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Abstract Many machine learning softwares are available

which help the researchers to accomplish various tasks.

These software packages have various conventional algo-

rithms which perform well if the training and test data are

independent and identically distributed. However, this might

not be the case in the real world. The training data may not

be available at one time. In the case of neural networks,

the architecture has to be retrained with new data that are

made available subsequently. In this paper, we present a

novel training algorithm which can avoid complete retraining

of any neural network architecture meant for visual pattern

recognition. To show the utility of the algorithm, we have

investigated the performance of convolutional neural net-

work (CNN) architecture for a face recognition task under

transfer learning. The proposed training algorithm may be

used for enhancing the utility of machine learning software

by providing researchers with an approach that can reduce

the training time under transfer learning.

Keywords Convolutional neural network · Minimum

change principle · Variance · Trainable weights · Transfer

learning

Introduction

Machine learning algorithms aim at building a model from

example inputs in order to make data-driven decisions or
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predictions. Applications such as face recognition, spam fil-

tering, and recommendation engines which use large dataset

uses machine learning. Google uses machine learning to

identify and deindex webspam. Various machine learning

software such as Weka, Java Neural Network Framework

Neuroph, Scikit Learn, Open NN Multiple Back propa-

gation exists that assists researchers in solving complex

problems. These packages have conventional algorithms [1–

9] for image analysis, machine learning and data mining that

assume training and test data have the same distribution. In

many real-world applications, this may not hold, for example,

if one has to detect users current location using previously

collected Wi-Fi data. It is expensive to calibrate Wi-Fi data

in large-scale environment as the user needs to label exten-

sive collection of Wi-Fi signal at each location. Knowledge

transfer or transfer learning may be useful in saving signif-

icant efforts in labeling data [10]. Transfer of knowledge

from a related task that has already been learned to a new

task which shares some of the commonality is transfer learn-

ing. Basics of transfer learning are well explained in [11].

Transfer learning aims to solve the problem when the training

and test data are different. Transfer learning approaches like

instance transfer, feature representation transfer, parameter

transfer, and relational knowledge transfer are discussed in

[12–16]. Transfer learning finds its motivation in the fact that

human beings can intelligently apply knowledge acquired

previously to solve the new problem faster or with better

solutions. NISP-95 workshop on “Learning to Learn” had

a special session that discussed the fundamental motivation

behind transfer Learning. The workshop was focused on the

need for lifelong machine learning techniques that retain and

reuse previously acquired knowledge [12,17,18]. Thus, the

machine learning software packages should provide some

simple and automatic/semiautomatic setting for users deal-

ing with transfer learning tasks.
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Multilayer feedforward neural networks are been effec-

tively used in machine learning. They can be used to approx-

imate complex nonlinear functions from high-dimensional

input data. The performance of multilayer perceptron (MLP)

depends on the underlying feature extraction method used

[19]. The choice of feature extraction algorithm and features

used for classification is often empirical, and therefore, it

is suboptimal. One can directly use the training algorithm

to find the best feature extractors by adjusting the weights.

However, when the input dimension is high (image process-

ing application), the number of connections, the number

of free parameters increases because each hidden unit is

fully connected to the input layer. This may lead to a net-

work that overfits the data as the neural network would have

a too high complexity. The input patterns are to be well

aligned and normalized while presenting to such type of MLP

leading to no built in variance with respect to local distor-

tions and translations [20]. Various neural network classifiers

are explained in [18,21–26]. A convolutional neural net-

work(CNN) tries to solve the problems of MLP by extracting

local features and combining them subsequently to perform

the detection or recognition. CNN and neocognitron are the

neural network architectures which are meant for visual pat-

tern recognition. These architectures have integrated feature

extraction and classification layers. However, in the litera-

ture, no work has been reported which focuses on neural

networks (meant for visual pattern recognition) equipped

with transfer learning without making changes in the archi-

tecture.

The contributions of this paper include the following:

1. Novel training algorithm for CNN architecture under

transfer learning task. Three-phase training algorithm is

proposed for the same. Phase I is a conventional phase in

which CNN is trained with the conventional methods in

[27–29]. Phase II is a knowledge transfer in which knowl-

edge acquired from new training samples is transferred

into the architecture with minimum changes in the free

parameters (weights) of the neural network architecture.

