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Abstract: During flight, unmanned aerial vehicles (UAVs) need several sensors to follow a predefined
path and reach a specific destination. To this aim, they generally exploit an inertial measurement unit
(IMU) for pose estimation. Usually, in the UAV context, an IMU entails a three-axis accelerometer
and a three-axis gyroscope. However, as happens for many physical devices, they can present some
misalignment between the real value and the registered one. These systematic or occasional errors
can derive from different sources and could be related to the sensor itself or to external noise due to
the place where it is located. Hardware calibration requires special equipment, which is not always
available. In any case, even if possible, it can be used to solve the physical problem and sometimes
requires removing the sensor from its location, which is not always feasible. At the same time,
solving the problem of external noise usually requires software procedures. Moreover, as reported in
the literature, even two IMUs from the same brand and the same production chain could produce
different measurements under identical conditions. This paper proposes a soft calibration procedure
to reduce the misalignment created by systematic errors and noise based on the grayscale or RGB
camera built-in on the drone. Based on the transformer neural network architecture trained in a
supervised learning fashion on pairs of short videos shot by the UAV’s camera and the correspondent
UAV measurements, the strategy does not require any special equipment. It is easily reproducible
and could be used to increase the trajectory accuracy of the UAV during the flight.

Keywords: UAV; deep learning; transformer; IMU; IMU calibration; computer vision

1. Introduction

Nowadays, navigation systems play a key role in different scientific and industrial
application contexts, including robotics [1] and autonomous vehicles [2]. However, the
recently obtained results in this field show remarkable improvements and precision levels.
The localization and the pose estimation of a device can be achieved with multiple strategies
and techniques [3–5]; anyway, the choice of the involved sensors remains a crucial aspect.
For instance, the global positioning system (GPS) [6] is one of the most commonly used
systems for localizing and tracking devices. Concurrently, the inertial measurement unit
(IMU) [7] can also be exploited due to its adaptive nature: it is accurate enough to identify
a person [8], but it can even detect actions [9]. Moreover, the combination of multiple
sensors [10] can often offer a noticeable improvement in terms of accuracy and precision.
In the specific case of unmanned aerial vehicles (UAVs) [11], numerous tasks can be ac-
complished thanks to technological advancement, e.g., change detection [12,13], anomaly
detection [14,15], and tracking [16,17]. However, there are still some open issues. Some of
these may concern incorrect values obtained from the UAV sensors, especially when the
device is not expensive. According to [18], for short paths, it is possible to ignore the drift
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caused by a low-cost IMU. It means that the error is feasible in real-life applications. How-
ever, it is only valid when the distance to cover is short; in fact, for long distances, the error
propagation can be highly relevant, implying an unmanageable drift in applications where
accurate precision is critical. In this context, machine learning (ML) and deep learning (DL)
approaches are also feeding the research [19,20]. In the past years, the scholars exploiting
transformer-based neural networks [21] caused a shockwave in the DL community due to
their simplicity and state-of-the-art performances. Transformers are employed in a wide
variety of domains: in natural language processing [22–24], computer vision [25–27], audio
processing [28], and UAV applications [29–31]. Although the transformer-based networks
are currently the standard in many tasks, their downside lies in the energy drain [32], the
required computational power, and the needed primary memory, which is quadratic in the
number of inputs for attention-based transformers [21].

2. Related Work

To the best of our knowledge, none of the works in literature treats the analyzed task
with the same approach proposed in this paper. However, numerous similar applications
inspired the presented strategy for a camera-based IMU self-calibration for UAVs.

One of the most relevant works considered in our analysis is [33], where the authors
proposed an online IMU self-calibration method for visual–inertial systems equipped with
a low-cost inertial sensor. It is specifically designed for unmanned ground vehicles (UGV),
but it involves both IMU and camera sensors. It aims to locate the device as accurately
as possible. In the first step, the IMU measurements and the camera frames are mapped.
Since the image frequency is lower than the IMU updates, the IMU measurements between
the two frames are pre-integrated into a single compound measurement. An optimization
of the IMU intrinsic parameters is proposed to minimize the errors constrained by the
pre-integration measurements. It is achieved by computing a Jacobian matrix [34] for each
pre-integration part and estimating the uncertainty of the pre-integration measurements.
The final step consists in defining the IMU intrinsic parameters residual. The authors
propose an approach in which they are assumed to be uncertain, but which is constant in
the time span of the sliding window. The proposed system can be classified as a monocular
visual–inertial system (VINS-Mono) [35]. The results obtained on several datasets [36–40]
show outstanding results in terms of tracking accuracy and also computational times.

