
RESEARCH Open Access

A novel technique to prevent SQL injection
and cross-site scripting attacks using
Knuth-Morris-Pratt string match algorithm
Oluwakemi Christiana Abikoye1, Abdullahi Abubakar1, Ahmed Haruna Dokoro2, Oluwatobi Noah Akande3* and

Aderonke Anthonia Kayode3

Abstract

Structured Query Language (SQL) injection and cross-site scripting remain a major threat to data-driven web
applications. Instances where hackers obtain unrestricted access to back-end database of web applications so as to
steal, edit, and destroy confidential data are increasing. Therefore, measures must be put in place to curtail the growing
threats of SQL injection and XSS attacks. This study presents a technique for detecting and preventing these threats
using Knuth-Morris-Pratt (KMP) string matching algorithm. The algorithm was used to match user’s input string with
the stored pattern of the injection string in order to detect any malicious code. The implementation was carried out
using PHP scripting language and Apache XAMPP Server. The security level of the technique was measured using
different test cases of SQL injection, cross-site scripting (XSS), and encoded injection attacks. Results obtained revealed
that the proposed technique was able to successfully detect and prevent the attacks, log the attack entry in the
database, block the system using its mac address, and also generate a warning message. Therefore, the proposed
technique proved to be more effective in detecting and preventing SQL injection and XSS attacks

Keywords: SQL injection, Cross-site scripting, Information security, Web application vulnerability, Knuth-Morris-Pratt
(KMP) string matching algorithm

1 Introduction

Internet is fast becoming a household technology with

4.39 billion users in January 2019 compared to 3.48

billion users in January 2018 [1]. This showed that

more than one million new users got connected daily.

This growth rate is being facilitated by data-driven

web applications and services which enable users to

transact their online activities with ease. Most modern

organizations and individuals heavily rely on these

web applications to reach out to their numerous cus-

tomers. Users’ inputs via web applications are used to

query back end databases so as to provide the needed

information. This trend has therefore opened up web

applications and services to attacks by hackers. More-

over, the popularity of web application in social net-

working, financial transaction, and health problems

are increasing very rapidly; as a result, software vul-

nerabilities are becoming very critical issues, and thus,

web security has now become a major concern [2].

The vulnerabilities are mostly application layer vul-

nerabilities such as domain name server attacks,

Inline Frame flaws, remote file inclusion, web authen-

tication flaws, remote code execution, XSS, and SQL

injection [3, 4]. A survey carried out by Open Web

Application Security Project (OWASP) identified top

10 vulnerabilities as at June 2019 to be injection

flaws, broken authentication and session management,

sensitive data exposure, XML external entity, broken

access control, security misconfiguration, XSS, inse-

cure deserialization, using components with known

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: akande.noah@lmu.edu.ng
3Computer Science Department, Landmark University, Kwara State,
Omu-Aran, Nigeria
Full list of author information is available at the end of the article

EURASIP Journal on
Information Security

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14

https://doi.org/10.1186/s13635-020-00113-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-020-00113-y&domain=pdf
http://orcid.org/0000-0002-4940-5709
http://creativecommons.org/licenses/by/4.0/
mailto:akande.noah@lmu.edu.ng

vulnerabilities, insufficient logging, and monitoring.

However, among these forms of attacks, XSS and

SQL injection have been identified as the most

dangerous [5]. The WordPress Security Learning Cen-

ter also submits that if SQL injection and XSS vul-

nerabilities could be handled in a code, then 65%

vulnerabilities has been eliminated. Since web applica-

tions use data supplied by users in SQL queries,

hackers can manipulate these data and insert SQL

meta-characters into the input fields so as to access,

modify, or delete the content of the database. For in-

stance, the WHERE clause in the SQL query SELE

CT*FROM users WHERE password = 1234 could be

manipulated when hackers supply inputs like ‘any-

thing’ OR ‘1’ = ‘1’; #. The WHERE clause now con-

tains two conditions separated with the logical

operator OR. The first condition might not be TRUE,

but the second condition must be TRUE because 1 is

always equals 1, and the logical operator “OR” returns

TRUE if either or both of the conditions are TRUE.

Hence, the hacker gains access without a need to

know the password. Sometimes, wrong input values

can also be supplied intentionally so that error mes-

sages that will help the attackers to understand the

database schema will be revealed. Therefore, SQL in-

jection is a serious threat for web application users.

1.1 Cross-site scripting (XSS) attacks

XSS is another similar attack where hackers prepare and

execute a fragment of JavaScript in the security context

of the targeted domain thereby incorporating malicious

contents into web pages presented by a trusted web ap-

plication. Most web applications that do not properly

screen user input before loading web pages are suscep-

tible to XSS attacks. Once a site has been affected, users

could be redirected to automatically open malicious

websites, the entire user session could be hijacked, and

users’ login details could also be stolen. Since the con-

tent is claimed to be from a trusted server, it is proc-

essed like normal contents. For example, the pseudo

code below shows how latest comments are displayed on

a website using a simple sever-site script:

The scripts assume that the comments consist of only

text. However, since the user’s input is directly included,

an attacker can submit his comment as “<script>

doSomethingEvil();</script>”. Therefore, users who visit

the page will receive the following response:

When the user’s browser loads the page, it executes

whatever JavaScript is contained inside the <script >

tags. In this case, the attacker can write a JavaScript

function that steals the victim’s session cookie. This ses-

sion cookie can be used to impersonate the victim

subsequently.