Phase III is a weight update for transfer learning phase.

Phase II and III are the new steps added to the existing,

i.e., conventional algorithm of CNN. These phases avoid

complete retraining of CNN when new training data are

available subsequently once the CNN is trained with old

data. The proposed algorithm may enhance the utility of

any machine learning software by reducing the training

time for transfer learning.

2. A training method which can be used for any neural net-

work architecture meant for visual pattern recognition

under transfer learning.

3. The novel dataset that is unique and meant to advance

the research on face recognition under transfer learning.

4. Minimum change principle is been proposed which can

be used to train a neural network under transfer learning.

The remainder of this paper is organized as follows. Sec-

tion “Related work” throws light on the work done in the

area of transfer learning and deep learning. The aim of the

proposed work is to equip CNN (deep learning network)

with transfer learning framework. This section explains var-

ious ongoing applications in field of transfer learning and

deep learning. Section “The framework of transfer learn-

ing” explains the transfer learning framework used in this

research. Framework of transfer learning is applied to prin-

cipal component analysis (PCA) to derive the projection

matrix. Section “Convolutional neural networks” explains

the architecture of CNN followed by the proposed training

algorithm for the CNN architecture. Section “Comparison

of traditional algorithm (conventional) with proposed algo-

rithm” explains the comparison of traditional algorithm with

the proposed algorithm. Section “Dataset” describes the

dataset that is used in this research. Section “Experiments,

parameter settings, and observations” throws light on the

experiments performed on the CNN architecture. This sec-

tion also explains various parameter setting in the algorithm

followed by the observations. Section “Conclusion” brings

ahead the conclusion of this research work.

Related work

In the last few years, visual recognition community has

shown a growing interest in transfer learning algorithms

[30,31]. Transfer subspace learning (TSL) is effectively used

in understanding kin relationships in the photo [32]. Classifi-

cation under covariate shift is been solved by transfer learning

[33]. Features with meta-features that can be used in pre-

diction task is studied in [34]. Building classifiers for text

classification by extracting positive examples from unlabeled

examples for improving performance of the system are high-

lighted in [10]. Transfer subspace learning that can reduce

time and space cost is proposed in [35]. Enhanced subspace

clustering algorithms [36,37] are used to handle complex

data and to improve clustering results. Cross-domain dis-

criminative locally linear embedding (CDLLE) can be used

to reduce the human labeling efforts for social image anno-

tation problem [38]. Robust framework against noise in the

transfer learning setting is proposed in [39]. Semisupervised

clustering algorithm with domain adaptation and the con-

straint knowledge with transferred centroid regularization

is proposed in [40]. Xiaoxin Yin et al. have proposed [41]

efficient classification across multiple database relations.

Performance improvement is seen when transfer learning is

used in medical image segmentation followed by classifi-
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cation [42]. Low-resolution face images are matched with

the high-resolution gallery images using transfer learning

which improved cross-resolution face matching [43]. Trans-

fer learning using Bayesian model was used in [44] for face

verification application. Ensemble-based transfer learning

was used in text classification [45]. Knowledge was trans-

ferred between text and images using matrix factorization

approach by Zhu et al. [46]. Geng et al. used domain adap-

tation metric learning for face recognition and web image

annotation [47]. Server-based spam filter learned from pub-

lic sources was designed and applied to individual users with

the help of transfer learning [48].

In recent years due to its state-of-the art performance in

many research domains, deep learning has attracted attention

of academic community. Companies like Google, Facebook

and Apple who collect and analyze massive amounts of data

are putting forward lot of deep learning-related projects that

happens to be the prime motivation behind this research.