IMU/camera calibration strategies can also be applied in other application areas [41]
than those entailing UGVs or UAVs. It suggests that this approach can be considered a
valid procedure, even if it seems uncommon. In the specific field of UAVs, it is possible
to find different techniques in the recent literature, from the fusion of sensors [42] to
the self-calibration [43,44]. For instance, in [45], the authors propose a novel method
for monitoring a UAV with a custom-made positioning module that exploits a fusion
algorithm. The work explains how the module should be calibrated to reduce the influence
of deterministic errors on the IMU. The authors highlight five variables that are correlated
to the noise factors on accelerometers and gyroscopes: direct measures, reference excitation
acceleration, statistic bias, scale factor, and non-orthogonality. Based on these assumptions,
the proposed method exploits a turnable platform to make a specific accelerometer’s axis
point to gravity to obtain an output excitation, and it also rotates at a constant angular
rate on a specific gyroscope’s axis for the same aim. After the measured output and
reference excitation have been acquired, a least-squares method calculates the deterministic
errors parameter. Similarly, the deterministic errors of the magnetometer are influenced by
multiple factors. The correlated variables are the measured output, the matrix that contains
errors like soft iron coefficients and non-orthogonality, the vector of static bias and hard
iron coefficients, and the environment magnetic field distribution. The authors noticed
how those parameters could provide an equation of a classical vector form of an ellipsoid
formula; with an ellipsoid fitting, the geometry parameter can be acquired to calibrate the
sensor. Concerning stochastic error identification, three noises have been highlighted: white
noise, exponentially correlated noise, and rate random walk. The authors treated them by
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exploiting the Allan variance method and its accuracy approximation. Then, with system
equations, the sixteen states, including attitude, velocity, position, and angle/velocity
increment bias, are managed. A Kalman filter-based technique is introduced, in which
measures and predictions support each other. The provided steps run to a fusion algorithm
that combines all the sensors’ data with the extended Kalman filter approach and provides
a more accurate real-time attitude, velocity, and position of the UAV.

Another example of multi-sensor calibration for UAVs is provided in [46], where the
authors propose a correction method that involves different GPS sensors, a LIDAR, and
an IMU. In the pipeline, three branches are shown: bore sight, time delay, and level arm
calibrations. The first one aims to know exactly the relative position of sensors (multiple
GPS, IMU, and LIDAR) with respect to each other. The authors provide a method for
generating the coordinate transform of these sensors with respect to the center of the
drone. Concerning the bore sight calibration, it is used to determine the differences in the
rotations of each sensor. The proposed algorithm provides the alignment of the extracted
and pre-processed point cloud data from the LIDAR, as well as a comparison with the GPS
signals (that are considered the ground truth). It is also specified that the calibration could
be even more precise if the IMU is also involved. The time delay calibration deals with the
calculation of error-corrected signals. In particular, it refers to the delay in GPS sending
and receiving messages. The solution consists in always adding the retrieved error to the
location shown by the GPS receiver.

There are also works [47–50] in which the IMU’s calibration does not require any
correlation with other sensors. As expected, most of the recent studies involve machine
and deep learning-based techniques. For instance, in [51], the authors propose a calibration
method based on deep learning for micro electro mechanical system (MEMS) IMU gyro-
scopes. The network calibrates the error from the raw data of the MEMS IMU and regresses
gyroscope data after the error compensation. During the training, the network output is
used to estimate the quaternion and calculate the loss function. During the test phase,
the obtained output is exploited for navigation to obtain the altitude and position of the
carrier. The results show that the position and the altitude are significantly adjusted by the
proposed calibration method, providing relevant scientific soundness of the self-calibration
approaches in this application field. Another example is provided by [52], where the intro-
duction of an adaptive neuro-fuzzy inference system (ANFIS) is proposed to improve the
effectiveness of low-grade IMUs by estimating and compensating the measurement errors.
The method combines the artificial neural network (ANN) with the fuzzy inference system
(FIS) and is trained by adding noise to reference IMU data. The proposed solution shows a
high correction impact on the considered dataset, highlighting the quality of the strategy.

Concerning the specific deep learning technique of transformers, there are only a
few works in the literature featuring this architecture in a UAV-based calibration task.
The networks proposed in [53], one based on a long–short term memory (LSTM) architec-
ture [54] and another on a transformer [21], estimating the bias in the sensors involved in
the visual–inertial odometry in case of complete absence of visual information. Moreover,
ref. [55] proposes a transformer-based architecture to pre-process and clean the IMU mea-
surements before even being used in a flight. These cases suggested that the transformers
seem promising in this application area and could provide noticeable improvements when
correctly exploited.

3. Proposed Method

The model predicts the offset in the IMU of the drone given an input sequence
F ∈ Rn×h×w of n frames with height h, width w, and a sequence of aligned IMU mea-
surements I ∈ Rn×6, containing records of accelerometer and gyroscope, each along the
three axes. The first issue involves synchronization, which can be achieved by exploiting
the IMU and the camera timestamps. However, it is worth considering that IMUs have a
much higher sampling rate with respect to cameras and that these timestamps could not
be perfectly matched. To address this issue, the practical solution is to match each camera
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frame with the closest corresponding IMU measurement in time. This also has some side
effects. On one hand, it reduces the number of inputs for the model, thereby reducing
the computational demand. On the other hand, this also ensures that IMU measurements
are sampled at the same rate as cameras. This is a practical advantage since it makes the
system scalable with the camera quality. To handle the multi-modal nature of the task,
the model entails three blocks: a video reducer block (VRB) (Section 3.1) that aims to
reduce the input sequence of consecutive frames into an equally long sequence of token
vectors; an IMU reducer block (IRB) (Section 3.2) that projects each IMU vector, containing
records of accelerometer and gyroscope in each instant of time, into a sequence of token
vectors; and a noise predictor block (NPB) (Section 3.3), which merges the information
from video and IMU records and predicts the amount of offset in the latter. Figure 1
depicts the model’s architecture. The source code of the presented strategy can be found at
https://github.com/rom42pla/rgb2imu_error_estimation.

