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Abstract: A novel three-dimensional fractal model for normal contact stiffness is proposed in this
paper. First of all, a hypothetical surface based on axisymmetric cosinusoidal asperity is established.
Then, based on the hypothetical surface, the analytical expressions for the contact stiffness and contact
load are derived by combining the three-dimensional fractal theory with the contact mechanics theory.
In addition, the simulation results of the presented model and the Pan model are compared with
the experimental results. The comparison results show that the maximum relative error of the Pan
model is 29.58%, while the maximum relative error of the presented model is 4.35%. Ultimately, the
influence of different fractal parameters on contact stiffness is discussed. Under the same contact
load, the normal contact stiffness first increases and then decreases with the increase of the fractal
dimension D, while the normal contact stiffness monotonically decreases with the increase of scale
coefficient G. The results are explained from the perspective of the shape of the asperity. This study
provides a novel model for the calculation of normal contact stiffness, which provides a model basis
for the study of contact properties for the mechanical interface.

Keywords: axisymmetric cosinusoidal asperity; mechanical interface; normal contact stiffness; three-
dimensional fractal theory

1. Introduction
1.1. Context

With the deepening of research on precision mechanical systems, the analysis of me-
chanical interfaces considering microscopic morphology has become a hot topic for relevant
scholars [1-4]. There are a large number of mechanical interfaces in the mechanical system;
Burdekin and Back [5] pointed out that 60% to 80% of the stiffness of the mechanical com-
plete system was determined by the stiffness of mechanical interfaces. The contact stiffness
of the mechanical interface plays an important role in the analysis of the performance of
complete mechanical systems. At present, most of the mechanical interface contact parame-
ters need to be obtained from the mechanical interface contact model. Therefore, how to
improve the accuracy of the mechanical interface contact model is of great significance for
the study of the contact parameters of mechanical systems [6-9].

1.2. Literature Review

The interface contact model based on the fractal theory can be traced back to the 1990s.
First of all, Mandelbrot [10] proposed the fractal theory to explain the randomness and
irregularity of natural geometry, which provided a new direction for the development of
the contact model. Zhang and Sayles [11,12] proved that the machined surface had fractal
characteristics. In 1990, Majumdar and Bhushan [13,14] discussed the role of the fractal
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theory in the contact of machined surfaces. In their subsequent research, they proposed
the fractal model of elastic and plastic contact between rough surfaces (MB model), which
pioneered the use of the two-dimensional fractal theory on the surface contact model. Based
on the MB model, the 2D fractal model for surface contact was developing continuously.
Jiang et al. [15] derived the interface normal contact stiffness model and measured the
sample surface to obtain the fractal parameters using the structure function method. The
fractal parameters of the samples were substituted into the model and the simulation
results were consistent with the experimental results. Tian et al. [16] proposed a new idea
to analyze the elastic—plastic deformation stage of asperity, suggesting that the hardness of
asperity varies with the interference in the stage. The expression of the total normal load of
the surface and the contact model they derived used this idea. Zhang et al. [17] derived
the normal contact stiffness model considering the elastic—plastic deformation of asperity.
The model was similar to the experimental results of grinding and turning surfaces, which
proved the practicability of the model. The normal contact stiffness model derived by
Wang et al. [18] takes into account the interaction of asperities during the contact process.

It can be seen from the above that the interface contact model based on the 2D fractal
theory was gradually improved by introducing new factors. Unfortunately, these models
had limitations in using the 2D fractal theory to simulate the actual three-dimensional
rough surface. Ausloos and Berman [19] pointed out that the WM function used in the
2D fractal theory was only an analytic algorithm, not a geometric algorithm. Although
the 2D curves drawn using the WM function to simulate anisotropic surface morphol-
ogy were effective, the simulation of isotropic surface morphology still required use of
three-dimensional fractal geometry algorithms to achieve better simulation results [20].
Therefore, Ausloos and Berman [19] generalized the WM function to the new 3D fractal
geometry function (the AB function) by introducing multiple variables, which can construct
the 3D fractal surface morphologies. Yan and Komvopoulos [20] developed the 3D fractal
surface model that can be used to model anisotropic or isotropic surfaces based on the AB
function. Then, combined with contact mechanics, the normal contact model simulating
the rough silica surfaces is obtained. After that, the 3D fractal theory began to be applied to
the contact model of interface. Komvopoulos et al. [21] used the finite element model to
analyze the contact deformation in the elastic—plastic deformation stage of asperity and
established the 3D fractal model of the interface contact considering the elastic—plastic de-
formation of asperity. Pan et al. [22] considered the friction factor between contact surfaces
and derived the 3D fractal model of interface normal contact stiffness considering friction.
Jiang et al. [23] combined the 3D fractal theory with the strain energy method and de-
rived the normal contact model for the bolted joints considering the interaction between
asperities.