Deep learning challenges and perspectives are well explained

in [49]. Weilong Hou et al. have done blind quality assess-

ment via deep learning [50]. Shuhui Bu et al. for the first time

applied deep learning for 3D shape retrieval [51]. Traffic

flow prediction and deep learning approach is been pro-

posed in [52]. Object tracking in blurred videos using blurred

videos and deep image representations is proposed by Jian-

wei Ding et al. [53]. Adaptively learn representation that is

more effective for the task of vehicle color recognition using

spatial pyramid deep learning is given by Chuanping Hu et

al. [54]. Deep learning is also been used to grade nuclear

cataracts [55]. Deep learning is been widely used in med-

ical image processing for segmentation, classification and

registration [56–61], image denoising [62] and multimodal

learning [63]. Deep learning is proved to give robust image

representation for single training sample per person in face

recognition task [64]. Corey Kereliuk et al. did music con-

tent analysis with deep learning [65]. Land use classification

[66], scene classification [67] and visual tracking [68] appli-

cations work well with deep learning architectures. Impact

of deep learning on developmental robotics is explained in

[69]. Multi-label image annotation is been achieved using

semisupervised deep learning [70]. Financial signal rep-

resentation is done in [71] using deep neural networks.

Pipeline for object detection and segmentation in the con-

text of volumetric image parsing is proposed using marginal

space deep learning [72]. Deep learning is also been used

in indoor localization that reduces the location error com-

pared with the three existing methods [73]. Convolutional

neural networks (CNN), a very popular deep learning net-

work is used in almost all the applications since it is believed

to be one of the most appropriate networks for modeling

images [74]. CNN are used for image classification [75],

pose estimation [76], face recognition [77] and modeling

texts [78–84].

The proposed work contrasts clearly from a concurrent

work on deep learning and transfer learning in following

ways:

1. Support vector machine (SVM) is extensively used in

transfer learning methods. Most of the transfer learn-

ing algorithms are developed only for specific model

that makes it difficult to use it for other models and

restrict the applicability. To the best of author’s knowl-

edge and the data available from literature, the first

attempt made to equip deep neural network with transfer

learning framework was by Mingsheng Long et al. [85].

In their framework they have modified the architecture of

CNN. However, the research work proposed in this paper

is for the conventional CNN architecture. A novel train-

ing algorithm under transfer learning is proposed without

changing the architecture of CNN. There was also an

attempt to equip shallow neural network with transfer

learning [52]. The authors of this paper also acknowl-

edge the work of Fan Zhang et al., in their work they

have suggested a neural network ensemble training to

improve prediction accuracy at the expense of increased

trainable parameters [67]. In short the proposed algo-

rithm is generic and can be used for any deep learning

architecture.

2. The transfer learning task is demonstrated with applica-

tions like medical image segmentation, text classification

[86], web image annotation, face recognition, etc. Vari-

ous standard datasets like Yale Face database, the Facial

Recognition Technology (FERET) and Labeled Faces in

the Wind (LFW) exists for doing the experimentation on

recognition of faces. The face images in these datasets

are acquired with various poses, illumination [87] and

expressions, etc. No dataset of face exists which has face

images acquired at different distances. The authors of this

paper have made their own dataset which may be used

by researchers working on a problem of face recognition

at a distance. The details of the dataset is explained in

Sect. “Dataset”.

The framework of transfer learning

Given m training samples with x as a input and t as a target

for classification task, T = {(X1, t1), (X2, t2), (Xm, tm)}, n

testing samples, U = {(Xm+1), (Xm+2), . . . (Xm+n,)}. The

samples are drawn from a high-dimensional space RD. The

subspace learning algorithm finds a low-dimensional space

Rd. A linear function y = W T X , where W ǫ RD×d and y

ǫ Rd will find a low-dimensional space Rd . The objective

function can be

W = arg min E(W ) (1)
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subject to constraints W TW = I . The objective function

E(W) reduces the classification error. Equation (1) performs

well if training and testing samples are independent and iden-

tically distributed. However, in practice, this might not be

true. The distribution of training samples PT and that of test-

ing samples PU may be different. Under such conditions,

the learning framework given by equation fails. To solve

this problem, the Bregman divergence-based regularization

DW (PT ||PU ) which measures the distribution difference of

samples in a projected subspace W is used [17]. Equation

(1) is modified for transfer learning. The new framework for

transfer learning is given as (2)

W = arg minE(W ) + ρDW (PT ||PU ) (2)

With constraints, e.g., W T W = I . In (2) ρ is the regular-

ization parameter that controls the trade-off between E(W)

and DW(PT||PU). The solution of (2) can be obtained by the

gradient descent algorithm and is given by

W (new) = W (old) − α(∂ E(W )/∂W ) + O, (3)

where O = ρ
∂ DW (PT ||PU )

∂W
/∂W and α is the learning rate.