(a)

(b)

Figure 1. Cont.

https://github.com/rom42pla/rgb2imu_error_estimation
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(c) (d)

Figure 1. The architecture of the model. A dashed line between two modules means weight sharing
between them. (a) Overview of the full model. The outputs of the video reducer block (VRB) and of
the IMU reducer block (IRB) are summed and passed to the noise predictor block that will output
the final offset estimation ô ∈ R6; (b) (overview of the video reducer block (VRB)). The input frames
F ∈ Rn×h×w are unfolded into patches that are projected into token vectors and processed by two

transformer encoder to output a token for each frame T(enc)
v ∈ Rn×d; (c) (overview of the IMU

reducer block (IRB)). The input IMU measurements I ∈ Rn×6 are projected into a d-dimensional

space and then processed by a transformer encoder to output a representation T(enc)
i ∈ Rn×d of the

measurements; (d) Overview of the noise predictor block (NPB). The tokens T ∈ Rn×d obtained from
the sum of the outputs of the VRB and the IRB are passed through a transformer encoder and its
results T(enc) ∈ Rn×d to a transformer decoder along with a query matrix L ∈ R1×d. The output is
the predicted offsets ô ∈ R6.

3.1. Video Reducer Block

This module, whose architecture is shown in Figure 1 and is partially inspired by [26,27],
takes as input a sequence of n frames from a video and transforms each frame into a
d-dimensional vector, called token, that can be merged with those returned by the IRB for the
final prediction. In this context, the video can be grayscale, with F ∈ Rn×h×w or RGB, with
F ∈ Rn×3×h×w. The model is compatible with any combination of n, h, and w.

If a frame F is RGB, it is cast to a single channel via a small convolutional neural
network (CNN) CCNχ : Rn×3×h×w → Rn×h×w, including a three-dimensional convolution
parameterized by χ, an activation function σ and a batch normalization layer [56]:

CNNχ(F) = batchnorm(σ(conv3dχ(F))). (1)

To ensure the preservation of the original information of each image, the output of
the CNN is summed with the grayscale version of F as it is usually executed in residual
networks [57]:

F =

{
F F is single channel,
grayscale(F) + CNNχ(F) F is RGB.

(2)

Consequently, each frame is unfolded into a series of p smaller patches of shape
hp × wp, yielding a matrix P ∈ Rn×p×hp×wp . If h is not divisible for hp, or w is not divisible
for wp, the frames will be 0-padded (In this context, the image padding consists in adding
extra pixels to perform an operation that requires a specific image shape. In a 0-padded
image, the pixels added by the padding operation have an intensity of 0 on each channel.)
until they fit the legal size for the unfolding operation. Each patch is then flattened into a
(hp · wp)-dimensional vector to be projected by a feed-forward network (A feed-forward
network is often made of a sequence of one or more linear layers and activation functions.
Moreover, also, other layer types, such as dropout [58] and normalization [56,59], can often
be added, as well, depending on the context.) (FFN) into a d-dimensional token. This
FFN, called FFNΘ : Rp×(hp ·wp) → Rp×d, entails a linear layer, also called fully connected,
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parameterized by a weights matrix WΘ ∈ Rd×(hp ·wp) and a bias vector bΘ ∈ Rd. There are
also an activation function σ and a dropout layer [58] for regularization purposes:

Tp = FFNΘ(P) = dropout(σ( f latten(P)WT
Θ + bΘ)). (3)

After applying FFNΘ individually to each of the n frames, the result will be a sequence
of tokens Tp ∈ Rn×p×d.

The token of each patch is then provided to a transformer encoder to exploit the
spatial dependencies between the patches. For each frame, it outputs a single token bearing
the meaningful learned features towards the task. The transformer encoder architecture
is analogous to the one originally presented in [21]. This module is made of a stack
of one or multiple transformer encoder layers, which contain a sequence of multi-head
attention (MHA) and an FFN with skip-connections. A skip-connection technique consists
in using the output of a layer as input for another one placed later in the architecture.
This method is commonly exploited in very deep networks to mitigate the vanishing
gradient phenomenon [60]. The output of both the MHA and the FFN is further processed
by a normalization layer [56,59]. A dot-product attention function takes three inputs
Q ∈ Rnq×dq , K ∈ Rnv×dk , V ∈ Rnv×dv , called query, key, and value, and is parameterized by
three weights matrix Wq ∈ Rdq×d, Wk ∈ Rdk×d, and Wv ∈ Rdv×d:

Attention(Q, K, V) = so f tmax

(
QWq(KWk)

T
√

dk

)
VWv, (4)

where Wq, Wk, and Wv are used to transform the three inputs Q, K, V into a single output of
shape Rnq×d. Therefore, the output of the attention function is a weighted sum of the values
V based on the similarity between the query Q and the keys K. A MHA is a projection of
the concatenation of the outputs of k dot-product attention operations, parameterized by
different weights. The concatenation of the outputs of the attention operations is projected
into a smaller space by a learned weight matrix Wo ∈ Rd·k×d:

MHA(Q, K, V) =

(
k⊕

i=1

Attentioni(Q, K, V)

)
Wo. (5)

In a transformer encoder, the inputs of the attention functions are all equal to the
input matrix, thus Q = K = V. In the VRB, there are multiple instances of the same
transformer encoder TEΛ : Rp×d → Rp×d. Each one is fed with the patches of a single
frame summed with EΛ ∈ Rp×d, a matrix of the learned positional embeddings. This is
required since the attention Formula (4) does not model positional information [61] and
cannot distinguish between patches in different positions. The output of a transformer
encoder is a matrix of the same shape as the input, from which the model extracts the first
row where all the meaningful information of the frame is squeezed, leading to a sequence
of tokens T(enc)

p ∈ Rn×d:

T(enc)
p = TEΛ(Tp + EΓ), (6)

where, T(enc)
p is further summed with the learned temporal embeddings EΓ ∈ Rn×d and

fed to a transformer encoder TEΓ : Rn×d → Rn×d to transform T(enc)
p into the output

T(enc)
v ∈ Rn×d of the VRB. This allows analyzing the temporal relationships between tokens:

T(enc)
v = TEΓ(T

(enc)
p + EΓ). (7)

3.2. IMU Reducer Block

This module, whose architecture is shown in Figure 1, takes as input a sequence of
n IMU measurements I ∈ Rn×6 and transforms each of them into a d-dimensional vector,
called a token. Each measurement is time-aligned with the corresponding video frames.
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Although this paper considers 6 typologies of values in the formulations, the model is
compatible with any combination of standard IMU measurements to accommodate any
device. For instance, if records from both the accelerometer and gyroscope are present in I,
then its last dimension will be 6, since three values are for the axes of the accelerometer and
three for the gyroscope. Meanwhile, as in the case of the experiments on the Zurich MAV
dataset [39], if the measurements of only the axes of one of the two sensors are available, I
will contain n× 3 values.

The measurements I are processed by FFNΞ : Rn×6 → Rn×d, entailing two linear
layers, respectively, parameterized by WΞ,1, bΞ,1 and WΞ,2, bΞ,2, to project these vectors into
the same space of the remaining tokens in the model:

Ti = FFNΞ(I) = dropout(dropout(σ(IWT
Ξ,1 + bΞ,1))WT

Ξ,2 + bΞ,2). (8)

Similarly to the VRB, the projected tokens are summed to the learned positional embeddings
EΨ ∈ Rn×d and fed to a transformer encoder [21] TEΨ : Rn×d → Rn×d, parameterized by
Ψ, to inject the temporal information into the inputs:

T(enc)
i = TEΨ(Ti + EΨ). (9)

The model’s output is a sequence of tokens T(enc)
i ∈ Rn×d that bear the learned features

from the IMU measurements for an analyzed video.

3.3. Noise Predictor Block

This module, whose architecture is shown in Figure 1, is used to merge the tokens of both
VRB and IRB. To this aim, a transformer encoder parameterized by Φ TEΦ : Rn×d → Rn×d,
is employed:

T(enc) = TEΦ

(
T(enc)

v + T(enc)
i + EΦ

)
. (10)

As for the other transformer encoders in the model, EΦ ∈ Rn×d are the learned
positional embeddings used to inform the module about the temporal relationships between
input tokens. Then, a sequence of a transformer decoder and a FFN is used to make the final
predictions. In this context, a transformer decoder [21] is similar to a transformer encoder,
entailing a stack of one or more transformer decoder layers. Differently from transformer
encoders, it takes two matrices as input, called target and memory. A transformer decoder
layer is made of a sequence of two multi-head attentions and an FFN with skip connections.
Although the first MHA takes the target matrix as input for the Q, K, and V parameters, the
second one takes the target as Q and the memory as K and V, effectively injecting the target
matrix with information about the target. In this model, the memory is equal to the output of
TEΦ, representing information about the input frames and the IMU measurements. Instead,
the target is represented by a learned matrix L ∈ R1×d that represents the embedding of the
query of the final offsets vector in a latent d-dimensional space. This transformer decoder
TDΥ : R1×d ×Rn×d → R1×d, parameterized by Υ, outputs the embedding of the offsets
vector that will be then projected into a 6-dimensional space by FFNΠ : Rd → R6, which
contains a single linear layer parameterized by WΠ ∈ R6×d and bΠ ∈ R6:

ô = TDΥ(L, T(enc))WT
Π + bΠ, (11)

where ô will contain the predicted offsets of the IMU of the drone.
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3.4. Training Strategy

The calibration problem is solved using a supervised learning paradigm. In this
context, the system is trained to approximate a function given a training dataset composed
of labeled samples. The learned function estimates the label of the unknown samples,
minimizing a prediction error called loss [62]. In order to be processed by the model, the
inputs are segmented into fixed duration windows, where each represents a sample of
the training Dt or the validation set Dv. Each sample is a tuple (F, I) made of a sequence
of n grayscale (F ∈ Rn×h×w) or RGB (F ∈ Rn×3×h×w) frames and their corresponding
time-aligned IMU measurements I ∈ Rn×6. The goal of the model is to estimate the amount
of noise in the input signal to correct the misalignment of the sensor. To this aim, we
combine the input signal with a generated noise that must be plausible in a real-world
IMU. Let o ∈ R6 be a vector representing the noise that, in this context, corresponds to
the offsets of the IMU. This vector is randomly sampled from a Gaussian distribution
N (µ, nmσ2), with µ, σ ∈ R6 and nm ∈ R. The latter is a noise multiplier that has been set to
2 in the experiments. The elements µi and σi for each i ∈ [1, 6] are the mean and standard
deviation of the i-th elements of all the IMU measurements in the dataset. In other words,
each position oi with i ∈ [1, 6] is randomly filled with a value taken into the symmetric
interval [µi − nmσi, µi + nmσi]. At the training time, the noisy IMU measurements, I(noisy),
are computed as follows:

I(noisy) = [Ia + o]na=1, (12)

where n is the number of frames and IMU measurements in the sample (F, I). During
the training, a different o is generated for each sample to increase data variability and,
consequently, robustness. During the validation, instead, o is generated once and applied
to all the samples in the test. This choice guarantees the fairness of the results since, in
real-world scenarios, when an IMU is miscalibrated, this displacement is constant.