The above models were based on hemispherical asperity. Nevertheless, with the fur-
ther development of the mechanical interface contact model, relevant studies [24-27] found
that the shape of asperity greatly impacts the accuracy of the contact model. Krishivasan
and Jackson [28] verified the difference in contact deformation between hemispherical
asperity and 3D axisymmetric sinusoidal asperity by using a finite element model and
gave the empirical equation of normal pressure about the contact area of asperity during
the elastic—plastic deformation. The theory proposed by Johnson and Greenwood [29]
suggested that the cross-section of the hemispherical asperity at the contact position should
be elliptical rather than circular and that the eccentricity of this ellipse was load-dependent.
Saha et al. [30] established an axisymmetric sinusoidal body with a base as the shape of
the asperity and developed an associated contact model. The empirical equation relating
the contact area to the contact pressure of this model was derived using the finite element
method. An et al. [27] proved the axisymmetric cosinusoidal asperity is more similar to the
asperity on the real surface than the hemispherical asperity, and the contact stiffness model
based on the axisymmetric cosinusoidal asperity was closer to the experimental results
than the model based on hemispherical asperity.
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1.3. New Approach

Considering the influence of the shape of the asperity on the contact model, a novel
3D fractal model for the normal contact stiffness of the mechanical interface based on
axisymmetric cosinusoidal asperity will be constructed in this paper. Firstly, a new hy-
pothetical 3D surface will be proposed based on the axisymmetric cosinusoidal asperity
and the 3D fractal theory. Then, combined with the contact mechanics theory, the contact
deformation process of a single asperity will be analyzed. Furthermore, the analytical
expressions relating the normal contact load to the normal contact stiffness of the interface
will be derived by combining the truncated asperity size distribution function. Eventually,
a new normal contact stiffness model of the mechanical interface will be established.

2. Establishment of the Hypothetical Surface

The interface consists of two rough surfaces. Therefore, the establishment of the
hypothetical 3D surface will be first introduced in this paper.

The establishment of the surface needs to combine the shape of asperity on it and the
3D fractal theory. Accordingly, the shape will be determined in the first part of this section.
After determining the shape, combined with the 3D fractal theory, the hypothetical surface
will be established.

2.1. The Shape of a Single Asperity

The axisymmetric cosinusoidal body is more effective for simulating the asperity on a
machined surface than a hemispherical body [27]. Therefore, the axisymmetric cosinusoidal
body will be used as the shape of asperity. This shape can be represented by a 2D curve
because it is a revolution body. The curve is shown in Figure 1.

\ .
\ 2h
I

Figure 1. Schematic of the 2D curve of the axisymmetric cosinusoidal body.
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X

As shown in Figure 1, the curve is a cosine curve, and its function expression can be
set as

z(x):h[1+cos<?)}, 0<x<I) )

where x and z are the coordinates of the rectangular coordinate system in Figure 1; / is the
height of the asperity; and [ is the width of the asperity.

There is a certain proportional relationship between / and I. To facilitate the derivation
of the following equations, the parameter k is defined as follows

k=1/h 2

2.2. The Hypothetical Three-Dimensional Surface

Yan [20] improved a function based on the AB function. The function can construct a
3D fractal surface, and the function expression is

) =1(8) 7 (5)"

Nmax

Yoy ,Y(D73)n{cos Pmn — cos[w . cos(tanfl(%) — %) + ¢m,n} }

m=1 n=0

®)
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where, x, i, and z are the coordinates of the space rectangular coordinate system for constructing
the surface; L is the sampling length; G is the scale coefficient of the surface; D is the fractal
dimension of the surface (2 < D < 3), which influences the complexity and irregularity of surface
morphology; M is the number of overlapping wrinkles used to construct the surface (1 < M < 100.
When M = 1, the surface is anisotropic); -y is the frequency density parameter of the surface (y > 1.

