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Abstract 

Chaos theory attempts to explain the result of a system that is sensitive to initial conditions, com-

plex, and shows an unpredictable behaviour. Chaotic systems are sensitive to any change or 

changes in the initial condition(s) and are unpredictable in the long term. Chaos theory are im-

plementing today in many different fields of studies. In this research, we propose a new one-di- 

mensional Triangular Chaotic Map (TCM) with full intensive chaotic population. TCM chaotic map 

is a one-way function that prevents the finding of a relationship between the successive output 

values and increases the randomness of output results. The tests and analysis results of the pro-

posed triangular chaotic map show a great sensitivity to initial conditions, have unpredictability, 

are uniformly distributed and random-like and have an infinite range of intensive chaotic popula-

tion with large positive Lyapunov exponent values. Moreover, TCM characteristics are very prom-

ising for possible utilization in many different study fields. 
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1. Introduction 

Over the last few years, many researchers have studied chaos theory in several fields, such as electronic systems, 
fluid dynamics, lasers, weather and climate [1]-[5]. Chaos theory is implementing today in many different fields 
of studies such as: engineering, computer science, mathematics, physics, geology, microbiology, biology, eco-
nomics, finance, algorithmic trading, meteorology, philosophy, politics, population dynamics, psychology, and 
robotics [6]. Moreover, Chaos theory has attracted the cryptography field due to its characteristics, such as its 
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deterministic nature, unpredictability, random-look nature and its sensitivity to initial value [7]. 
Cryptographers have utilized dynamic chaotic maps to develop new cryptographic primitives by exploiting 

chaotic maps, such as logistic maps, Henon maps, and Tent maps. There are similarities and differences between 
cryptography algorithms and chaotic maps [8]. The parameters in chaotic maps are meaningful, if they are real 
numbers, which can be used in the cryptographic algorithms as encryption and decryption keys. Chaotic systems 
are sensitive to any change or changes in the initial condition(s) and are unpredictable in the long term, thus 
representing the diffusion in cryptographic encryption algorithms. Iterations of a chaotic map lead to the spread- 
ing of the initial region over the entire phase space, and this can be achieved in cryptographic algorithms by de-
signing the algorithm based on rounds. The main difference between chaos and cryptography is that encryption 
transformations are defined on finite sets, whereas chaos has meaning only in real numbers. 

Since 1990, many studies on digital chaotic cryptography have been proposed to provide secure communica-
tions based on chaotic maps including chaotic block ciphers [9]-[34], chaotic cryptography hash functions [7] 
[31] [35]-[49], and chaotic pseudorandom number generators [11] [50]-[65]. In general, chaos theory has been 
proved a secure algorithm against known cryptanalysis techniques. Recently, various studies have been con-
ducted on chaotic cryptographic algorithms [7] [66]-[87]. Some of the proposed chaotic cryptographic algo-
rithms that have been analysed have had weak internal designs and incorrect exploitation of chaotic maps. In 
this research, we propose novel triangular chaotic map. 

The rest of this research paper is organized as follows. Section 2 introduces chaos theory. The details of chao-
tic maps are discussed in Section 3. Section 4 describes details of Logistic map and Lyapunov exponent. In Sec-
tion 5, details of the new Triangular Chaotic map are given. Finally, the conclusion is given in Section 6. 

2. Chaos Theory 

Chaos is derived from a Greek word “Xαos”, meaning a state without order or predictability [2]. A chaotic sys-
tem is a simple, non-linear, dynamical, and deterministic system that shows completely unpredictable behaviour 
and appears random [88]. Moreover, it is a deterministic system with great sensitivity to initial conditions, such 
that a computer system can give an amazingly different result when the value of an input parameter is changed. 
On the other hand, in classical science small changes in an initial value might generate small differences in the 
result [89] [90]. A system is called a chaotic system if it is sensitive to initial conditions, topology mix, and if 
periodic orbits are dense. 

According to Alligood et al. (1996), a dynamical system contains all the possible states and regulations that 
control the next state from the current state. On the other hand, the deterministic regulations are those that de-
termine the current state uniquely from the previous states, whereas there is always a mathematical equation to 
determine the system evolution [91]. From the previous definitions of deterministic and dynamical systems, we 
cannot say that the randomness is not allowed. The bifurcation in dynamic differential equation changes the 
number of solutions as the parameters is changed [92]. 