XSS vulnerabilities have been categorized into three

categories which are reflected, stored, and Document

Object Model (DOM)-based [3]. DOM-based vulnerabil-

ities occur when active contents on a web page (mostly

JavaScript) accept user inputs which are malicious

thereby causing the execution of injected code. Stored

XSS vulnerabilities occur when inputs collected via web

applications are malicious and stored in the database for

immediate or future use. It is one of the most dangerous

of all XSS vulnerabilities because in as much as it is in

the database, the hacker can manipulate the contents of

the database at will [1]. Reflected XSS vulnerabilities are

different from other XSS vulnerabilities because it at-

tacks clients who accesses or loads a malicious URL.

Though several techniques aimed at curtailing the grow-

ing hazards of these attacks have been reported in litera-

ture, many have not been able to fully address all scope

of the problem. Several security techniques have been

proposed towards preventing data and information from

unauthorized attacks [6–8], and attackers continually de-

vise new security vulnerabilities that could be exploited.

Therefore, new techniques aimed at detecting and pre-

venting these attacks are essential.

1.2 SQL injection attacks

SQL-injection attacks could be in six categories:

a) Boolean-based SQL injection or tautology attack:

Boolean values (True or False) are used to carry out

this type of SQL injection. The malicious SQL query

forces the web application to return a different result de-

pending on whether the query returns a TRUE or

FALSE result. For instance, "aaa O R 2 = 2" has been

inserted into SQL query "SELECT ∗ FROM users

WHERE password = aaa OR 2 = 2" as the password so

as to alter the structure of the WHERE clause of the

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 2 of 14

original query. This yields a SQL query with two differ-

ent conditions separated with a logical operator OR. The

first condition "password = aaa" might not be true, but

the second condition “2 = 2” must be true. Therefore,

the logical operator OR returns true if at least one of the

operand is true thereby forcing the web application to

return a different result.

b) Union-based SQL injection: this is the most popular

of all the SQL injections. It uses the UNION
statement to integrate two or more select

statements in a SQL query thereby obtaining data

illegally from the database. For instance, in the SQL
query "SELECT ∗ FROM customers WHERE

password = 123 UNION SELECT creditCardNo, pin

FROM customers" the attacker injects the SQL
statement "123 UNION SELECT creditCardNo, pin

FROM customers" instead of the required password.

The query therefore exposes all the credit card
numbers with their PINs from the customer’s table.

c) Error-based SQL injection: this is the simplest of all

the SQL injection vulnerabilities; however, it only
affects web applications that use MS-SQL Server.

The most common form of this vulnerability re-

quires an attacker to supply an SQL statement with
improper input causing a syntax error such as pro-

viding a string when the SQL query is expecting an

integer. For example, the SQL query: SELECT *

FROM customer WHERE pin = convert (int, (SELE

CT firstName FROM customer LIMIT 1)) tries to

convert the first name of the first customer in the
customer’s table into integer type which is not pos-

sible. As a result, it causes the database server to

throw an error containing the information about
the structure of the table.

d) Batch query SQL injection/piggy backing attacks:

this form of injection is dangerous as it attempts to
take full control of the database. An attacker

terminates the original query of the application and

injects his own query into the database server. For
instance, considering the SQL query: aaa; INSERT

INTO users VALUES (‘Abubakar’, ‘1234’);#, the first
semicolon (;) terminates the original query, and

query adds the username “Abubakar ” and password

“1234” to the users table ,and the hash (#)
comments out the remaining query so that it will

not be executed by the server. However, this form

of attack works on only SQL-Server 2005, because
it is the only server that accepts multiple queries at

a time.

e) Like-based SQL injection. This injection type is
used by hackers to impersonate a particular user

using the SQL keyword LIKE with a wildcard

operator (%). For instance, an attacker can inject

input: “anything OR username LIKE ‘S%’ ;# instead
of a username to have SQL query: SELECT *

FROM users WHERE username =’ anything OR

username LIKE ‘S%’; #”. The LIKE operator
implements a pattern match comparison, that is, it

matches a string value against a pattern string

containing wildcard character. The query searches
the user’s table and returns the records of the users

whose username starts with letter S. The wildcard

operator (%) means zero or more characters (S…),
and it can be used before or after the pattern.

f) Hexadecimal/decimal/binary variation attack

(encoded injection): in this type of injection, the
hacker leverages on the diversity of the SQL

language by using hexadecimal or decimal

representations of the keywords instead of the
regular strings and characters of the injection code.

