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Abstract—A novel waveguide using a photonic bandgap (PBG)
structure is presented. The PBG structure is a two-dimensional
square lattice with each cell consisting of metal pads and four
connecting lines, which are etched on a conductor-backed Duroid
substrate. This uniplanar compact PBG structure realizes a
magnetic surface in the stopband and is used in the waveguide
walls to provide magnetic boundary conditions. A relatively
uniform field distribution along the cross section has been mea-
sured at frequencies from 9.4 to 10.4 GHz. Phase velocities
close to the speed of light have also been observed in the
stopband, indicating that TEM mode has been established. A
recently developed quasi-Yagi antenna has been employed as a
broad-band and efficient waveguide transition. Meanwhile, full-
wave simulations using the finite-difference time-domain method
provide accurate predictions for the characteristics of both the
perfect magnetic conductor impedance surface and the waveguide
structure. This novel waveguide structure should find a wide
range of applications in different areas, including quasi-optical
power combining and the electromagnetic compatibility testing.

Index Terms—Perfect magnetic conductor, phase velocity, pho-
tonic bandgap, quasi-Yagi antenna, TEM waveguide.

I. INTRODUCTION

PHOTONIC bandgap (PBG) materials have been exclu-
sively investigated for their versatility in controlling the

propagation of electromagnetic waves [1], [2]. The fact that
PBG structures are scalable makes them useful not only in
the optical regime, but also in the microwave or millimeter-
wave domain. Practical applications in microwave frequency
such as microstrip antenna [3]–[6] and power amplifiers [7]
have been presented. Two-dimensional PBG materials have
also been applied as planar reflectors, which can be used in
antennas and waveguide structures [8]–[10]. Recently, several
PBG structures have been proposed and demonstrated to
be useful in enhancing performances of microwave circuits
or antennas. For example, a high-impedance ground plane
has been realized using metal plates with vertical vias [11].
A uniplanar compact photonic bandgap (UC-PBG) structure
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has also been presented for various applications [12], [13].
This novel PBG structure has several advantages, including
compact size, planar feature, low loss, and broad stopband.
While many existing PBG materials focus on the applications
of bandgaps, the UC-PBG structure can be exploited for
multiple purposes. For instance, the passband of a UC-PBG
structure has been use as a slow-wave medium, which reduces
dimensions of the circuits integrated on it [14]. The wide
stopband has been applied to suppress spurious transmission
of filters [15] and leakage of guided-wave structures, including
conductor-backed coplanar waveguides (CB CPW’s) [16], and
striplines [17]. Furthermore, a UC-PBG structure can realize
a magnetic surface at the stopband frequency when using it
as a planar reflector [18].

The quasi-optical amplifiers is of great interest for its
potential to efficiently combine the output power generated
from a large number of active device [19]. Power combining
using waveguides becomes a popular approach because the
diffraction loss can be avoided [20] and the broad-band
responses can be achieved [21]. Dielectric-loaded or oversized
waveguides are often used in spatially combined amplifier
arrays since uniform aperture field distribution are required
[10], [21]. However, for a dielectric-loaded waveguide with
small size, it shows no advantage over a conventional empty
waveguide [22]. The performance can be improved using high
dielectric constant material or longitudinal corrugations, but
the bandwidth will be smaller as a consequence [22]. The
unique characteristic of the UC-PBG structure allows for the
possibility of building a TEM waveguide with a uniform field
distribution.

The UC-PBG reflector has been demonstrated to behave like
a PMC at the stopband frequency where the periodic loading
changes the surface impedance to an open-circuit condition
[18]. The concept of the PMC surface can be applied to build
a TEM waveguide with a uniform field distribution. When the
two sidewalls of a rectangular waveguide are replaced by UC-
PBG structures, a parallel-plate mode will be established by the
magnetic boundary conditions. This novel PBG waveguide is a
promising candidate as a feeding structure in the quasi-optical
power-combining amplifier array. The UC-PBG structure can
be fabricated on a thin substrate using the standard etching
technique, which is easier than the manufacturing process of
conventional hard horns with high dielectric-constant materials
or corrugations.
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Fig. 1. Schematic of a UC-PBG waveguide.

This paper proposes a novel TEM waveguide using a UC-
PBG structure, which accomplishes a PMC surface at the
stopband frequency. Characteristics of the UC-PBG structure
is introduced in Section II and the realization of a PMC surface
is presented. Analysis of the PBG waveguide is performed
in Section III, where a simple circuit model and full-wave
simulation are applied. Section IV shows the experimental
results of the PBG waveguide, including phase velocities and
field profiles at different frequencies along the cross section.
The performance of the microstrip-to-waveguide transition is
also mentioned in Section IV and is followed by conclusions
in Section V.