In 1890, Poincaré published his article [89] (on the equations of the dynamics and the three-body problem) of 
270 pages, which simplified the way of looking at the complicated continuous trajectories from differential equ-
ations [2]. Then, in 1898, Hadamard observed the sensitivity to initial conditions and unpredictability of special 
systems, calling this the geodesic flow [2]. Later, in 1908, Poincaré noted that chaos sensitivity depends on ini-
tial conditions and gives unpredictable results [90] [93]. Later on, Edward Lorenz (1963) examined chaos theory 
and described a simple mathematical model of weather prediction [91]. Lorenz’s model was the first numerical 
model to detect chaos in a non-linear dynamical system [3] [94]. Lorenz’s findings were very interesting in that 
some equations rise to some surprisingly complex behaviour and chaos behaviour dependent on the initial con-
dition [2]. In 1975, Li and Yorke were the first to introduce the word ‘chaos’ into mathematical literature, where 
system results appear random [1]-[5] [95] [96]. 

Chaotic maps have been the subject of an extremely active research area due to their characteristics, such as 
sensitivity to the initial value, complex behaviour, and completely deterministic nature. The chaotic behaviour 
can be observed in many different systems, such as electronic systems, fluid dynamics, lasers, weather, climate 
and economics [2] [88] [89] [97]. Our intuition tells us that a small change in input parameters should give a 
small change in output, but chaotic systems show us that this is not necessarily the case. Usually, chaotic maps 
define infinitely large fields of real numbers. The most important characteristics of chaotic systems are as fol-
lows: 
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1. Apparently random behaviour but completely deterministic: The behaviour of chaotic systems seems to be 
random but actually it is purely deterministic. Hence, if we run the chaotic system many times with the same 
initial value, we will obtain the same set of output values. Furthermore, the chaotic systems are dynamical sys-
tems that are described by differential equations or iterative mappings, and the next state is specified from the 
previous state (see Equation 3-1 [5] [98] [99]). 

( )1

d
, , 1, 2, ,

d i i nx F x x i n
t

= =                                (1) 

2. Sensitivity dependence on the initial conditions (The state from which the system starts): Dynamical sys-
tems evolve completely differently over time with slight changes in the initial state [88] [90]. 

3. Unpredictable (difficult or impossible to predict the behaviour in the long term): In chaotic maps, even if 
one knows the current state of the chaotic system it is useless trying to predict the next state of the system. In 
other words, it is very difficult to predict the future states of the chaotic system in the long term [89] [100]. 

3. Chaotic Maps 

According to Alligood et al. (1996), a chaotic map is a function of its domain and range in the same space, and 
the starting point of the trajectory is called the initial value (condition) [101]. Chaotic dynamics have a unique 
attribute that can be seen clearly by imagining the system starting twice with slightly different initial conditions 
[102]. Chaos theory attempts to explain the result of a system that is sensitive to initial conditions, complex, and 
shows unpredictable behaviour. Chaotic dynamical systems increase communication security with higher di-
mensions and more than one positive Lyapunov exponent [91]. A Lyapunov exponent is used to help select the 
initial parameters of chaotic maps that fall in chaotic areas. A chaotic system exhibits some chaotic behaviour 
and often occurs in the study of dynamical systems. In the following subsections, we will give a brief induction 
to some chaotic systems: Logistic map, Lorenz attractors, Rossler attractors, Henon map, Tent map, and Piece-
wise linear chaotic map. 

3.1. Logistic Map 

In 1845, Pierre Verhulst proposed a logistic map, which is a simple non-linear dynamical map. A logistic map is 
one of the most popular and simplest chaotic maps [103]. Logistic maps became very popular after they were 
exploited in 1979 by the biologist Robert M. May [89]. The logistic map is a polynomial mapping, a complex 
chaotic system, the behaviour of which can arise from very simple non-linear dynamical equations, as shown in 
Figure 1 [104]. The logistic map equation is written as: 

( ) ( )1 1n n n ng x x r x x+= = × × −                             (2) 

where nx  is a number between zero and one, 0x  represents the initial population, and r is a positive number 
between zero and four. 
 