Framework of TSL applied to principal component

analysis (PCA)

Principal component analysis (PCA) projects the high-

dimensional data to lower dimensional space by capturing

maximum variance [88]. PCA projection matrix maximizes

the trace of the total scatter matrix

W = arg max tr(W T RW ) (4)

Subject to WWT = I. R is the autocorrelation matrix of train-

ing samples. E(W) of PCA is given by (5)

E(W ) = −tr(W T RW ) (5)

∂ E(W )/∂W = −2RW (6)

By substituting (5) and (6) into (3), we can obtain the projec-

tion matrix W for transfer learning. The detailed procedure

to get the solution of (3) is given in [2].

Convolutional neural networks

Figure 1 shows convolutional neural network for face recog-

nition task. The input plane receives images. The input is

74 × 74 pixel image. Layer C1 is a convolutional layer with

six feature maps. Each unit in each feature map has a con-

nection to the 11 × 11 neighborhood in the input. The size

Fig. 1 Basic convolutional architecture for face recognition

of the feature map is 64 × 64. C1 contains six kernels of

size 11 × 11 and six biases, so the total number of trainable

weights is 732.

Layer S2 is a subsampling layer with six feature maps of

size 32 × 32. Each unit in feature map has a connection to a

2 × 2 neighborhood in the corresponding feature map of C1.

Layer S2 has no trainable weights.

Layer C3is a convolutional layer consisting of 16 feature

maps, i.e., 16 kernels of size 11×11 and sixteen biases which

result in 1952 trainable weights.

Layer S4 is a subsampling layer with 16 feature maps of

size 22 × 22. The S4 layer has no trainable parameters.

Layer C5 is a convolutional layer consisting of 120 feature

maps, i.e., 120 kernels of size 11 × 11 and 120 biases which

result in 14,640 trainable weights.

Layer F6 contains 84 units, and the output layer consists

of 25 units for solving a classification problem of 25 users

or 50 units for solving a classification problem of 50 users.

Trainable parameters for layer F6 are 10,080. Trainable para-

meters for output layer are 2100 for 25 users and 4200 for 50

users classification problem.

Proposed three-phase training algorithm for CNN

architecture using transfer learning approach

Figure 2 shows the proposed three-phase training algorithm.

Comparison of traditional algorithm (conventional)

with proposed algorithm

Phase I of the algorithm is the training of CNN C and S

Layers. Supervised learning is used to train C and S layers.

A gradient descend method is used to update the weights in
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Phase I   Conventional Phase  

Initialize all weights and biases of the CNN to a small value. 

Set learning rate such tha  <1 

n= 1 

repeat 

for m=1 to M do 

propagate pattern xm through the network 

for k= 1 to the number  of neurons in the output layer 

Find  error 

end for 

for layers L-1 to 1 do  

for maps j = 1 to J do 

find error factor to be back  propagated 

end for 

end for 

fori=1 to L do 

for j=1 to J do 

for all weights of map, j do 

Update weights and biases 

end for 

end for 

end for 

n = n + 1 

Find Mean Square Error (MSE1) 

Until MSE1<  or n > maximum bounds 

Phase II   Transfer Knowledge Phase  

repeat 

for tk= 1 to TK (number of new training samples) 

propagate pattern xtk through the network 

for z= 1 to the number  of neurons in the last convolutional 

layer(Z) 

find output O
z
 of last layer of theconvolutional layer. 