The model M, described in Section 3 and parameterized by Ω, is then fed with the
frames and the noisy IMU values and aims to predict an estimation of the offsets. It is
trained to minimize a loss function L between the predicted and the ground truth offsets:

min
Ω
L(ô, o), (13)

where, ô is a shorthand for MΩ
(

F, I(noisy)). The optimizer of the proposed model is
AdamW [63], a modified version of Adam [64], including decoupled weight decay. It
iteratively adjusts the model’s weights via gradient descent to minimize Equation (13). The
loss function L used to train the network is the sum of three terms obtained using the mean
squared error (MSE) between the predicted offsets ô ∈ R6 and the ground truth offsets
o ∈ R6. The mean squared error function is defined in Equation (14) and returns a real
number given two input vectors of the same shape:

MSE(ŷ, y) =
1
n

n

∑
i=1

(ŷi − yi)
2. (14)

The objective is to output an approximation of the noise that minimizes the dissimilar-
ity between o and ô, and, thus, the first term is the MSE between them:

Lo(ŷ, y) = MSE(ŷ, y). (15)

However, the use of the Lo loss made the model learn values near the mean of the
distribution of the offsets, whose value is around 0. Two more auxiliary losses have been
used to enforce the model to predict more meaningful values. Lm enforces the modulus,
also called magnitude, of each element in ô to be as near as possible to the magnitude of
each corresponding element in o:

Lm(ŷ, y) = MSE(|ŷ|, |y|). (16)
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This penalizes the model stagnation around low values when the ground truth is high,
solving one of the problems. To enforce the correctness of the sign of each element in ô, the
term Ls is used:

Ls(ŷ, y) = MSE(sign(ŷ), sign(y)). (17)

Usually, if the sign of a value is wrongly predicted, the error is directly proportional to
the expected magnitude. Thanks to Ls, which can be seen as an uncertainty indicator, the
model can automatically regulate itself in case of uncertainty and be less bold in predicting
high magnitudes. The final loss function is defined as follows:

L(ŷ, y) = Lo(ŷ, y) + Lm(ŷ, y) + Ls(ŷ, y). (18)

4. Experiments and Discussion
4.1. Datasets

The proposed strategy was tested on three datasets during the experiments to demon-
strate its effectiveness. This section aims to highlight their main characteristics.

The EuRoC Micro Aerial Vehicle dataset (https://projects.asl.ethz.ch/datasets/doku
.php?id=kmavvisualinertialdatasets), here referred to as EuRoC MAV [37], contains data
from 11 indoor experiments in an industrial environment. The videos are available at a
resolution of 752× 480 pixels with a single channel. Besides the onboard sensors’ records,
the dataset comes with a point-cloud representation of the scenarios obtained from external
LIDAR sensors.

The University of Zurich First-Person View dataset (https://fpv.ifi.uzh.ch/datasets/),
here referred to as UZH-FPV [65], is a collection of 28 flight experiments recorded with a
grayscale camera in different environments and with different setups for the drone. The
scenarios are indoor and outdoor, and the camera is pointed either forward or at a 45° angle
downwards. Each video has been recorded at a resolution of 346× 260 pixels, while the
IMU data are composed of accelerometer and gyroscope records.

The Zurich Urban Micro Aerial Vehicle dataset (https://rpg.ifi.uzh.ch/zurichmavda
taset.html), here referred to as Zurich MAV [39], is composed of a single, long record of
the states of a drone while flying in an urban scenario. The flight covers around 2 Km at
an altitude varying from 5 to 15 m. The provided data includes records from the on-board
IMU, the Google Street View snapshots of the path, and the frontal camera acquisitions.
In particular, the video has been shot at a resolution of 1920× 1080 pixels and with three
RGB channels.

4.2. Metrics

This section introduces the metrics used in the result evaluation provided in Section 4.3
to quantify the model’s error when estimating the offsets in the IMU. The root mean squared
error (RMSE) is a common metric to quantify the error in the regression tasks. Given a
vector of predicted values ŷ ∈ Rn and a vector of ground-truth values of the same shape
y ∈ Rn, and this error is computed as the squared root of the mean squared error (described
in Equation (14)):

RMSE(ŷ, y) =
√

MSE(ŷ, y) =

=

√
1
n

n

∑
i=1

(ŷi − yi)2.
(19)

RMSE is usually preferred to the MSE since its scale is the same as the input vectors instead
of its square. In addition, it also supports humans to better visualize and understand the
value. The F1 score is a standard metric to quantify the error in the classification task. This
measure is a particular case of the more general Fβ measure that expresses the classification
error in terms of two other metrics called precision and recall:

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://fpv.ifi.uzh.ch/datasets/
https://rpg.ifi.uzh.ch/zurichmavdataset.html
https://rpg.ifi.uzh.ch/zurichmavdataset.html
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precision(TP, FP) =
TP