For instance, the traditional SQL injection code:

UNION SELECT * FROM users; # could be replaced
with:

Therefore, SQL injection vulnerability is a serious at-

tack that must be prevented. Its different categories have

further revealed that a prevention technique that works

for a specific category may not perfectly work for an-

other category. This has made the quest to eradicate

SQL injection vulnerabilities an open field of research.

2 Related works

As documented in literature, preventing SQL injection

vulnerabilities as well as XSS attacks has been mostly

achieved through the use of data encryption algo-

rithms, PHP escaping functions, pattern matching al-

gorithms, and through instruction set randomization.

Authors in [9] employed SHA-1 hashing algorithm to

prevent batch query SQL injections. It works by

extracting query attribute values from the stored in-

puts; these were hashed using SHA-1 hashing algo-

rithm. After that, any other input will also be hashed

and compared with the initially hashed stored input

before further execution. If the compared hashed in-

put is the same, then the SQL query will be executed

otherwise rejected. With this technique, erroneous in-

puts cannot be processed directly by the SQL query,

and an attempt to fetch stored inputs values will re-

turn hashed values that are already encrypted. Simi-

larly, Boyer-Moore string matching algorithm for SQL

injection attacks detection and prevention was intro-

duced by authors in [10]. Input values are scanned

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 3 of 14

for possible attributes of SQL injection attacks. A hy-

brid approach which leverages on the strengths of

static and dynamic approach to detecting and pre-

venting SQL injection was proposed by Ghafarian.

Static approach attempts to find fault in the written

SQL query (database layer) while dynamic approach

finds vulnerabilities that could be present at runtime

(common gateway interface layer). Firstly, an algo-

rithm was written to match strings from input SQL

query to stored SQL query. The result obtained was

matched with the expected valid query. Any observed

vulnerability will cause the query to be discarded. For

the dynamic approach, an algorithm was proposed to

examine incoming queries dynamically. Once a vul-

nerability is detected, the query will be discarded.

Authors in [11] proposed a technique for preventing

SQL injection and XSS attack. Web applications were

categorized into two: those whose query does not change

regardless of the time, and parameter were classified as

static while those whose query change due to time or

data passed into it were called dynamic web

applications. Static and dynamic mapping model were

used to detect and prevent vulnerabilities from both cat-

egories. Similar technique using Aho–Corasick pattern

matching technique was proposed by Prabakar et al. Au-

thors in [12] employed instruction set randomization to

prevent second-order SQL injection. The technique dy-

namically builds SQL instruction sets from trusted SQL

keywords. Input SQL query was saved into a proxy ser-

ver and not directly into the database. Therefore, the

contents of the proxy server will be examined for any

malicious stings. However, the technique can only pre-

vent Boolean-based SQL injection attack. Similar tech-

nique using instruction set randomization was also

reported in [13–15]

Similarly, a technique to prevent SQL injection

using ASCII codes was proposed by Srivastava. User’s

input was first converted to ASCII values before sav-

ing them in the database. Subsequent input will be

converted to ASCII values and matched with stored

ASCII values. Should there be any difference, the in-

put SQL query will be discarded. Similarly, parse tree

validation technique and code conversion were pro-

posed for detecting SQL injection and XSS attacks in

[16]. Parse tree was employed to check if user’s input

is vulnerable; if not vulnerable, the input will be con-

verted to ASCII code before being stored in the data-

base. However, ASCII code conversion consumes

space, and the technique cannot handle encoded SQL

injection. Ramesh [17] employed syntactic analysis for

SQL injection detection and prevention. Every input

SQL query will be parsed through a grammar specif-

ically written to detect piggy backed SQL, tautology

queries, and union queries. However, the proposed

technique was not designed to handle other forms of

SQL injections and XSS attacks. SHA-1 Hashing tech-

nique was also proposed in [18]. to prevent SQL in-

jection and session hijacking. A unique hash value

was calculated for user’s input supplied during regis-

tration which is then compared with subsequent login

details provided. Additionally, session hijacking was

prevented by generating hash values for legitimate

system and browser parameters such as browser

name, host IP browser platform, and version. This

hash value will be compared with subsequent values

supplied. The technique was reported to be able to

prevent UNION, error-based, piggy backing, and tau-

tology attacks. Signature-based approach that con-

ducts deep packet inspection of HTTP packet

payloads was proposed in [19]. Packets sent between

clients and server are screened for possible malicious

keywords. Filtering technique that uses certain PHP

functions was employed for SQL injection and XSS

attack prevention by Voitovych et al [20]. All user’s

Table 1 Special characters used to compose SQL-injection code

S/N Character Description

1 ‘ Character string indicator

2 -- or # Single line comment

3 /*…*/ Multiple line comment

4 % Wildcard attribute indicator

5 ; Query terminator

6 + or || String concatenate

7 = Assignment operator

8 >, <, <=, >=, ==, <> or ! = Comparison operators

Table 2 Keywords used to compose SQL-injection code

S/
N

Keyword Description

1 OR Used in Boolean-based injection attack

2 UNION Used in union-based injection attack

3 DROP Used to destroy the entire database table

4 DELETE Used to delete rows in a database table

5 TRUNCATE Used to empty a particular table in a database

6 SELECT Used to retrieve record from a database table

7 UPDATE Used to modify record in a database table

8 INSERT Used to add record to a table in a database

9 LIKE Used with the wildcard (%) to select a record that
contains a particular string pattern.

10 CONVERT(
)

Used in error-based SQL injection to causes the data-
base server to displays some error messages.