O
z
  = ( O

1
,O

2
, O

3
 …….. O

Z
) 

Find O
ztk

 using TSL framework  (section III) 

end for 

end for 

Phase III   Weight Update learning phase for transfer learning 

phase 

n=1 

repeat 

for tk= 1 to TK 

Train the feedforward layers ( Layers after last convolutional 

layer)  using O
ztk

 available in Phase II. Gradient Descend 

algorithms [27] can be used. 

end for 

n = n+1 

Find MSE2 

Until MSE2<  or n> maximum bounds 

Fig. 2 Proposed three-phase training algorithm for CNN architecture

under transfer learning approach

all the layers. Phase II of the algorithm is only used when new

training samples are available. The issue is to incorporate the

information available from the new samples into the trained

network. This issue is solved by the Phase II step of the

algorithm. In this phase output, Oz of the last CNN layer is

tapped and reweighted or updated using Eq. (3) to get new

Table 1 Proposed database

Proposed database

Source COEP and MIT Pune

Purpose Designed for studying the problem of

transfer subspace learning

Number of subjects 50

Number of images/videos 20,000

Static/videos Static

Single/multiple faces Single

Gray/color Color

Resolution 640 × 480 and 2816 × 2112

Face pose Frontal view

Facial expression Neutral

Illumination Controlled illumination

Ground truth Identification of subjects under transfer

subspace learning

vector Oztk for each training sample. In Phase III step of the

algorithm, layer F6 is trained with Oztk as training vectors

for the classification task.

Traditional/conventional algorithm which is used to train

CNN has following two steps:

1. Conventional phase: this phase is same as conventional

phase of proposed algorithm. MSE1 is the performance

index used in this phase. This phase is used to train feature

extraction layers of CNN (C1, C3 and C5).

2. Weight updating phase: output of C5 layer which is also

called as features is used to train F6 and output layer.

Weight modification is done by using all the samples in

the training data set. MSE2 is the performance goal used

in this step.

In the proposed algorithm, we have tapped the output of

C5 layer and reweighted the same using Eq. 3. The output fea-

tures are reweighted till the distribution difference between

old training and new samples is reduced. In the phase III

part of the proposed algorithm, these reweighted features are

used to train F6 and output layer. When the new training set

is made available, the proposed algorithm does not disturb

the trained CNN layers (C1, C3 and C5). However, the new

information is incorporated into the network by modifying

weights on F6 and output layer. This is proposed minimum

change principle.

Dataset

To the best of our knowledge, there is no public dataset

constructed with a large number of samples for perform-

ing experiments on face recognition under transfer subspace
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Fig. 3 Sample images from database (scale 1–scale 8)

learning. The distance between subject and camera is var-

ied, and the camera position is shifted while preparing the

database. The distance is varied in steps of 15 cm.We refer

to distance of 15 cm as scale 1 (S1), 30 cm as scale 2 (S2)

and 120 cm as scale 8 (S8). Similarly, shift of 5 cm at S1

as S1sh1, shift of 10 cm at S1 as S1sh2, rotation of 5◦ at S7

as S7r1 and rotation of 10◦ as S7r2, etc. Camera positions

were shifted by 5 and 10 cm at scale S1 and S2. The cam-

era was rotated with 5◦ and 10◦ of inclination at scale S7

and S8. The images were collected in an illumination con-

trolled environment. For maintaining a level of consistency

throughout the database, the same physical setup was used

in each photography session. Because the equipment had to

be reassembled for each session, there was some minor vari-

ation in images collected on different dates. The proposed

database was collected in 10 sessions between December

2012 and June 2013.

The database contains 20,000 images that include 50 sub-

jects. For every subject 25 images per scale, at four shifts

and two angles were taken (total 400 images per subject).

The details of the database are shown in Table 1. Figure 3

shows some sample images in database.

Experiments, parameter settings, and observations

Basic CNN architecture was trained using the conven-

tional/traditional algorithm as per the steps discussed in Sect.

“Comparison of traditional algorithm (conventional) with

proposed algorithm” with the samples from developed data-

base. Table 2 shows the results for 25-user system. Table 3

shows the results for 50-user system. 10 images per user per

scale were used for training and 15 images per user per scale

were used for testing. It was observed that when the training

and testing samples are from the same scale, the classifica-

tion rate seems to be high as compare to the testing samples

from different scales.