According to reference [31], ¥ = 1.5); @y, is the random phase; # is the frequency index of the

asperity (n = int [%} , Ly is a value within the sampling length range); and 7ax can be

obtained from the Equation (4) as

ln(L/Ls)] )

Nmax = int[
Iny

where L; is the resolution of the measuring instrument.
It can be seen from the reference [20] that the normal interference ¢ of the asperity on
the surface can be deduced as follows

§ =26=D)GP=2 (1n )12 (r)3-P) 5)

where 7 is the radius of the circular section of the undeformed asperity at the contact
location.
According to the definition, é can also be expressed using Equation (1) as

Tr
(S—h[l—cos(T)] (6)
Combined with Equations (5) and (6), the relationship between h and r can be written as

2G(D72) (ln 7)1/2 (27,) (3-D)

h = 7
[1—cos )] ?
The term cos( %) is approximately calculated using Taylor’s theorem as
r m2r?
cos(7) =1 G ®

The relationship between h and r is deduced using Equations (2), (7) and (8), as follows

h= 2(D75) nZksz(ZfD) (h’l 7)*1/2r(D71) (9)
The truncated area a at the contact location of undeformed asperity is
a = mr? (10)

According to Equations (9) and (10), the relationship between 1 and a of the asperity is

obtained as
(D-1)

h =205k 2G2-D)(In) V272 (11)

3. Contact Analysis of a Single Asperity

The contact behavior of the interface can be assumed to be the sum of the contact
behaviors of the asperities of the interface. Based on the analysis in Section 2, the shape of
the asperity and the hypothetical surface is obtained. Therefore, the contact deformation
between the single asperity and the rigid plane will be analyzed in this section. The
analytical expressions of the normal contact stiffness and normal contact load of the asperity
will be finally derived.

When the asperity contacts the rigid plane, the asperity begins to produce elastic
deformation, elastic—plastic deformation, and fully plastic deformation in turn with the
increase of load. The schematic of the contact between the single asperity and the rigid plane
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is shown in Figure 2. The red line indicates the shape of the asperity before deformation;
the green line represents the shape of the asperity after deformation; r’ is the radius of the
circular section of the deformed asperity at the contact location.

Before deformation
— After deformation

Rigid Plant N 0]

2h

X

Figure 2. Two-dimensional schematic of the contact deformation between a single axisymmetric
cosinusoidal asperity and rigid plane.

3.1. Elastic Deformation Stage

With the increase of contact load, the asperity will enter the elastic deformation stage
first. The Hertz contact theory [27] is used to analyze the contact deformation of the asperity
in the elastic deformation stage. The relationship between J§ and average contact pressure

P, of the asperity is
[ 3mPe, 2
d= ( AE ) R (12)

where E is the effective Young’s modulus: E = [(1 —v%)/E; + (1 —v3)/E;] =D (v1, vy are
the Poisson’s ratio of materials of two contact surfaces; Eq, E; are Young’s modulus of
materials of two contact surfaces); and R is the curvature radius of the asperity, which can
be calculated by the following equation as [27]

S L S S G (13)
EEE) | hm? cos () ~ hm?
dx2  |x=0 =
Combined with Equations (12) and (13), P, is expressed as Equation (14) as
4ER'/251/2
Py = (14

According to reference [20], the real contact area 4. of the asperity can be written as

1
a, = Ea = 7TRé (15)

By definition, the normal contact load F;, of the asperity can be obtained using
Equations (2), (11), (14), and (15) as follows

11-2D 1/2 4 D9 4D
27z (In EG a2
Fue = Peg - 0c = ( ’)/) D (16)

32

Contact stiffness is the derivative of contact load with respect to interference. So, the
normal contact stiffness k. of a single asperity is calculated using Equation (16) as

3/2
kne:ane _4-D 2¥ E 112
s~ 3-D 3ml/2

(17)
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According to the reference [32], when P,; = 1.1k}, 0y, the asperity begins to produce
plastic deformation when the friction factor is considered. According to Equation (12), the
critical interference J,. of the elastic deformation stage is

 (337kug\?
5ec_< 0 )R (18)

where ky is the piecewise factor of friction (when 0 < p < O.3,k,4 = 1—0.228yu; when
03 <pu<09k, = 0.932¢138(#=03) Where y is the friction factor between the contact
surfaces); and ¢ = 0/ E; 0y is the yield strength of the softer material between the contact
surfaces.