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 4 of 14

input will be filtered for any illegal characters before

further processing.

3 The proposed detection and prevention

technique

With a view to come up with a technique that could de-

tect and prevent the various forms of SQL injection and

XSS attacks, the patterns for each attack were studied,

and solutions were proffered based on these patterns.

The methodology employed in this study is in five

phases: formation of SQL injection string pattern, de-

signing parse tree for the various forms of attacks, de-

tecting SQL-injection and XSS attacks, preventing SQL-

injection and XSS attacks using KMP algorithm, and for-

mulating the filter functions.

3.1 Formation of SQL injection string patterns

Every form of attacks has certain characters and key-

words that hackers do manipulate to perpetuate their at-

tacks. These are retrieved and documented as made

available in Tables 1 and 2.

These characters and keywords are used to form mali-

cious codes that are used to carry out the various forms

of attacks. Identifying these injection codes will help in

coming up with how to detect and prevent these attacks.

The injection codes common to the various forms of at-

tacks are provided in Table 3.

3.2 Designing parse tree for the various forms of attacks

Parse tree was used to represent the syntactic pattern of

the various forms of SQL-Injection and Cross Site

Scripting attacks. The parse trees are as follows:

(i). Boolean-based SQL injection attacks

3.3 Detecting SQL injection and XSS attacks

The various types of SQL injection and XSS attacks were

detected thus:

(i). Boolean-based SQL-injection attacks: As presented

in Table 3, it was deduced that most Boolean-Based

SQL injection strings have a single quote (‘)
followed by logical operator OR and a true state-

ment such as ‘1’ = ‘1’;#, ‘a’ <> ‘b’ ;# , ‘2 + 3’ < = ‘10’

;# (Fig. 1).
(ii).Union-based SQL injection attacks: Also, most

union-based SQL injection strings have a single

quote (‘) followed by a UNION keyword, the SQL
keyword SELECT, one or more identifiers, the SQL

keyword FROM, one or more identifiers then a

semicolon (;) with hash (#). Example includes ‘union
select * from users; # or ‘ union select name from a;

(Fig. 2).

Table 3 Different forms of injection code with their common patterns

S/N Injection type Common pattern Example

1 Boolean-based ’ OR ‘…’ = | > | > =| < | < =|<>|! = ‘…’;# ‘ OR ‘1’ = ‘1’;#
123’ OR ‘a’ <> ‘b’ ;#
‘ OR ‘2 + 3’ < = ‘10’ ;#

2 Union-based ‘ union select … from …;# ‘ union select * from users; #
‘ union select name from a;#

3 Error-Based ’…convert (|avg(| round(... 111’ convert(int, ‘abcd’)
A’ avg(‘&%$#@*’)

4 Batch query ‘; drop | delete | insert | truncate | update | select…;# aaa’ ; delete * from users; #
‘ ; drop table users; #

5 Like-based ’OR … LIKE ‘…%’;# ‘ OR username LIKE ‘S%’#

6 XSS <script> …’…;</script> <script>alert(‘Xss’);</script>

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 5 of 14

(iii).Error-based SQL injection attacks: The presence of

a single quote (‘) from the user’s input, followed by

zero or more SQL functions, indicates the presence
of error-based SQL injection attacks. Example in-

cludes 111’ convert (int, ‘abcd’); A’ avg(‘&%$#@*’),

and ‘ round (‘abc’, 2) (Fig. 3).
(iv).Batch query SQL injection attacks: Input strings

with a single quote (‘) followed by a SQL keyword

“DROP”, “DELETE”, “INSERT” etc. then one or
more identifiers, followed by semicolon (;) with a

hash (#). Examples include aaa’; delete * from users;

or ‘; drop table users; # (Fig. 4).

(v). Like-based SQL injection attack: from Table 3,

category (e) shows the different forms of like-based

SQL injection attack, and it is detected when the in-
put string contains a single quote (‘) followed by the

logical operator OR, followed by one or more iden-

tifiers, followed by the SQL keyword LIKE, followed
by a single quote (‘), followed by the wildcard oper-

ator (%), followed by a single quote (‘), followed by

semicolon with hash. Example include ‘OR user-
name LIKE ‘S%’# and ‘OR password LIKE ‘%2%’;#

(Fig. 5).