To improve the classification rate for samples belonging

to cross-scale, we trained the CNN network with Proposed

algorithm discussed in Sect. “Proposed three-phase train-

ing algorithm for CNN architecture using transfer learning

Table 2 Recognition rates in % for CNN algorithm trained with conventional algorithm for 25 users

Testing images Training images

S1 S1sh1 S1sh2 S2 S2sh1 S2sh2 S3 S4 S5 S6 S7 S7r1 S7r2 S8 S8r1 S8r2

S1 96 64 20 0 8 8 8 32 76 76 88 88 92 84 88 84

S1sh1 44 92 4 20 12 12 16 36 48 52 60 56 36 64 68 36

S1sh2 16 48 96 8 12 12 8 28 44 52 56 56 32 56 56 36

S2 4 4 12 100 56 48 20 16 24 20 24 28 16 16 12 4

S2sh1 24 16 16 36 100 56 20 72 88 84 88 84 76 80 84 68

S2sh2 36 20 16 48 52 100 12 44 68 92 88 92 80 88 96 80

S3 12 8 8 8 12 12 96 24 88 12 16 8 12 24 20 76

S4 36 20 48 20 28 20 28 100 56 44 52 40 48 44 44 40

S5 28 20 28 20 40 24 12 20 96 40 8 12 12 0 12 20

S6 12 24 20 24 24 16 0 8 28 100 52 40 44 24 20 20

S7 20 24 16 24 20 20 4 4 20 44 100 68 48 60 64 40

S7r1 16 20 20 32 28 44 16 4 16 36 68 100 64 48 52 32

S7r2 12 16 12 0 4 0 12 8 8 52 60 56 96 24 24 44

S8 0 4 8 0 4 4 8 4 8 4 60 32 16 100 84 40

S8r1 16 16 20 16 28 24 8 4 4 16 68 44 40 76 96 72

S8r2 44 16 12 0 4 0 12 8 8 52 60 56 96 24 24 100

Bold values denote the classification rate for same scale training and testing samples
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Table 3 Recognition rates in % for CNN algorithm trained with conventional algorithm for 50 users

Testing images Training images

S1 S1sh1 S1sh2 S2 S2sh1 S2sh2 S3 S4 S5 S6 S7 S7r1 S7r2 S8 S8r1 S8r2

S1 92 22 13 12 8 17 12 8 20 4 41 29 50 30 21 90

S1sh1 28 94 47 14 14 12 11 11 30 2 47 44 42 38 36 88

S1sh2 16 26 89 13 15 15 9 13 27 3 55 48 46 50 49 85

S2 8 5 5 96 38 9 4 4 9 2 69 36 32 48 37 81

S2sh1 4 6 4 24 88 38 4 6 11 3 52 24 33 41 30 71

S2sh2 4 6 3 23 62 69 2 7 7 4 55 31 29 36 33 73

S3 21 2 28 7 6 6 91 5 5 2 18 11 13 12 25 21

S4 22 23 72 6 11 22 8 88 9 3 10 2 3 6 8 4

S5 28 28 10 27 24 36 9 7 97 24 4 2 11 3 6 2

S6 21 24 14 17 50 58 9 4 33 97 29 21 23 12 8 2

S7 9 21 14 13 14 10 18 4 11 31 97 46 34 36 29 12

S7r1 26 20 16 15 17 14 24 6 10 24 47 97 29 19 37 10

S7r2 21 11 12 18 13 14 19 2 14 41 38 24 97 21 20 24

S8 18 17 18 14 12 9 37 5 6 30 40 22 19 96 71 20

S8r1 28 10 18 15 13 10 40 7 6 14 31 26 20 59 94 25

S8r2 22 11 17 10 12 17 33 3 8 15 16 12 33 31 43 98

Bold values denote the classification rate for same scale training and testing samples

Table 4 Recognition rates in % for CNN algorithm trained with proposed three phase algorithm for 25 users:

Testing images Training images

S1 S1sh1 S1sh2 S2 S2sh1 S2sh2 S3 S4 S5 S6 S7 S7r1 S7r2 S8 S8r1 S8r2

S1 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84

S1sh1 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92

S1sh2 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

S2 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

S2sh1 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84

S2sh2 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

S3 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

S4 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84

S5 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88

S6 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

S7 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84

S7r1 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

S7r2 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

S8 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82

S8r1 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

S8r2 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

Bold values denote the classification rate for same scale training and testing samples

approach”. We skipped the phase I part of the algorithm as

the initial layers are already been trained by traditional algo-

rithm. The aim here is to incorporate new information into the

network that is available from new samples. Table 4 shows

the results for 25-user system using proposed three-phase

training algorithm. Table 5 shows the results of 50-user sys-

tem using proposed three-phase algorithm. CNN was trained,

using traditional algorithm for 3000 epochs with a learning

rate of 0.05, 0.5 and 0.8. Best results were obtained with

learning rate of 0.5. Figure 4 shows the plot of MSE1 ver-

sus iterations.Performance plot of traditional algorithm and

the proposed algorithm, for training F6 and output layer with

MSE2 as performance index is been shown in Figs. 5 and 6,

respectively. Weight modification phase under transfer learn-
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Table 5 Recognition rates in % for CNN algorithm trained with proposed three phase algorithm for 50 users:

Testing images Training images

S1 S1sh1 S1sh2 S2 S2sh1 S2sh2 S3 S4 S5 S6 S7 S7r1 S7r2 S8 S8r1 S8r2

S1 65 65 65 65 65 64 65 65 64 64 65 65 65 64 65 63

S1sh1 65 66 65 65 65 65 65 65 65 67 66 64 65 65 64 63

S1sh2 64 55 64 65 64 68 65 64 67 64 63 65 65 59 64 65

S2 66 66 61 66 66 67 65 65 64 67 65 65 66 66 65 65

S2sh1 64 66 66 65 65 65 66 65 63 65 64 65 64 65 64 65

S2sh2 66 66 67 66 65 65 65 66 65 63 63 62 64 62 64 63

S3 65 65 65 66 65 65 67 64 65 67 63 64 65 66 67 63

S4 66 65 65 65 64 67 64 65 65 66 64 65 63 65 63 55

S5 65 66 66 64 64 64 66 62 67 63 65 63 63 55 64 67

S6 65 65 62 66 65 65 65 66 65 65 66 65 66 65 64 64

S7 65 64 63 67 66 64 54 64 65 64 62 64 64 64 69 68

S7r1 66 65 66 65 65 66 64 66 65 63 66 63 65 64 66 63

S7r2 66 66 63 64 66 65 65 65 62 65 62 63 64 64 63 64

S8 68 65 66 64 65 65 65 64 65 59 65 65 64 66 64 62

S8r1 65 66 62 67 66 66 67 62 63 62 65 64 63 64 65 65

S8r2 59 66 64 68 65 66 65 67 62 64 65 64 66 65 62 62

Bold values denote the classification rate for same scale training and testing samples

Fig. 4 Performance plot of MSE1 versus iterations (50-user system)

ing with proposed algorithm converges faster compare to

traditional algorithms weight modification phase.

As shown in Table 6, basic CNN trained for 25 users has

29,504 trainable parameters. If the network has to incorpo-

rate knowledge from new training samples taken at different

scales made available subsequently, it has to be retrained

again with 29,504 trainable weights. However, the proposed

algorithm avoids complete retraining by using minimum

change principle, i.e., by updating weights in F6 and output

layer with which a relatively acceptable classification rate

can be achieved with 12,180 trainable parameters. Same is

true for a 50-user system with only 14,280 trainable weights

in transfer learning task. 17,324 weights are not disturbed

in the proposed three-phase training algorithm for CNN. For
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Fig. 5 Performance plot of MSE2 versus iterations for traditional algorithm (50-user system)

Fig. 6 Performance plot of MSE2 versus iterations for proposed algorithm (50-user system)

a 25-user system, the proposed algorithm gives an average

classification rate of 80 percent for all scales in transfer sub-

space task and an average rate of 60 percent for a 50-user

system. Figures 7 and 8 show the comparison of classifi-

cation rates of conventional CNN algorithm with proposed

algorithm when the training samples are from the scale 1. As

seen from Tables 4 and 5, the same scale (training and test-

ing with same scales) classification rates tend to drop with

123
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Table 6 Trainable weights in CNN