Combined with Equations (2), (5), (10), (11), (13) and (18), the critical contact truncated
area ae. of the elastic deformation stage of the asperity can be expressed as follows

1

2D-9 4—D —~4-2D 33k 21 2-D

e = [2 i G ( H‘”) 1 (19)
n<y 40

3.2. Plastic Deformation Stage

With the increase of contact load, the asperity will first enter the elastic—plastic de-
formation stage after the elastic deformation stage. However, due to the fact that there
is no complete analytical formula at the stage of elastic—plastic deformation, this paper
will use mathematical methods to analyze this stage. Elastic—plastic deformation is the
transition stage between elastic deformation and plastic deformation; therefore, the plastic
deformation of the asperity will be first discussed in this section. It can be seen from
reference [33] that the real contact area a, of the asperity in the plastic deformation stage is
equal to the truncated area a as follows

ap =a= r? (20)

According to the theory of contact mechanics [34], the average contact pressure Py, of
the asperity in the plastic deformation stage is

Py =H (21)

where H is the hardness of the softer material of the interfaces.
It can be seen from reference [35] that the upper limit of plastic average pressure of a
single asperity Py, is defined as follows

Py = 30y (22)
It can be seen from reference [34] that the relationship between P}, and H is
H = 093P,y (23)
According to Equations (21)—(23), P, can be expressed as
Ppa = 2.790y (24)

The normal contact load Fy, of a single asperity in the plastic deformation stage can
be obtained using Equations (20) and (24).

Fup = Ppg - ap = 2.790ya (25)
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For the critical point of fully plastic deformation, the relationship between 0y, and Py,
is given in reference [34] as
— )] =279 (26)

According to Equation (26), the critical radius 7, of the contact truncated section of
the plastic stage can be written in the following form

I (279 %0yl I (279 20yk
Tpe = aresin{ — - —— | = —arcsin| —— ——— (27)

By _ 2

oy 3

1+1n<1.E-
3 oy

The critical contact truncated area ay,. of the plastic stage is derived from Equations
(10) and (27).

2
, 2 (279 %yl 2057452 G2 (2.79¢7 20k \ | FP
ﬂpc = 7T1’pc — —arcsin — | = —marcsm e —

T tEh k(Iny) nE

7/2
The term arcsin(W) is approximately calculated using the Taylor theorem

. 2.79e7/2(7yk B 2.79e7/2c7yk 29)
arcsin p = p

as follows

Substituting Equation (29) into Equation (28), 4, can be obtained as

2
2.79¢7/220-5 %" pG2-D\ *P
ape = ( e (30)

(Iny)"?

3.3. Elastic—Plastic Deformation Stage

The elastic—plastic deformation stage is the transition stage between the elastic defor-
mation stage and the plastic deformation stage. In this section, the analytical method of
reference [16] will be used to analyze the contact process of the asperity in the elastic—plastic
deformation stage.

First of all, the relationship between normal contact pressure and hardness of asperity during
elastic deformation and plastic deformation will be discussed. When Pp; = Peac = 1.1ky0y,
plastic deformation of asperity occurs. According to Equations (21)—(23), Pe,c has a linear
relationship with H, which can be written as follows

Peye = KH (31)

where K is a coefficient (K = 0.4k;,).
According to Equations (12) and (31), P,; can be written as

|6
Py = KH,| — (32)
5€C

From Equations (21) and (32), it can be concluded that the average contact pressure of
the asperity has a linear relationship with the hardness at the stage of elastic deformation
and plastic deformation. Therefore, it is considered that the average contact pressure Pey,
of the asperity during the elastic—plastic deformation also has a linear relationship with the
hardness. Py, can be set to the following form

Pepa = Hg (33)
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where H is the hardness of the asperity in the elastic—plastic deformation stage. Hg will
change with the interference of the asperity. Referring to the relations (24) and (32) between
the average contact pressure and hardness in the elastic deformation stage and the plastic
deformation stage, Hg should have the same linear relationship with the truncated area g,
which can be listed as follows

a \°¢
HG = C10y (a ) (34)
ec

where ¢ and c¢; are coefficients to be determined.
When the asperity is at the elastic critical interference and the plastic critical interfer-
ence during the contact deformation process, Hg should meet the following two conditions

HG(ﬂec) = Pea(aec) (35)