II. CHARACTERISTICS OF THENOVEL PBG STRUCTURE

Fig. 1 shows the proposed TEM-waveguide using the UC-
PBG structures in two sidewalls. The UC-PBG structure is
a two-dimensional periodic lattice patterned on a conductor-
backed dielectric substrate. The unit cell of the PBG lattice
consists of square pads and narrow lines with insets, as
displayed in Fig. 2(a). The gaps between adjacent cells provide
capacitive coupling and the narrow branches have inductive
behavior, which is further enhanced by insets. The surface
impedance of the proposed structure is frequency-sensitive
since the PBG structure actually forms a distributedLC
network with specific resonant frequencies. At the frequen-
cies where the periodic loading becomes an open circuit,
an equivalent magnetic surface is created. This interesting
phenomenon can be explained using a simple transmission-line
model, shown in Fig. 2(b). The UC-PBG surface is modeled
by anLC tank with a resonant frequency corresponding to the
center frequency of the stopband. As frequency approaches the
resonant frequency, the imaginary part of the input impedance
becomes infinity, indicating a perfect magnetic surface, as
illustrated in Fig. 2(b).

The characteristics of the PMC behavior of a PBG surface
can be verified by measuring the reflection coefficient for
a uniform incident plane wave. The phase of the reflection
coefficient of a PMC plane should exhibit a difference of
180 compared to that of a perfect electric conductor (PEC)
plane. Fig. 3(a) shows the experimental setup of a scattering
measurement. -band horn antennas and are used for
transmitting and receiving, respectively. Plastic foam with a
relative dielectric constant of 1.0 is inserted between two horns
as a holder for the scatterer. Two types of scatterer used in
this experiment are an intact copper sheet (PEC) and a UC-

(a)

(b)

Fig. 2. (a) Schematic of a two-dimensional UC-PBG lattice on the Duroid
substrate with the outline of a unit cell. (b) Equivalent-circuit model of the
UC-PBG structure and the input impedance.

(a)

(b)

Fig. 3. (a) Setup for the reflection coefficient measurement. (b) Measured
and simulated results of phase differences in reflection coefficients between
the PBG and PEC surface.
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Fig. 4. Frequency scaling of the UC-PBG structure.

PBG surface, both fabricated on a conductor-backed Duroid
substrate (Duroid 6010) with dielectric constant of 10.2 and
thickness of 25 mil. The UC-PBG structure is a 4060 array
with a period of 120 mil.

Fig. 3(b) shows the phase difference in reflection coeffi-
cients between PBG and PEC surfaces. As can be seen, a
180 phase difference occurs around 14.5 GHz, indicating that
a magnetic surface has been successfully realized. The PBG
surface is inductive below 14.5 GHz and becomes capacitive
above the resonant frequency. Finite-difference time-domain
(FDTD) simulation shows a close agreement with an error of
6%, which might be caused by the finite substrate and over-
etching effects. Several measurements with different spacing
between two horns and different distances from the PBG
surface to antennas have been performed. The results are
insensitive to those variations, implying the robustness of the
realized magnetic surface.

The PBG structure is scalable and can be applied in different
frequency bands. Fig. 4 shows the simulated result of a UC-
PBG structure with a linearly scaled lattice built on the same
substrate. The scaled PBG structure with a period of 180 mil
has a resonant frequency of 9.5 GHz and will be used in the
following waveguide experiments.

III. A NALYSIS OF PBG WAVEGUIDE

The prototype of the PBG waveguide is an-band wave-
guide (WR-90) loaded by the UC-PBG structures, as shown
in Fig. 1. The UC-PBG structure used here has the same
dimensions as those of the scaled version introduced at the end
of Section II. TheLC circuit model is applied again to provide
the first-order approximation. Fig. 5 shows the cross section of
the PBG waveguide and an equivalent circuit. The transverse
resonance technique is applied to obtain the dispersion relation
and the condition of a resonant line is satisfied when [23]

for any (1)

Fig. 5. The cross section (xy-plane) and an equivalent-circuit model of the
PBG waveguide wherea = 900 mil and d = 850 mil.

Fig. 6. Calculated wavenumber in thex-direction (kx) of the PBG wave-
guide by the transverse resonance technique.

The following transcendental equation is then obtained after
plugging the and into (1) as the load:

where

(2)

Fig. 6 shows the wavenumber in the-direction calcu-
lated from (2), with the values of and chosen to resonate at
10 GHz. As can be seen, is decreased as frequency increases
and it experiences a singularity when theLC load becomes
open, indicating that a phase velocity equal to the speed of light

has been achieved at that frequency. However, this lumped-
element model can only provide the conceptual understanding
of the waveguide nature owing to its simplicity. In order to
perform a rigorous analysis, full-wave simulations using the
FDTD method is applied to characterize the PBG waveguide.

Fig. 7 shows the simulated result for the phase velocity of
the PBG waveguide with the velocity of a standard metallic
waveguide plotted as a reference. The PBG waveguide has a
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Fig. 7. Simulated phase velocity of the PBG waveguide and a theoretical
value of phase velocity for a regular waveguide.