TP + FP
, (20)

recall(TP, FN) =
TP

TP + FN
. (21)

where, TP, FP, and FN are the True Positives, False Positives, and False Negatives, respec-
tively. They are calculated by comparing a vector of predicted values ŷ ∈ Ln and a vector
of correct values y ∈ Ln, where L is the set of all possible labels. The classification task in
this paper is binary, meaning that there are two possible classes for each element: positive
and negative signs, leading to |L| = 2. In this setting, a TP represents an element that is
correctly classified; a FP, also called a Type 1 error, represents a negative element wrongly
classified as positive; and a FN, also called a Type 2 error, represents a positive element
wrongly classified as negative. However, precision does not take into account the FN, while
recall does not consider the FP. Given that the two measures are complementary, Fβ is a
way to consider them both and is defined as:

Fβ(TP, FP, FN) =
(1 + β2) · precision · recall

β2 · precision + recall
=

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
,

(22)

with β ∈ R > 0 denoting the impact of the recall with respect to the precision. In this paper,
the β = 1 version of Fβ is used, called F1 score. This value of β is a common procedure in
many classification tasks and leads to equal consideration of the two measures:

F1(TP, FP, FN) =
2 · precision · recall
precision + recall

=

=
2 · TP

2 · TP + FN + FP
.

(23)

4.3. Results and Discussion

A trial is a syntactic sugar word that consists of a full training and validation procedure.
Two kinds of validation schemes [66] have been adopted for the experiments. The k-fold
cross-validation scheme has been used in the trials on the Zurich MAV dataset since it is
composed of a single video/experiment. In this scheme, windows/samples are partitioned
into k groups called folds. To this aim, k different trials are performed using a different fold
each time as the validation set and the rest as the training set, averaging the results between
each training. The Leave-One-Out (LOO) cross-validation schema, used in UZH-FPV and
EuRoC MAV, is a particular case of k-fold cross-validation. In this context, for each trial,
the validation fold is each time made of samples from a single video/experiment and
the rest of the dataset as the training set. The total number of trials reported is 49:11 for
EuRoC MAV, 28 for UZH-FPV, and 10 for Zurich MAV. In the tables, it is worth pointing out
that the most relevant parameter is the offset since it represents the overall displacement
between the IMU’s measurements and the real values in a real context scenario. The chosen
size for the windows/samples is 10 s since, as shown in Table 1, longer sizes yield better
results. Increasing the dimension of data provided to the architecture could probably allow
for extracting more meaningful information from each sample. However, going too far
with the windows’ size could negatively impact the results since it will reduce the number
of available samples. At the same time, it will also significantly increase the amount of
memory required for training, limiting the proposal’s applicability.
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Table 1. Results of the experiments at various window sizes. The experiments have been performed
on UZH-FPV [65] dataset, the most challenging and various among the ones analyzed in this work.
Train and validation sets follow an 80/20% split, fixed between experiments and chosen as described
in Section 4.4. The stride of the windows is kept fixed to 1 s alongside the seed. The best value in
each result column is in bold.

Window Size Signs F1 Offsets RMSE

2 s 87.4% 0.686
4 s 87.9% 0.616
6 s 87.4% 0.532
8 s 90.1% 0.563

10 s 91.8% 0.495

The final configuration of the model has been inferred from the results of the ablation
study (Section 4.4) and is the same for each trial and dataset. Table 2 presents a complete
overview of the parameters. It is worth noticing that some parameters described in the
table are not optimal according to the ablation study in Section 4.4, such as the number
of attention heads and the size of the patches. The presented configuration is the one
providing the best trade-off between regression and classification performance, as well as
computation speed. The following lines describe in more detail the most meaningful ones.
The dropout amount has been set to 1% since it has been empirically found that bigger
dropouts are one of the major causes of performance drops among the model’s parameters.
The hidden size (referred to as d in Section 3) has been set to 256 since it provides the best
tradeoff between the F1 on signs prediction and the RMSE on magnitudes and offsets. The
number of encoder and decoder layers in each transformer encoder and decoder has been
set to 2, while the attention heads are 8. The noise multiplier nm, as already mentioned in
Section 3.4, is the scalar factor used with the standard deviation of the noise distribution to
generate the offsets o. It has been empirically set to 2, since it covers reasonable IMU offsets.
The size of the patches (referred to as hp × wp in Section 3) has been set to 64× 64 since it
works much better than a size of 32× 32 and slightly worse than 96× 96. This results in a
good compromise between the two sizes in terms of performance since bigger sizes require
more epochs to converge, as shown in Section 4.4.

Table 2. The configuration of the model used in the final evaluations.

Parameter Value

Dropout 1%
Hidden size (d) 256
Attention heads 8

Layers 2
Noise multiplier (nm) 2×
Patches size (hp × wp) 64× 64

Batch size
{

16 dataset is EuRoC MAV or UZH-FPV
8 dataset is Zurich MAV

Activation function (σ) Rectified Linear Unit: ReLU(x) = max(0, x)
Learning rate 10−5

The starting learning rate of the optimizer has been set to 10−5 as in other state-of-the-
art works, although AdamW is adaptive, and thus this parameter is not so impactful on the
final results. Additionally, videos are first resized to a resolution of 320× 180 pixels; this
operation is performed to have a fixed h = 180 and w = 320, but it also enables stacking
multiple videos into batches. The experiment’s timings and the hardware configuration are
shown in Table 3.
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Table 3. Times and stats of the experiments. All the experiments have been run sequentially on a
cluster’s node with 64 GB DDR4 RAM memory, 1× AMD Epyc 7301 2.2 GHz CPU core, and a Nvidia
Quadro 6000 GPU with 24 GB of RAM.