(vi).XSS attack: this can be detected when a JavaScript
open tag “<script>” is encountered from the input

Fig. 1 Parse tree to depict Boolean-based SQL injection attacks. (ii). Union-based SQL injection string

Fig. 2 A parse tree to depict union-based SQL injection attacks. (ii). Error-based SQL injection string

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 6 of 14

Fig. 3 Parse tree to depict error-based SQL injection attacks. (ii). Batch query SQL injection attacks

Fig. 4 Parse tree to depict SQL injection attacks using batch query. (ii). Like-based injection attack

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 7 of 14

Fig. 5 Parse tree to depict like-based injection attacks. (ii). XSS injection attacks

Fig. 6 Parse tree to depict XSS injection attacks

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 8 of 14

string, followed by zero or more characters and/or
a single quote (‘), followed by a JavaScript closing

tag “</script>” as in <script>alert(‘XSS’);</script>. If

it were to be encoded XSS attack, such will have a
JavaScript open tag “<script>” followed by one or

more ASCII code, hexadecimal number, HTML

name, or HTML number of a character and/or a
single quote (‘), followed by a JavaScript closing tag

“</script>” as in <script>alert(" XSS ");

</script> (Fig. 6).

3.4 Preventing SQL-injection and XSS attacks using KMP

algorithm

KMP string matching algorithm was used to compare

user’s input string with different SQL injection and XSS

attacks patterns that have been formulated. The algo-

rithm goes thus:

3.5 Formulating the filter functions

The filter() function was formulated to prevent SQL in-

jection and XSS attacks. This function contains other

functions that have been written each to detect a par-

ticular form of attack. If at least one function returns

True, then, the filter () will block that user, reset the

HTTP request, and display a corresponding warning

message. The first statement in the algorithm below rep-

resents user’s input which is collected from the web

form using POST Method, and it is donated by I. The

filter() then collects the user’s input and firstly converts

any ASCII String found in order to prevent encoded in-

jection attack. If there is no any ASCII String and it is

not empty, then, the user’s input will be parsed to other

functions in order to check whether it contains some in-

jection code of Boolean-based SQLI, Union-based SQLI,

Error-based SQLI, Batch query SQLI, Like-based SQLI,

and XSS, and the outcomes of the functions are repre-

sented as a, b, c, d, e, and f respectively. If one of the re-

sult returns true, then, an injection string is found in the

user’s input, and it then triggers some functions: blockU-

ser(), resetHTTP(), and warningMessage() so that to

block the user, reset the HTTP request and issue a

warning message. Otherwise, access is granted. The

pseudo code illustrating this process goes thus:

(i). Formulating the checkBooleanBasedSqli() function:

this was used to prevent Boolean-based SQL injec-
tion attack:

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 9 of 14

(ii). Formulating the checkUnionBasedSqli() function:

this was used to prevent union-based SQL injection
attack:

(iii).Formulating the checkBatchQuerySqli() function:
this was used to prevent batch query SQL injection

attack:

(iv).Formulating the checkLikeBasedSqlis() function: this

was used to prevent like-based SQL injection attack:

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 10 of 14

(v). Formulating the checkXss() function: this was used
to prevent XSS attacks.

Therefore, to detect and prevent any of the attacks,

every input strings will be passed through all the func-

tions formulated. If at least one function return True,

then, the following functions will be triggered: blockU-

ser(), resetHTTP(), and warningMessage(). These func-

tions are used to interact with the prospective hackers.

4 Results and discussion

The proposed technique was implemented using PHP

Scripting Language and Apache XAMPP Server. The

PHP was selected as a scripting Language, because it is

the most widely used server-side scripting language in

building database-driven web-based application while

the Apache XAMPP Server was chosen due to its cross-

platform compatibility, it supports any operating system,

and it also supports both PHP scripting language and

SQL.

4.1 Test environment

Apache Web Server and Internet Information Server

(ISS) were used to host the system during the test. The

attack was launched on computers and mobile phones

of different brand, processor speed, and RAM size using

Windows, Linux, and Android operating systems. Opera

(Version 66.0.3515.44), Google Chrome (version

79.0.3945.130), Mozilla Fire fox (Version 67.0.4), and

Internet Explorer 11 were used as browsers to launch

the attack. The database to be targeted was stored on

mySQL database of size 4.998MB. The test was con-

ducted on both remote server and local WAMP/XAMPP

server. To test the proposed technique, a vulnerable web

application shown in Fig. 7 was purposely developed.

An attempt was made to submit various known SQL

injection and XSS attack patterns using a “test plan”

shown in Table 4. The test plan consists of test cases

which contains input string for various attacks.

The input strings were supplied via the input fields of

the web application. When an attack was detected, the

uses would be blocked and The MAC address of the sys-

tems used to carry out the attack, types of attacks, the

input strings supplied, time stamp, and hacking status

was documented in a database table shown in Fig. 8.

Based on the results obtained from the various attack

attempts, the proposed technique was able to success-

fully detect and prevent all the attacks.