Hg (apc) = Ppa(apc) (36)

According to Equations (35) and (36), ¢ and c; can be determined as

¢ = 2.79K (37)
InK

c= o (38)
In 2
pc

Hg can be obtained by substituting Equations (37) and (38) into Equation (35).

c
Hg = 2.79Koy, () (39)
Aec
According to Equations (33), (39) and (40), the normal contact load Fyep, of the asperity
at the stage of elastic—plastic deformation is deduced as follows

Fuep = Hga = 2.79Koya' ™a, (40)

The normal contact stiffness kyp of the asperity in the elastic-plastic deformation stage
is obtained in the form
dFp 279 G(2-D)p(D-3) 352

o (14 c)Koya,©
P45 3-D (Iny

)1/2

o (41)

4. Establishment of Interface Contact Model

The contact deformation process of a single asperity in three deformation stages is
analyzed, and the analytical expressions of the normal contact load and the normal contact
stiffness in each deformation stage are obtained in Section 3. In this section, the contact
stiffness model of the entire interface will be derived by combining the analysis results in
Section 3 with the truncated asperity size distribution function.

Before deriving the contact stiffness model of the interface, the following assumptions
are made for the contact model: (1) The surface morphology follows the fractal theory; (2)
The shapes of all asperities on the surface are axisymmetric cosinusoidal bodies; (3) The
contact between two rough surfaces is assumed to be the contact between a rough surface
and a rigid plane; (4) The interaction between asperities is ignored in the contact process;
and (5) The macromatrix deformation is not considered during the contact process. Based
on the above five assumptions, the contact stiffness model of the interface can be deduced.
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According to reference [20], the truncated asperity size distribution function of the
asperity on the surface is

n(a) =

D—1)sa;\ % D—1) bp-1 _ps
(ZaL)(aL) HE 2 Yoy s )

where a, is the largest truncated area of asperity.
By definition, the real contact area A of the interface is obtained using Equation (42).

A= / a-n( da+/ da+/ a-n( (?_g)aL (43)

According to Equations (16), (25), (40) and (42), when D # 2.5, the total normal contact
load F,, of the interface can be deduced as

F, = f;ﬂi Fre - n(a)da + f”“ anp -n(a)da + [3* Fup - n(a)da

012" B2 ny) 2, 2 [(a‘r’zw _u5zw>}+
- D L ec
3(5-2D) 2 (44)
2.79(D—1 ¢ D=1 _ _
2(c+1.(5 70.5)13) Koyaz<a, 2 (a§j1-5 05D _ get1s 0.5D) +
_ D-1 3-D
3(27}3)%%2 apé
When D = 2.5, F,, can be written as follows
E, = f;ﬂi Fpe - n(a)da + f”“ Fuep - n(a)da + foa”c Fup-n(a)da
_ 2(ln72;//24EG1/2 [3/41n ( C)+
2.79(D—1) (45)

3(c15-05D) KOy AL =
3(D-1)o, 271 HP
=D 4L Ape

( gC+1.5-05D _ c+l.570.5D>+
pC

According to Equations (17), (41) and (42), the total normal contact stiffness Kj, of the
interface is obtained in the following form

—f”L kne - n( da—ﬁ—f”“knep n(a)da
_ (D-D(-D>2E Dl TD n
= 2-D)3- D37t1/2 a’ (46)

—-D
2.79(D-1)2(P-4G2-D)x 5 (14¢)Key o D1/ . c
1/2 a Aec — apc da

G-D) () ec L 7

The dimensionless form of F,, and Kj, is as follows.
When D # 2.5, the dimensionless total normal contact load F;; is written as follows

= 2 Fuo-n(@)da+ [ Fugy - n(a)da+ 37 Fyp - n(a)da

1-2D D1
(D-1)2" 2 G*P2(Iny)"%; 2 x22D 45D
= D “\ag — Oec +
3(5— 2D)7r 2

2.79(D-1) # Bl (xc4+1.5-05D *c+1.5—0.5D
2(c+1.5-05D) Kepagc fec " pe +
3(D 1) D‘l x32
Ppay pc*

(47)