 

Figure 1. Bifurcation diagram of the Logistic map [105].                       
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The logistic map is one of the simplest chaotic maps; it is highly sensitive to change in its parameter value, 
where a different value of the parameter r will give a different map f [89]. Its transformation function is F: 
[ ] [ ]0,1 0,1→  which is defined in the above equation. From the onset of chaos, a seemingly random jumble of 
dots, the behaviour of the logistic map depends mainly on the values of two variables (r, x0); by changing one or 
both variables’ values we can observe different logistic map behaviours. The population of a logistic map will 
die out if the value of r is between 0 and 1, and the population will be quickly stabilized on the value ( )1 r r−  
if the value of r is between 1 and 3 [89]. Then, the population will oscillate between two values if the value of 
parameter r is between 3 and 3.45. After that, with values of parameter r between 3.45 and 4 the periodic fluctu-
ation becomes significantly more complicated. Finally, most of the values after 3.57 show chaotic behaviour. 

In the logistic map ( ) ( )1n n ng x r x x= × × − , the function result depends on the value of parameter r, where 
different values of r will give quite different pictures. We can note that g(x1) = x2 and g(x2) = x1, that mean 

( )( )1 2  g g x x=  and ( )( )2 1g g x x= . According to Alligood et al. (1996) the periodic fluctuation between x1, x2 
is steady and attracts orbits (trajectories). Therefore, there are a minimum number of iterations of the orbit to 
repeat the point. There are obvious differences between the behaviour of the exponential model and the logistic 
model’s behaviour. To show the difference between the two functions, we take an example of the exponential 
function ( )1 2n nf x x+ =  and an example of logistic function ( ) ( )1 4 1n n ng x x x+ = − ; the initial value for both 
functions is 0.0090, and we then calculate the population for n = 0, 1, 2,  , 10 resulting in an accuracy of five 
decimal places. We can notice that the output values of the exponential function are always increasing as time 
progresses, while the output values of the logistic function are fluctuating with a finite limited size between zero 
and one [88] [89] [93]. 

3.2. Lorenz Attractor 

The Lorenz attractor is one of the most popular three-dimensional chaotic attractors; it was examined and intro-
duced by Edward Lorenz in 1963 [2]. He showed that a small change in the initial conditions of a weather model 
could give large differences in the resulting weather. This means that a slight difference in the initial condition 
will affect the output of the whole system, which is called sensitive dependence to the initial conditions. The 
non-linear dynamical system is sensitive to the initial value and is related to the system’s periodic behaviour 
[90]. Lorenz’s dynamic system presents a chaotic attractor, whereas the word chaos is often used to describe the 
complicated manner of non-linear dynamical systems [106]. Chaos theory generates apparently random beha-
viour but at the same time is completely deterministic, as shown in Figure 2. The Lorenz attractor is defined as 
follows: 

( )d d

d d

d d

x t a y x

y t r x y x z

z t x y b z

= ∗ −

= ∗ − − ∗
= ∗ − ∗

                                 (3) 

 

 

Figure 2. A plot of the trajectory of the Lorenz system, 
(modified from [107])                                  
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3.3. Rossler Attractors 

In 1976 [88] [89], O. Rossler created a chaotic attractor with a simple set of non-linear differential equations 
[88]. Rossler attempted to write the simplest dynamical system that exhibited the characteristics of a chaotic 
system [89] [108]. The Rossler attractor was the first widely-known chaotic attractor from a set of differential 
equations; defined by a set of three non-linear differential equations, the system exhibits a strange attractor for a 
= b = 0.2 and c = 5.7 (see Equation (4)) [108]. The Rossler attractor is a rather nice but not famous attractor, 
which draws a nifty picture of a non-linear three-dimensional deterministic dynamical system, as shown in Fig-

ure 3. 
d d

d d

d d

x t y z

y t x Ay

z t B xz Cz

= − −
= +
= + −

                                   (4) 

A, B, and C are constants. 

3.4. Henon Attractors 

The Henon map is one of the dynamical systems that exhibit chaotic behaviours. The Henon map is defined by 
two equations; the map depends on two parameters a, b, and the system exhibits a strange attractor for a = 1.4 
and b = 0.3 (see Equation (5)). A Henon map takes one point (x, y) and maps this point to a new point in the 
plane, as shown in Figure 4 [108]. 