Algorithm Various layers of CNN Total trainable

weights

C1 S2 C3 S4 C5 F6 Output layer

trainable weights

trainable

weights

trainable

weights

trainable

weights

trainable

weights

trainable

weights

trainable

weights

Conventional

CNN algorithm

(trained for 25

users)

732 – 1952 – 14,640 10,080 2100 29,504

Conventional

CNN algorithm

(trained for 50

users)

732 – 1952 – 14,640 10,080 4200 31,604

Proposed

three-phase

training

algorithm for

CNN (25 users)

– – – – – 10,080 2100 12,180

Proposed

three-phase

training

algorithm for

CNN (50 users)

– – – – – 10,080 4200 14,280

Fig. 7 Comparison of

classification rates of

conventional CNN algorithm

with proposed algorithm when

the network was trained with

scale S1 samples (25 users)
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the proposed algorithm. This implies that there is a negative

transfer that hinders the percentage classification rate at same

scales. The negative transfer happens if the sources of data

are too dissimilar [89].

We experimented CNN with 52 × 52, 60 × 60, 74 × 74

and 84×84 input size. The CNN was trained using proposed

algorithm with learning rate values of 0.05, 0.5 and 0.8. The

best results were obtained with an input size of 74 × 74 and

learning rate of 0.5. In Eq. 3 there are two parameters α and

ρ. setting higher value of α allows more information to be

transferred. However, very high value of α makes most of

the elements of Oztk zero which is not suitable for trans-

fer of information. Larger the value of ρ, the distribution

between source and target domains will be small. However,

very small value of ρ will result in less transfer of informa-

tion. We heuristically determined the value of α and ρ, by

varying α and keeping ρ constant and vice versa. Variation

of classification accuracies with different values of α and ρ

are shown in Figs. 9 and 10.

Various researchers have tackled different applications of

transfer learning on SVM architecture. We have proposed a

generic training algorithm which can be used for any deep

learning network having feature extraction and classification

layer integrated. Also the application of face recognition at a

distance is novel. As a result there is no data available in the

literature with which the proposed work can be compared.
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Fig. 8 Comparison of

classification rates of

conventional CNN algorithm

with proposed algorithm when

the network was trained with

scale S1 samples (50 users)
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Fig. 9 Variation of classification accuracy as a function of rho (ρ) and

alpha (α) (25-user system)

Hence authors of this paper have compared the proposed

training algorithm with the existing traditional algorithm of

CNN.

Conclusion

We have proposed a novel training algorithm that can be

used to train any neural network architecture which is meant

for visual pattern recognition. These networks have feature

extraction and classification layers integrated into the archi-

tecture. In many applications training data are made available

subsequently. In this situation neural networks like CNN and

neocognitron are to be trained again with the new data. The

proposed approach can be used in such situations. In this

approach, one can tap the output of the last feature extraction

layer and reweight the output in such a way that the distribu-

Fig. 10 Variation of classification accuracy as a function of rho (ρ)

and alpha (α) (50-user system)

tion difference between the old and new training samples is

reduced. We have shown the utility of the algorithm for the

CNN architecture. However, the approach is generic and can

be used for any neural network architecture which has fea-

ture extraction and classification layers integrated into one

architecture.

Training time of any neural network increases with the

increasing number of samples. If the training samples are

not available at one time, then the situation demands retrain-

ing. Many machine learning softwares do not have provision

to avoid retraining. The proposed algorithm can increase the

utility of any machine learning software by giving an user a

method with which by doing few disturbances in the trainable

parameters transfers the new information into the architec-

ture. By this approach the training time can be reduced under

transfer learning task.
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We have proposed a novel three-phase training algorithm

for CNN under transfer learning that gives a constant aver-

age classification rate. With the proposed framework one has

to disturb only 60 percent weights in the architecture for

incorporating the knowledge available from the new training

samples. We proposed minimum change principle, as per

that one has to disturb few weights to transfer knowledge.

The work may be extended by (1) reducing a negative trans-

fer of knowledge; (2) coming up with information theoretic

measure of the information transfer.
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