D

where F; = F,/(EAq), G* = G/ Au, a] = ar/Ag, aye = aec/ Aa, a;;C = apc/ Aq. Aqis the
nominal contact area of the interface.
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When D = 2.5, F;; is written as
_rag a Apc
Ey = [} Fue-n(a)da+ fa;f Fuep - n(a)da+ [," Fyp - n(a)da
1/2 ~%1/2 *
L N A
( 7‘L’3/)4 [ (48)
2.79(D—1 x—c, #B5L( xc+1.5-05D _ ,#c+1.5-05D
3(cr15-05D) KPdec ‘AL 7 | aec Ape +
39(D-1) *Prt 350
~3-D 4L~ pe
The dimensionless total normal contact stiffness K, of the interface is
23/2(D—1)(4—D) « D=1 «2=D «2=D
* 2 2 2
Ki= sanepyem® = % fec = |+
3-D (49)
2-79'2“7’4)(D—l)G*(z’mﬂT(HC)K‘Pa*fca B3t (gre _ ge
¢(3-D)(In7)/? ec “L ec pc

where K;; = K,/ (E\/Ay).

5. Results and Discussion

Based on the analysis in Section 4, a 3D fractal model of the normal contact stiffness
of the mechanical interface based on the axisymmetric cosinusoidal asperity is obtained.
In order to verify the accuracy of this model, the experimental results with the numerical
simulation results of the presented model and the reference [22] model (Pan model) will
first be compared in this section. Then, the simulation results of the presented model and
the Pan model will be compared under different fractal parameters, and the influence of
fractal parameters on the normal contact stiffness will be discussed.

5.1. Numerical Simulation and Experimental Test

The experimental data are from reference [27]. The box-counting method [36] is used
to calculate the fractal parameters of the sample surface for the 45# steel sample with a
roughness of 0.672 um in reference [27]. The fractal parameters of the sample surface are
D =2.416,G" =249 x 1073. By substituting the fractal parameters and material parameters
of the sample into the two models, the numerical simulation results of the two models
can be obtained. The experimental data and the simulation results of the two models are
compared and the comparison results are shown in Figure 3.

3 . r r : - -
3
2 Presented model
g 25 ® Experimental result |
hohal - -& - Pan model
3 -
o
s 2F 1
g * A
3 A
215 T '
% o LA
Z05F e 1
S AT
(ST . . . ; :

0 05 1 15 2 25 3 35

Dimensionless normal contact load F* w104
Figure 3. Comparison results of 45# steel.

The relationship curves between the dimensionless total normal contact load F,; and
dimensionless total normal contact stiffness K;; of the 45# steel sample with a roughness of
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0.672 pm are shown in Figure 3. In general, it can be seen from Figure 3 that the experimental
data have the same variation character as the simulation results of the two models, and K},
increases with the increase of F,. In terms of numerical value, the simulation results of the
presented model fit the experimental results more closely. Furthermore, there is a certain
gap between the simulation results of the Pan model and the experimental results, which
increases with the increase of ;.

The relative error between the experimental results and the simulation results of the
two models is shown in Figure 4.

40 T T T T T T
I Presented model
35 i | Pan model i
26.42 26.35
a5t
S
fé) 201
15F
10F
5t 4.35
0.88 1.80 1.28 1.63

485x107°  9.71x107°  1.46x10™*  1.94x10™ 2.43x10* 2.91x107*

Dimensionless normal contact load F*

Figure 4. Relative errors between experimental results and simulation results of the presented model
and the Pan model.

For the changing trend, the relative errors between the experimental results and
the simulation results of the two models have no obvious trend of change. In terms of
numerical value, the relative error between the simulation results of the presented model
and the experimental results is relatively small, with the maximum relative error of 4.35%.
Meanwhile, the maximum relative error between the simulation results of the Pan model
and the experimental results is 29.58%.

The above phenomena can be explained by analyzing the differences between the
two models. The shape of asperity is the main difference between the two models. The
presented model is based on axisymmetric cosinusoidal asperity and the Pan model is
based on hemispherical asperity. The difference in the shape of asperity leads to the gap
in the simulation results of the two models, and the gap increases with the increase of the
load. The specific analysis is as follows.

The elastic deformation stage is mainly carried out at the top of the asperity. The top
shapes of the two kinds of asperities are similar, so the contact deformation of the two
asperities in the elastic deformation stages is similar.