Fig. 7 Developed ABC journal of education

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 11 of 14

Table 4 The test plan

S/N Attack type Sample injection code

1 Boolean-based SQLi ’ OR “ = “; #

2 Boolean-based SQLi ‘ OR ‘1’=’1’; #

3 Boolean-based SQLi ‘ OR ‘3’! =’8’ ;#

4 Boolean-based SQLi ‘ OR ‘a’<>’b’ ;#

5 Boolean-based SQLi aa’ OR ‘2 + 3’ < = ‘7’ ;#

6 Like-based SQLi a‘ OR username LIKE ‘S%’;#

7 Like-based SQLi ‘ OR password LIKE ‘%2%’;#

8 Like-based SQLi ‘ OR username LIKE ‘%e’;#

9 Union-based SQLi ‘UNION select * from users; #

10 Union-based SQLi ‘UNION select cardNo, pin from customer; #

11 Error-based SQLi ‘ convert(int, (select * from users LIMIT 1))

12 Error-based SQLi ‘ convert(int, ”aaaa”)

13 Error-based SQLi ‘ round((select username from users), 3)

14 Batch query SQLi ‘ ; drop table users ; #

15 Batch query SQLi ‘ ; delete * from customer ; #

16 Batch query SQLi ‘ ; insert into users values (‘Bala’, ‘1234’) ; #

17 Batch query SQL injection ‘ ; update table users set username = ‘Bala’, password =’123’ ; #

18 Encoded cross-site scripting <script> alert(" XSS ") </script>

19 Encoded SQL injection & # x39 & # x85 & # x78 & # x73 & # x79
& # x78 & # x32 & # x83 & # x69 & # x76
& # x69 & # x67 & # x84 & # x32 & # x
42 & # x32 & # x70 & # x82 & # x79 & # x77
& # x32 & # x117 & # x115 & # x101
& # x114 & # x115 & # x45 & # x45

20 Cross-site scripting <script> alert(‘XSS‘) </script>

21 Cross-site scripting <script>myFunction();</script>

Fig. 8 Attack detection interface showing the record of blocked hackers

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 12 of 14

4.2 Results of existing works and the proposed technique

Results obtained from the proposed technique were

compared with those available in existing literature.

Seven (7) existing literature which used pattern match-

ing algorithms, six (6) literature which used data encryp-

tion algorithms, two (2) literature which used

instruction set randomization, and one (1) literature

which used PHP escaping functions were used for the

comparison. As documented in Table 5, existing tech-

niques which used data encryption algorithms were able

to prevent all the five forms of SQL injection attacks but

failed to prevent XSS attacks. Existing techniques which

used PHP escaping functions and pattern matching algo-

rithms were able to prevent all the five forms of SQL In-

jection attacks including the XSS attacks but failed to

prevent encoded injection attacks. Existing techniques

that used instruction set randomization were able to

prevent all the five forms of SQL injection but failed to

prevent XSS and encoded injection attacks. In a nut

shell, any of the existing methods has its own drawback

while the proposed algorithm prevents all the five forms

of SQL injection attacks including XSS and encoded in-

jection attacks.

5 Conclusion

A novel approach to detect and prevent SQL injection

and XSS attacks is presented in this paper. The various

types and patterns of the attacks were first studied, then

a parse tree was designed to represent the patterns.

Based on the identified patterns, a filter() function was

formulated using the KMP string matching algorithm.

The formulated filter() function detects and prevents

any form of SQL injection and XSS attacks. Every input

string is expected to pass through this filter () function.

If at least one function returns True, then, the filter()

function will block that user, reset the HTTP request,

and display a corresponding warning message. The tech-

nique was tested using a test plan that consist of differ-

ent forms of Boolean-based, union-based, error-based,

batch query, like-based, encoded SQL injections and

cross-site scripting attacks. The test results show that

the technique can successfully detect and prevent the at-

tacks, log the attack entry in the database, block the sys-

tem using its Mac Address to prevent further attack, and

issue a blocked message. A comparison of the proposed

technique with existing techniques revealed that the pro-

posed technique is more efficient because it is not lim-

ited to a particular form of attack, and it can handle

different forms of SQL injection and XSS attacks.

Acknowledgements

The authors appreciate Landmark University Centre for Research and
Development, Landmark University, Omu-Aran, Nigeria for fully sponsoring
the publication of this article.

Authors’ contributions

Authors AHD, AA, and AOC formulated and implemented the methodology
and drafted the manuscript. AOC adjusted the initial methodology and

Table 5 Results of existing works vs proposed technique

Attack type

Ref. Boolean-based
SQLI

Union-based
SQLI

Error-based
SQLI

Batch query
SQLI

Like-based
SQLI

XSS Encoded
injection

Methodology Using pattern matching
algorithm

[21] ✓ ✓ ✓ ✓ ✓ ✓ X

[22] ✓ ✓ ✓ ✓ ✓ ✓ X

[23] ✓ ✓ ✓ ✓ ✓ ✓ X

[24] ✓ ✓ ✓ ✓ ✓ ✓ X

[25] ✓ ✓ ✓ ✓ ✓ ✓ X

[26] ✓ ✓ ✓ ✓ ✓ ✓ X

[27] ✓ ✓ ✓ ✓ ✓ ✓ X

Using data encryption
algorithm

[28] ✓ ✓ ✓ ✓ ✓ X ✓

[18] ✓ ✓ ✓ ✓ ✓ X ✓

[29] ✓ ✓ ✓ ✓ ✓ X ✓

[30] ✓ ✓ ✓ ✓ ✓ X ✓

[31] ✓ ✓ ✓ ✓ ✓ X ✓

[32] ✓ ✓ ✓ ✓ ✓ X ✓

ISR [12] ✓ ✓ ✓ ✓ ✓ X X

[33] ✓ ✓ ✓ ✓ ✓ X X

Proposed algorithm ✓ ✓ ✓ ✓ ✓ ✓ ✓

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 13 of 14

supervised the work. ANO and KAA carried out the survey of related work
and reviewed the manuscript. All authors read and approved the final
manuscript.

