in the
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TABLE IV

COMPARISON OF COMPUTATIONAL TIMES FOR VARIOUS BLIND

DECONVOLUTION TECHNIQUES (SECONDS)∗

case of substantial blurring, although artifacts start being
important.

Astronomical Image Jupiter: There is no exact expres-
sion for the PSF of this image; however, as suggested
in [6], [7], [11], and [14], the PSF can again be well approxi-
mated by Gaussian function. Fig. 19 shows the restored images
by various state-of-the-art methods. We can easily see that our
proposed approach yields a higher visual quality.

VI. CONCLUSION

In this paper, we proposed a parametric PSF estima-
tion method based on a new criterion—the “blur-SURE”.
We have shown that in conjunction with Wiener filtering,
the minimization of the blur-SURE yields highly accurate
PSF estimations. The blur-SURE framework is exemplified
by several parametric forms of PSF. For fast implementation,
we also proposed an efficient algorithm for performing the
blur-SURE minimization.

The results obtained show that, pipelining this novel
PSF estimation method with our non-blind multi-Wiener
SURE-LET deconvolution algorithm, results in a blind
deconvolution algorithm which outperforms other approaches
numerically, visually, and in terms of computational efficiency.
The examples of blur kernels listed in this paper are only
a small subset of possible models. It is worth emphasizing
that the blur-SURE minimization itself does not specify any
particular parametric form for the PSF.

In addition, it should be noted that the blur-SURE cri-
terion is not limited to 2D signals: it can be extended
painlessly to 3D (or any other dimension). It is not limited
either to additive Gaussian noise: the blur-SURE expres-
sion can also be adapted to any noise type for which an
unbiased risk estimate can be devised [65], [66]. Hence,
despite its apparent phase limitation, we believe that this
criterion has a huge potential in the development of spe-
cific algorithms for various applications; e.g. fluorescence
microscopy [19], [29], [67].

APPENDIX A
PROOF OF THEOREM 2.1

Proof: First, consider the minimization of the signal-
averaged blur-MSE over all possible linear processings U:

min
U

1

N
Ex,b

{∥∥Uy − H0x
∥∥2

}
(16)

Replacing y by H0x + b as (1), the signal-averaged blur-MSE
becomes:

Ex{blur-MSE} =
1

N
Ex,b

{∥∥Uy − H0x
∥∥2

}

=
1

N
Ex,b

{∥∥U(H0x + b) − H0x
∥∥2

}

=
1

N
Ex,b

{∥∥(U − I)H0x + Ub
∥∥2

}

=
1

N
Ex

{∥∥(U − I)H0x
∥∥2

}
+

1

N
Eb

{∥∥Ub
∥∥2

}

=
1

N
Tr

(
(U − I)H0AHT

0 (U − I)T
)

+
1

N
Tr

(
UCUT)

(17)

where Tr denotes matrix trace, I is identity matrix, the
covariance matrices are A = Ex{xxT} and C = Eb{bbT}.
Thus, the minimization over U yields that (U − I)H0AHT

0 +

UC = 0, which implies that:

U = H0AHT
0

(
H0AHT

0 + C
)−1

(18)

Considering (3), if we base our processing fH on
Wiener filtering WH as (4), the blur-MSE minimization
over H becomes:

min
H

1

N
Ex,b

{∥∥HWHy − H0x
∥∥2

}
. (19)

Compare the two minimization problems: (16) and (19).
Obviously, we have:

min
H

1

N
Ex,b

{∥∥HWHy − H0x
∥∥2

}
≥min

U

1

N
Ex,b

{∥∥Uy − H0x
∥∥2

}

(20)

Considering the left-hand side, from (4), we obtains:
HWH = HAHT

(
HAHT + C

)−1
. Hence, if H = H0, then,

from (18), we obtain:

1

N
Ex,b

{∥∥H0WH0y − H0x
∥∥2

}
= min

U

1

N
Ex,b

{∥∥Uy − H0x
∥∥2

}

This implies that HWH = H0WH0 is a minimizer to the
problem (19), i.e.,

min
H

1

N
Ex,b

{∥∥HWHy−H0x
∥∥2

}
=

1

N
Ex,b

{∥∥H0WH0 y−H0x
∥∥2

}

which also indicates that the equality sign holds for the
inequality (20).

Finally, from HWH = H0WH0 , we conclude that any filter
H such that

HAHT(
HAHT + C

)−1
= H0AHT

0

(
H0AHT

0 + C
)−1

minimizes the problem (19). It yields that HAHT = H0AHT
0 ,

which completes the proof.

APPENDIX B
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PROOF OF THEOREM 3.1

Proof: Substituting y − b for H0x as (1), and expanding
the blur-MSE (3), we obtain:

blur-MSE =
1

N
Eb

{∥∥Hf(y) − H0x
∥∥2

}

=
1

N
Eb

{∥∥Hf(y) − y + b
∥∥2

}

=
1

N

(
Eb

{∥∥Hf(y) − y
∥∥2

}
+ 2Eb

{
bTHf(y)

})

−
1

N

(
2Eb

{
bTy

}
− Eb

{
‖b‖2

})

=
1

N
Eb

{∥∥Hf(y) − y
∥∥2

}
+

2

N
Eb

{
bTHf(y)

}

−
1

N
Eb

{∥∥b
∥∥2

}
(21)

Consider the multivariate Gaussian probability density func-
tion q(b) ∝ exp

(
− bTC−1b

2

)
. It satisfies q(b)b = −C∇bq(b),

where ∇b is the gradient operator w.r.t. b. Hence,

Eb

{
bTHf(y)

}
=

∫
bTHf(y)q(b)db

= −

∫ (
∇bq(b)

)T
CHf(y)︸ ︷︷ ︸

v(y)

db

= −

N∑

n=1

∫
∂q(b)

∂bn

vn(y)db

Noting that
∫ ∞

−∞
∂q(b)
∂bn

vndbn = −
∫ ∞

−∞
∂vn

∂bn
q(b)dbn,

which follows from integration by parts, and the
fact that |vnq(b)| → 0 as |bn| → ∞, we have:

Eb

{
bTHf(y)

}
=

N∑

n=1

∫ ∞

−∞

∂vn

∂bn

q(b)∂b

= Eb

{ N∑

n=1

∂vn

∂bn

}
= Eb

{
N∑

n=1

∂vn

∂yn

}

= Eb

{
divyv

}
(22)

The last term in (21) is:

Eb

{∥∥b
∥∥2

}
= Eb

{
bTb

}
= Eb

{
Tr

(
bbT)}

= Tr
(
Eb

{
bbT})

= Tr
(
C

)
(23)

Substituting (22) and (23) into (21) completes the proof.
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