The elastic—plastic deformation stage and plastic deformation stage are mainly carried
out in the lower part of the asperity. When the two bodies are the same height, the volume of
the lower half of the axisymmetric cosinusoidal body is larger than that of the hemispherical
body. Therefore, when the asperity is in the stage of elastic—plastic deformation and plastic
deformation, there will be more asperities involved in the calculation in the stiffness model
established by the hemispherical asperity under the same F,;. Compared with the presented
model, the real contact area of the asperity in the Pan model is smaller, and the deformation
is greater, resulting in the smaller stiffness result of the Pan model.
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Because of the above two factors, when F;; is small, the asperities in the elastic stage
account for the majority, and the Kj; value of the two models is approximate. When F;; is
large, the asperities on the interface are in the elastic—plastic deformation stage and plastic
deformation stage, which account for a large proportion. The K;, result of the presented
model is larger than the result of the Pan model. In addition, with the increase of F;, the
proportion of the asperities on the interface in the elastic—plastic deformation stage and the
plastic deformation stage increases, so the gap between the K} values of the two models
increases with the increase of F;;.

5.2. Comparison of Results under Different Fractal Parameters

The experimental results are compared with the simulation results of the two models
in Section 5.1. The simulation results of the presented model and the Pan model under
different fractal parameters will be compared in this section to discuss the influence of
fractal parameters on the normal contact stiffness.

5.2.1. Fractal Dimension D

The influence of fractal dimension D on the normal contact stiffness is discussed in this
section. The interface parameters are set as follows: G =1x1078, =010 =v, =03
D =2.1~2.9. The comparison charts between the simulation results of the two models under
different D are obtained by substituting different parameters, as shown in Figure 5.

(%
S
w
=3
S

B

©) % 3000
Presented model -~ P = Presented model
- - Pan model e - -4 - Pan model e

'S
S
%

Y
»
>
[ )
1
S
Y
>

()
=1
S
'}
»
»

w

S
)
»

L3

s 150 - A

)
S

2 100

—_ — S N
%3 IS 193 S %3
S S =3 S =3
S S S S S
W
»

=
e

z s0f K

Dimensionless normal contact stiffness K*
W
>

Dimensionless normal contact stiffness K*

Dimensionless normal contact stiffne:

=3

0
0.5 1 1.5 2 25 3 35 0 0.5 1 1.5 2 25 3 35 0.5 1 1.5 2 25 3 35

Dimensionless normal contact load F* (-4 Dimensionless normal contact load F* 5 1+ Dimensionless normal contact load F* y 104

M 3 x10°

(e) , X 10 (f)
=— Presented model -
25 - % - Pan model o

=3

o
o

x10

=— Presented model -
- - - Pan model o

w

w

=— Presented model
- % - Pan model -

g
wn
W
>

5

0.5 b
- AT
e
&

Dimensionless normal contact stiffness K*

»
Dimensionless normal contact stiffness K*
W
W
>
»
Dimensionless normal contact stiffness K*
in
W
*

0 0.5 1 1.5 2 2.5 3 35 0 0.5 1 1.5 2 2.5 3 35 0 0.5 1 1.5 2 25 3 35
Dimensionless normal contact load F* 10~ Dimensionless normal contact load F* w104 Dimensionless normal contact load F* 10~
x10° x10° x10

2.5 (h) & 2 ()
2 #— Presented model =

(&)

=— Presented model - =— Presented model .
- - - Pan model - - % - Pan model -

0.5

Dimensionless normal contact stiffness K*
W
»

Dimensionless normal contact stiffness K*
»*

Dimensionless normal contact stiffness K*

0 0
0 0.5 1 1.5 2 2.5 3 35 0 0.5 1 1.5 2 2.5 3 35 0 0.5 1 1.5 2 2.5 3 35

Dimensionless normal contact load F* w104 Dimensionless normal contact load F* 104 Dimensionless normal contact load F* 104

Figure 5. Comparison results between simulation results of the presented model and Pan model
under different D: (a) D =2.1; (b) D=2.2;(c) D=2.3;(d) D =24;(e) D=25;(f) D=2.6; (g D=2.7;
(hyD=28; (i) D=29.

The comparison results can be obtained from Figure 5. In general, the relationship
curves between F; and K;; of the presented model and Pan model have the same variation
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character under different D and K}, increases with the increase of F;;. Under the same F;;,
the Kj, values of the presented model under different D are greater than those of the Pan
model, and the gap between the K, values of the two models increases with the increase of
F;;. By comparing the differences between the two models, it is found that this phenomenon
is caused by the different shapes of asperity used in the models. The relevant factors have
been given in the previous section.