Funding

Publication of this research article was funded by Landmark University
Centre for Research and Development, Landmark University, Omu-Aran,
Nigeria.

Availability of data and materials

Not applicable

Competing interests

The authors declare that there are no competing interests.

Author details
1Department of Computer Science, University of Ilorin, Ilorin, Nigeria.
2Computer Science Department, Gombe State Polytechnic, Gombe, Nigeria.
3Computer Science Department, Landmark University, Kwara State,
Omu-Aran, Nigeria.

Received: 7 August 2019 Accepted: 24 June 2020

References

1. Acunetix_web_application_vulnerability_report_2019
2. B. Soewito, F.E. Gunawan, Prevention structured query language injection

using regular regular expression and escape string. Procedia Comput. Sci.
135, 678–687 (2018) https://doi.org/10.1016/j.procs.2018.08.218

3. M.A. Ahmed, F. Ali, Multiple-path testing for cross site scripting using
genetic algorithms. J. Syst. Archit. 000, 1–13 (2015) https://doi.org/10.1016/j.
sysarc.2015.11.001

4. Y. Jang, J. Choi, Detecting SQL injection attacks using query result size.
Comput Security, 1–15 (2014) https://doi.org/10.1016/j.cose.2014.04.007

5. P.R. Mcwhirter, K. Kifayat, Q. Shi, B. Askwith, SQL injection attack classification
through the feature extraction of SQL query strings using a gap-weighted
string subsequence kernel. J. Inform. Sec. Appl. 40, 199–216 (2018) https://
doi.org/10.1016/j.jisa.2018.04.001

6. O.C. Abikoye, A.D. Haruna, A. Abubakar, N.O. Akande, E.O. Asani, Modified
advanced encryption standard algorithm for information security. Symmetry
11, 1–17 (2019) https://doi.org/10.3390/sym11121484

7. N.O. Akande, C.O. Abikoye, M.O. Adebiyi, A.A. Kayode, A.A. Adegun, R.O.
Ogundokun, in International Conference on Computational Science and Its

Applications. Electronic medical information encryption using modified
blowfish algorithm (Springer, Cham, 2019), pp. 166–179 https://doi.org/10.
1007/978-3-030-24308-1_14

8. A.O. Christiana, A.N. Oluwatobi, G.A. Victory, O.R. Oluwaseun, A Secured One
Time Password Authentication Technique using (3, 3) Visual Cryptography
Scheme. IOP Conf. Series: Journal of Physics: Conf. Series 1299, 1–10 (2019
https://doi.org/10.1088/1742-6596/1299/1/012059)

9. Q. Temeiza, M. Temeiza, J. Itmazi, A novel method for preventing SQL
injection using SHA-1 algorithm and syntax-awareness. Sudanese J. Comput.
Geoinform. 1(1), 16–26 (2017)

10. G. Buja, T.F. Abdul, B.A.J. Kamarularifin, M.A. Fakariah, T.F. Abdul-Rahman,
Detection model for SQL injection attack : an approach for preventing a web

application from the SQL injection attack, Symposium on Computer
Applications and Industrial Electronics (2014), pp. 60–64

11. A.S. Piyush, A.N. Mhetre, International Conference on Pervasive Computing

(ICPC). A novel approach for detection of SQL injection and cross site scripting

attacks (2015), pp. 1–4
12. C. Ping, W. Jinshuang, P. Lin, Y. Han, Research and implementation of SQL

injection prevention method based on ISR, IEEE International Conference on
Computer and Communications (2016), pp. 1153–1156

13. U. Upadhyay, K. Girish, SQL injection avoidance for protected database with

ASCII using SNORT and honeypot, International Conference on Advanced
Communication Control and Computing Technologies (ICACCCT), (978)
(2016), pp. 596–599

14. B. Appiah, E. Opoku-mensah, SQL injection attack detection using fingerprints

and pattern matching technique, IEEE International Conference on Software
Engineering and Service Science (ICSESS) (2017), pp. 583–587

15. C. Ping, A second-order SQL injection detection method, 2017 IEEE 2nd
Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC) (2017), pp. 1792–1796

16. A. John, A. Agarwal, M. Bhardwaj, An adaptive algorithm to prevent SQL

injection. 4 (2015), pp. 12–15 https://doi.org/10.11648/j.ajnc.s.2015040301.13
17. A. Ramesh, An Authentication Mechanism to Prevent SQL Injection by