Dataset Validation Type Number of Trials Batch Size

EuRoC MAV [37] LOO 11 16
UZH-FPV [65] LOO 28 16

Zurich MAV [39] 10-fold 10 8

Dataset Epochs per Trial Time per Trial Time per Every Trial

EuRoC MAV [37] 17.5 803.2 s 8835.4 s
UZH-FPV [65] 13.6 1136.3 s 31,815.4 s

Zurich MAV [39] 4.7 1214.3 s 12,142.9 s

Dataset Batches per
Training Epoch

Time per
Training Step

Time per
Training Epoch

EuRoC MAV [37] 69 0.607 s 41.9 s
UZH-FPV [65] 133 0.620 s 82.5 s

Zurich MAV [39] 300 0.801 s 240.2 s

Dataset Batches per
Validation Epoch

Time per
Validation Step

Time per
Validation Epoch

EuRoC MAV [37] 10 0.412 s 4.1 s
UZH-FPV [65] 3 0.422 s 1.3 s

Zurich MAV [39] 33 0.551 s 18.2 s

The model validation results can be seen in Table 4 and graphically in Figure 2, where
sample predictions are shown for six samples of each dataset.

Table 4. Results on the three datasets. Each numerical cell is composed of the mean and standard
deviation between the best values of each validation split.

Dataset Validation Signs F1 Magnitude RMSE Offsets RMSE

EuRoC MAV [37] LOO 94.59%/1.55% 0.177/0.044 0.193/0.062
UZH-FPV [65] LOO 89.61%/3.57% 0.454/0.164 0.502/0.203

Zurich MAV [39] 10-fold 73.79%/3.84% 0.273/0.038 0.360/0.049

It is interesting to notice that the model is more firm when predicting the offsets on
samples from EuRoC MAV and Zurich MAV, whose videos are taken in similar scenarios,
while it is more uncertain when dealing with samples from UZH-FPV. In fact, the latter is
the only dataset that contains both indoor and outdoor environments, as well as different
camera angles (forward-facing and 45° downward-facing). Another possible reason may
be the lower resolution of the images: 346× 260 pixels, compared to the 752× 480 pixels of
EuRoC MAV and the 1920× 1080 pixels of Zurich MAV. Although the proposed strategy
re-scales all the frames to 320× 180 pixels as a pre-processing step, low-quality starting
images may hinder the results.
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(a) (b) (c)

Figure 2. Sample predictions of the model on the datasets. Values ωx, ωy, and ωz are, respectively,
the measurement of the gyroscope for the three axes, while ax, ay, and az are the corresponding ones
from the accelerometer. (a) EuRoC MAV [37]; (b) UZH-FPV [65]; (c) Zurich MAV [39].

4.4. Ablation Study

The ablation study consisted of a grid search of the optimal value of several hyper-
parameters. There were a series of trials on the UZH-FPV dataset where each one is
performed using the base configuration of the model, described in Section 4.3 and Table 2,
with a single variation of a parameter. LOO and k-fold cross-validation schemes would
require training several instances of the same model on different splits of the dataset
and averaging the results. However, from a computational point of view, this would be
infeasible. Given that, we chose the compromise to keep fixed training and validation sets
to only train a single model once for each combination of parameters. The training and the
validation sets are, respectively, random 80% and 20% of windows in the dataset. This is a
common proportion in the related works and is inspired by the Pareto principle [67]. The
results of the ablation study are shown in Table 5 and graphically in Figure 3. Each row in
Table 5 represents the trial’s results using different values from the base configuration for
specific parameters. An early stopping mechanism has been implemented to stop a trial
whenever the training loss does not improve for three consecutive epochs. The metrics
used are the same as Section 4.3: the F1 on signs and RMSE on offsets and magnitudes.
The parameters that have been tested are the amount of dropout, the hidden size d, the
number of attention heads in the MHA, the number of encoders or decoders in each
transformer encoder and transformer decoder, the multiplier for the noise added to o, and
the dimension of the patches in the VRB hp × wp.
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Table 5. Results of the ablation study. Variations of several parameters of the model have been tested,
and this table shows the results of the best score on the validation set of each trial. The best value in
each result column for a particular parameter is in bold.

Parameter Value Signs F1
Magnitude

RMSE Offsets RMSE

Dropout 0% 80.62% 0.631 0.750
Dropout 1% 80.53% 0.635 0.749
Dropout 5% 78.29% 0.662 0.792
Dropout 10% 72.30% 0.741 0.932
Dropout 20% 70.51% 0.776 0.986

Hidden size 128 78.51% 0.720 0.862
Hidden size 256 79.67% 0.733 0.862
Hidden size 384 79.39% 0.788 1.022
Hidden size 512 81.21% 0.728 0.883

Attention heads 4 79.04% 0.663 0.793
Attention heads 8 77.99% 0.684 0.818

Layers 1 83.51% 0.669 0.780
Layers 2 85.79% 0.610 0.706
Layers 3 83.82% 0.661 0.789
Layers 4 85.66% 0.602 0.699
Layers 5 82.17% 0.667 0.786
Layers 6 81.55% 0.673 0.778
Layers 7 83.22% 0.637 0.755

Noise multiplier 1× 74.83% 0.879 0.968
Noise multiplier 2× 78.49% 0.665 0.809
Noise multiplier 3× 80.76% 0.690 0.839
Noise multiplier 4× 82.52% 0.800 0.946