In addition, it can be seen from Figure 5 that when D = 2.1~2.4, the relationship curves
between K}, and F,; show obvious nonlinearity. When D = 2.5~2.9, the relationship curves
tend to linearity. This change shows that with the increase of D, the relationship curve
between K;; and F;; tends to be linear. This phenomenon is due to the fact that the increase
of D results in the smaller amplitude of asperities of the interface. During the contact
process, the proportion of the asperities in the elastic—plastic deformation stage and the
plastic deformation stage decrease, resulting in the gradual linear trend of the relationship
curve between Kj; and F;;.

By comparing the nine results, we can also find the following phenomenon. Under
the same F;;, when D =2.1~2.6, the K;; value increases monotonously with the increase of
D. When D = 2.6~2.9, the value of K}, decreases monotonously with the increase of D. By
analyzing the influence of D on the model, this phenomenon may be due to the fact that
the D value influences both the density and amplitude of the asperity of the interface. On
the one hand, the larger the D, the denser the asperities of the interface, and the smaller
the real contact area of a single asperity. Under the same F;, the deformation of a single
asperity becomes larger, resulting in the reduction of the K value of the model. On the
other hand, the larger the D, the smaller the amplitude of asperities of the interface. Under
the same F;;, the deformation of a single asperity decreases, resulting in the increase of the
K value of the model. Finally, under the combined action of the two effects of D, when
under the same F;;, the K}, value increases first and then decreases with the increase of D.

5.2.2. Scale Coefficient G

The influence of scale coefficient G on normal contact stiffness is discussed in this
section. The parameters are set as follows: D =24, 4 =0.1,v; =v, =0.3. G =1072~10"10,
The comparison charts between the simulation results of the presented model and the Pan
model under different G are obtained by substituting different parameters, as shown in
Figure 6.

The relationship curves between F; and K;; of the presented model and Pan model are
shown in Figure 6 when G takes different values.

In general, when G takes different values, the relationships between F;; and K}, of the
two models are similar, and Kj, values increase with increasing F;;. Under the same F;;, K,
values decrease monotonically with the increase of G . This phenomenon is caused by the
influence of the G on the amplitude of the asperity of the interface. The greater the G, the
greater the amplitude of the asperity of the interface. Under the same F;, the deformation
of the asperity is larger, resulting in the reduction of K}; of the models.
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Figure 6. Comparison results between simulation results of the presented model and the Pan
model under different G*: (a) G* =1072; (b) G* = 1073; (c) G* = 107%; (d) G* = 1075; (e) G* = 10~5;
(f)G*=10"7;(g) G*=10"8; (h) G*=10"7; (i) G*= 1010,

6. Conclusions

In this paper, a novel 3D fractal model of normal contact stiffness of mechanical inter-
face based on the axisymmetric cosinusoidal asperity is proposed. The main conclusions
can be summarized as follows:

(1) The analytical hypothetical 3D surface based on the axisymmetric cosinusoidal asper-
ity is established. In the hypothetical surface, the shape of asperity is represented by
an axisymmetric cosinusoidal body, and the distribution of the asperity follows the
truncated asperity size distribution function.

(2) Contact mechanics are used to analyze the contact deformation process of asperity.
Then, combining the contact deformation analysis results of asperity and the truncated
asperity size distribution function, the analytical expressions of the normal contact
stiffness and normal contact load of the whole interface are obtained. The theoretical
analytical model of normal contact stiffness of mechanical interface is finally obtained.

(3 The numerical simulation results of the presented model are compared with the
experimental results and the Pan model. The comparison results show that the
maximum relative error between the presented model and the experimental results is
4.35%, while the maximum relative error between the Pan model and the experimental
results is 29.58%. The comparison results verify the accuracy of the presented model.
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(4) The influence of different fractal parameters on normal contact stiffness is discussed.
The simulation results show that under the same normal contact load, the normal
contact stiffness increases first and then decreases with the increase of D. The normal
contact stiffness decreases monotonically with the increase of G. In this paper, the
rationality of the simulation results is reasonably explained in combination with the
shape of the asperity.

However, the mechanical interface usually contains a lubricating medium in actual
working conditions. The situation is not considered in the presented model and relevant
work will be carried out in future research.
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