Fig. 8. Simulated field profile in the PBG waveguide.

significantly lower phase velocity over entire-band and a
smooth transition from the inductive to capacitive region.-
field distributions in the waveguides with different sidewalls
have been simulated at the frequency of 10 GHz, as displayed
in Fig. 8. As can be seen, the PBG waveguide has a relatively
uniform field distribution compared to a standard waveguide.
A dielectric-loaded (without PBG surface) waveguide are also
analyzed for comparison and its field profile has a similar
shape as that of a standard waveguide, implying that the more
uniform field of the PBG waveguide is indeed generated by
the PBG structure, not from the dielectric loading effect.

IV. EXPERIMENTAL RESULTS

A. Excitation Mechanism

Since the PBG waveguide has different characteristic
impedance from that of a conventional rectangular waveguide,
a special waveguide transition must be designed for an efficient
excitation. A quasi-Yagi antenna has been proposed and
successfully applied as a TE wave launcher for an-band

Fig. 9. Drawing of the PBG waveguide used in phase velocity and field
profile measurements.

Fig. 10. Measured phase velocity with the FDTD result repeated for com-
parison.

waveguide [24], [25]. A broad-band response (40%) with
a low return loss ( 12 dB) has been reported in [25].
Fig. 9 shows the schematic of the PBG waveguide used for
measurements. The quasi-Yagi antenna with a substrate width
equal to the waveguide height is inserted in the-plane of
the waveguide to launch a TE wave.

B. Measurement of Phase Velocity

The PBG waveguide with a narrow slot on the top plate is
built for the phase velocity measurement. An HP 8350B sweep
oscillator is connect to the quasi-Yagi antenna to generate the
modulated signal and the -field probe is connected to an
HP 415E SWR meter for determining the guided wavelength,

, from which the phase velocity can be calculated. The
measured result is shown in Fig. 10, where the simulated
data of the PBG waveguide is repeated here for comparison.
The measured phase velocity is 20% slower than that of a
regular waveguide and reaches a minimum of 3.1410 m/s
at 9.8 GHz. The velocity curve is relatively flat and close
to the speed of light from 9 to 10.2 GHz, indicating that a
TEM mode is generated. The experimental results agree well
with the FDTD simulation, except for a frequency offset. The
fact that the antenna structure and over-etching of the PBG
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Fig. 11. MeasuredE-field strength of a PBG waveguide with a standard
waveguide as a reference.

lattice are not considered in the simulation may explain the
discrepancy.

C. Measurement of Field Profile

The PBG waveguide used in the previous experiment has
been slightly modified for the -field profile measurement.
The top plate is replaced by a solid cover and a conductor-
backed dielectric slab with a small iris is attached at the end of
the waveguide as a shorting plate. The-field probe is placed
above the surface of the dielectric slab so that it does not
disturb the field inside the waveguide, and the image problem
is avoided. Shorting plates with the iris at different locations
along the -axis have been used to measure the field profile.
The same sweep oscillator used in the velocity measurement
again serves as a signal generator and the probe is connected
to a power meter. Fig. 11 shows the measured-field strength
of a PBG waveguide with the data of a standard waveguide
plotted as a reference. For the standard waveguide,-field
strength decreases substantially as the probe moves toward
the wall. At the location near the sidewall ( mil),
the field strength decreases to 10% of the maximum value
measured at the center. On the other hand, the-field in the
PBG waveguide shows a more uniform distribution and the
field strength is 60% of the peak value when probing close
to the wall. One thing that should be pointed out here is that
the peak value of the -field in the PBG waveguide is lower
than that in the PEC waveguide due to the field flattening
and metallic loss. Fig. 12(a) and (b) displays the measured
field strength with respect to frequency for a standard and
PBG waveguide, respectively. The curve number represents
the position where the -field was probed. As can be seen in
Fig. 12(b), spacing between curves is much smaller than that
in Fig. 12(a), especially from 9.5 to 10.4 GHz, corresponding
to the frequency range where the PBG walls behave like PMC
surfaces. The optimum operating point is at 9.8 GHz and the

(a)

(b)

Fig. 12. MeasuredE-field profile of (a) a standard metallic waveguide and
(b) the PBG waveguide, with respect to frequency.

difference between the maximum and minimum field strength
is only 4 dB. The results show that a fairly uniform field
distribution along the -direction has been obtained and the
experimental data agree well with out FDTD simulation.

V. CONCLUSIONS

A novel TEM-waveguide using the PBG structure has been
presented. The proposed waveguide was construct using PBG
structure as the sidewalls. The UC-PBG structure has been
demonstrated to behave as a PMC surface at the stopband
frequency. The PBG waveguide generates a relatively uniform
field distribution from 9.4 to 10.4 GHz. Phase velocities close
to the speed of light have been measured and the velocity
curve is flat at operating frequencies, indicating a TEM mode
has been established. Numerical simulation using FDTD show
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good agreement with experiments both in phase velocity and
field profile. A quasi-Yagi antenna has been used as an efficient
wave launcher for the entire -band. This new type of PBG
waveguide should find several applications, such as a feeding
structure for quasi-optical power combining amplifiers and
TEM cells in EMC measurements.
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