Patches size 32× 32 59.97% 0.919 1.276
Patches size 64× 64 73.89% 0.750 0.929
Patches size 96× 96 76.85% 0.697 0.841
Patches size 128× 128 72.04% 0.787 0.976

One of the most impactful parameters is the amount of dropout, which yields a drop
of 0.236 in the RMSE offsets considering a dropout of 1% or 20%. As can be noticed from
the table, for this kind of task, increasing the percentage of dropped connections highly
worsens the results. A smaller hidden size d reduces the overfitting but considerably
stretches the training time, as can be seen in Figure 3. A hidden size equal to 512, which
corresponds to the highest one tested, performs 1.54% better on the F1 of the signs with
respect to a hidden size of 256. However, the latter value improves the RMSE of offsets and
magnitude, respectively, by 0.021 and 0.008 points. Models with 4 and 8 attention heads
have been tested. The lowest value outperforms the other by 1.05% on the F1 of the signs
and nearly 0.02 on the RMSE of offsets and magnitude. Having more attention heads also
implies a higher computation demand. However, as it happens for the hidden size and
number of layers parameters, a higher number of attention heads lead to a decrease in
convergence time. Increasing the number of layers also decreases the convergence time as
for Figure 3. On average, the improvement of a model with 4 layers is 0.067 on the RMSE
of the offsets and 0.051 on the RMSE of the magnitudes. Considering the F1 on the signs,
4 is not the best value. However, on average, it improves by 2.32%, and it is only 0.13%
worse than the best result achieved by a model with 2 layers. A higher noise multiplier nm
hinders the capability of the model to accurately distinguish between real signal and noise,
as shown in Figure 3. The model performs slightly better on the two RMSEs if the multiplier
is set to ×2 since these values represent more plausible noises. Since the estimation of
the sign is a binary classification task, it seems that increasing nm helps distinguish the
two classes. In fact, the gap between a nm of ×4 and ×1 is 7.69 percentage points on the
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F1 signs metric. The size of the patches, inversely proportional to the number of tokens
in the first transformer encoder in the VRB, seems to perform better if set with higher
values, as can be seen in Figure 3. The worst performing size resulted in 32× 32, which
is 16.88% worse on the F1 signs with respect to a size of 96× 96, 0.43 worse on the RMSE
offsets and 0.222 worse on the RMSE magnitude. Anyway, higher patches severely mine
the computational times and memory requirements. For this reason, we chose the 64× 64
since it would make a good compromise for a real application on a drone.

(a)

(b)

(c)

Figure 3. Cont.
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(d)

Figure 3. Plots of the results of the ablation study on four parameters of the model. (a) Hidden size
(d). (b) Number of layers in the encoders and the decoders. (c) Injected noise multiplier (nm). (d) Size
of the patches (hp, wp).

5. Conclusions

This work presents a novel neural network architecture for camera-based IMU cal-
ibration for UAVs. These procedures are crucial in contexts where the UAV navigation
could be only based on a predetermined trajectory to reach the final destination (e.g., in
war fields where the GPS signals are usually hijacked) and, in particular, when the route
to cover is long. The contribution of this proposal is three-fold. In the first place, it does
not make any use of special equipment or impractical hardware procedures to correct the
offsets in the sensors, as it could be necessary for other kinds of calibration strategies. In
the second place, the proposed pre-trained model can be used directly on the UAV, making
it available in a wider range of scenarios. In third place, the algorithm is compatible with
both grayscale and RGB images, accommodating different cameras mounted or integrated
into diverse UAV models. Moreover, it does not require normalizing the IMU measure-
ments in input, minimizing the computational efforts. More in detail, the algorithm is
a transformer-based neural network that processes both a window of sequential frames
recorded from the on-board camera and the IMU measurements to estimate the eventual
offsets of the latter. The model comprises three modules called video reducer block, IMU
reducer block, and noise predictor block. The first two reduce the video and the sequence of
the IMU measurements to sequences of tokens of the same shape. These are then summed
and given to the latter block to make the final offsets prediction. The approach has been
tested on three datasets that are commonly used in the literature for other tasks. Two of
them (EuRoC MAV, UZH-FPV) have low-resolution, grayscale-only videos, while the other
(Zurich MAV) has full-HD RGB images. Interestingly, the method does not behave much
differently on grayscale or RGB images, making it almost camera-agnostic. As expected,
the uncertainties are fewer in the two more static datasets and slightly higher in UZH-FPV,
which features different environments and camera angles.

One of the issues lies in the fact that the token mixing parts of the transformer encoders
and decoders are based on the standard attention mechanism, in which complexity scales
quadratically with the number of inputs (e.g., the number of frames of the video and the
number of patches in each image). Although this strategy can be considered the standard
in transformer-based works, we plan to replace the token, mixing parts with attention-free
mechanisms to alleviate the time and space requirements of the neural network. It is worth
reminding that, since the offsets are usually small, an IMU calibration has a tangible impact
mostly for long traversals. For this reason, one effective way to evaluate the proposed
approach would be to analyze data collected from a UAV flying along a straight path for a
considerable distance (e.g., 1 Km) and compare the displacement between the predicted and
actual final positions. However, to the best of our knowledge, no existing dataset contains
data from UAV flights that meet these criteria. We plan to validate the proposed procedure
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in real-flight test scenarios, in which it is required that the UAV follows a predetermined
trajectory toward a destination.
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HD High Definition
IMU Inertial Measurement Unit
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