Syntactic Analysis (2015)
18. D. Karis, J. Vanajakshi, K.N. Manjunath, P. Srikanth, An effective method for

preventing SQL injection attack and session hijacking, IEEE International
Conference on Recent Trends in Electronics Information & Communication
Technology (RTEICT) (2017), pp. 697–701

19. A. Pramod, A. Ghosh, A. Mohan, M. Shrivastava, R. Shettar, SQLI detection
system for a safer web application, International Advance Computing
Conference (IACC) (2015), pp. 237–240

20. O.P. Voitovych, O.S. Yuvkovetskyi, L.M. Kupershtein, SQL injection prevention

system, International Conference “Radio Electronics & InfoCommunications”
(UkrMiCo) (2016), pp. 2–5

21. P. Chen, J. Wang, L. Pan, H. Yu, Research and implementation of SQL injection

prevention method based on ISR, IEEE International Conference on Computer
and Communications (IEEE, Chengdu, 2016), pp. 1153–1156

22. G. Ahmad, A hybrid method for detection and prevention of SQL injection

attacks, Computing Conference (London, 2017), pp. 833–838
23. P. Amith, G. Agneev, M. Amal, S. Mohit, S. Rajashree, SQLI detection system

for a safer web application, IEEE International Advance Computing
Conference (IACC) (IEEE, Banglore, 2015), pp. 237–240

24. R. Ashwin, B. Anirban, V.L. Anand, An authentication mechanism to prevent

SQL injection by syntactic analysis, International conference on trends in
automation, communications and Computing technology (I-TACT-15) (IEEE,
Bangalore, 2015), pp. 1–6

25. A. Prabakar, M. KarthiKeyan, K. Marimuthu, An efficient technique for

preventing SQL injection attack using pattern, International Conference on
Emerging Trends in Computing, Communication and Nanotechnology
(ICECCN) (2013), pp. 503–506

26. A. Ghafarian, A hybrid method for detection and prevention of SQL injection

attacks, IEEE Comput Conference (2017), pp. 833–838
27. P. Amutha, M. KarthiKeyan, K. Marimuthu, An efficient technique for

preventing SQL injection attack using pattern matching algorithm, IEEE
international conference on emerging trends in Computing,
communication and nanotechnology (ICECCN) (2013), pp. 503–506

28. T. Qais, T. Mohammad, I. Jamil, A novel method for preventing SQL injection

using SHA-1 algorithm and syntax-awareness, International conference on
information and communication Technologies for Education and Training
and international conference on Computing in Arabic (ICCA-TICET) (IEEE,
Khartoum, 2017), pp. 1–4

29. U. Utpal, K. Girish, SQL injection avoidance for protected database with ASCII

using SNORT and honeypot. International conference on advanced

communication control and Computing technologies (ICACCCT) (IEEE,
Ramanathapuram, 2016), pp. 596–599

30. J. Ashish, A. Ajay, B. Manish, An adaptive algorithm to prevent SQL injection.
Am. J. Networks Commun., 12–15 (2015)

31. M. Srivastava, Algorithm to Prevent Back End Database against SQL Injection

Attacks International Comference on Computing for Sustainable Global

Development (INDIACom) (2014), pp. 755–757
32. T. Pravallica, S. Betam, An application to prevent SQL injection attacks using

randomized encription algorithm. International journal of computer trends and

technology (IJCTT) (2013), pp. 2782–2786
33. B. Geogiana, B.A. Kamarularifin, B.H. Fakariah, F.A. Teh, Detection model for

SQL injection attack: an approach for preventing a web application from the

SQL injection attack, Symposium on Computer Applications and Industrial
Electronics (IEEE, Penang, 2014), pp. 60–64

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Abikoye et al. EURASIP Journal on Information Security (2020) 2020:14 Page 14 of 14

https://doi.org/10.1016/j.procs.2018.08.218
https://doi.org/10.1016/j.sysarc.2015.11.001
https://doi.org/10.1016/j.sysarc.2015.11.001
https://doi.org/10.1016/j.cose.2014.04.007
https://doi.org/10.1016/j.jisa.2018.04.001
https://doi.org/10.1016/j.jisa.2018.04.001
https://doi.org/10.3390/sym11121484
https://doi.org/10.1007/978-3-030-24308-1_14
https://doi.org/10.1007/978-3-030-24308-1_14
https://doi.org/10.1088/1742-6596/1299/1/012059
https://doi.org/10.11648/j.ajnc.s.2015040301.13

	Abstract
	Introduction
	Cross-site scripting (XSS) attacks
	SQL injection attacks

	Related works
	The proposed detection and prevention technique
	Formation of SQL injection string patterns
	Designing parse tree for the various forms of attacks
	Detecting SQL injection and XSS attacks
	Preventing SQL-injection and XSS attacks using KMP algorithm
	Formulating the filter functions

	Results and discussion
	Test environment
	Results of existing works and the proposed technique

	Conclusion
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