2
1

1

1n n n

n n

x y ax

y bx

+

+

= + −

=
                                   (5) 

3.5. Tent Map 

A Tent map is an iterated function of a dynamical system that exhibits chaotic behaviours (orbits) and is go-
verned by Equation (6). It has a similar shape to the logistic map shape with a corner (Figure 5 and Figure 6)  
 

 

Figure 3. Rossler attractor [89].                      
 

 

Figure 4. Henon attractor for a = 1.4 and b = 0.3 [89].         
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Figure 5. Bifurcation diagram for the tent map [110].                         
 

 

Figure 6. Graph of tent map function.                                  
 
[109]. The Tent map exhibits the Lyapunov exponents on the unit interval ( ) [ ]0,1T x ∈  and [ ]0, 2µ∈ . It is a 
simple one-dimensional map generating periodic chaotic behaviour similar to a logistic map. 

( ) ( )
, 1 2

1 , 1 2

x x
T x

x x
µ

µ
µ

≤=  − ≤
                           (6) 

3.6. Piecewise Linear Chaotic Maps 

Piecewise linear chaotic maps (PWLCMs) are simple non-linear dynamical systems with large positive Lyapu-
nov exponents. In [111], they are shown to have several brilliant chaotic properties that can be exploited in 
chaotic cryptographic algorithms. PWLCM has perfect behaviour and high dynamical properties such as inva-
riant distribution, auto-correlation function, periodicity, large positive Lyapunov exponent, and mixing property 
[112]. Iterations of PWLCM with initial value and control parameters generate a sequence of real numbers be-
tween 0 and 1, which is called an orbit. A large positive Lyapunov exponent means that the system shows chao-
tic behaviour over large orbits [110]. The periodicity property indicates that the system behaviour is average 
over time and space. Correlation functions are a very important test of the correlation over time and space be-
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tween random variables at two different points, thus indicating correlation statistical properties [2]. 
PWLCMs are the simplest kind of chaotic systems, which need one division and few additions. A skew Tent 

map is a PWLCM defined by a generalized form of Tent map that is very similar to a Tent map with small dif-
ferences (see Equation (7)). A more complex example of PWLCMs is defined by Equation (8). It is very clear 
from Equation (8) that f(0, p) = 0, f2(0.5, p) = 0, f3(1, p) = 0 for any P ∈ (0, 0.5). Thus, we should avoid those 
values as initial parameters of xn. 

( )
[ )

( ) ( ) [ ]1

, 0,
,

1 1 , ,1

n n

n n

n n

x p x p
x f x p

x p x p
+

 ∈= = 
− − ∈

                      (7) 

( )
[ )

( ) ( ) ( ]
( ) [ ]

1

, 0,

, 0.5 , ,0.5

1 , , 0.5,1

n n

n n n n

n n

x p x p

x f x p x p p x p

f x P x

+

 ∈


= = − − ∈
 − ∈

                     (8) 

where x0 is the initial condition value, P is the control parameter, xn ∈ [0, 1], and P ∈ (0, 0.5).  

4. Logistic map and Lyapunov Exponent 

Chaos theory is a simple non-linear dynamical system that shows completely unpredictable behaviour [88]. A 
chaotic system is a deterministic system with great sensitivity to initial conditions that can give amazingly dif-
ferent results on a computer when one or both input parameters’ values are changed. In contrast, small changes 
in the initial value of classical science equations tend to generate small differences in the result [7]. Chaotic 
maps have been an active research area due to their characteristics such as deterministic nature, unpredictability, 
random-look nature, and sensitivity to initial value [7] [11] [19] [34] [52] [53] [55] [113]-[123]. In the last dec-
ade, researchers have noticed a relationship between chaos theory and cryptography. Chaotic systems’ properties 
are analogous to some cryptography systems’ properties; for example, sensitivity to initial conditions is analog-
ous to diffusion, iterations are analogous to rounds in encryption systems, and chaotic system complexity is 
analogous to complexity of cryptography algorithms. Cryptographers have utilized dynamical chaotic maps to 
develop new security primitives by exploiting some chaotic maps [89] [100]. Some of the well-known chaotic 
maps are Logistic map, Tent map and Henon map. 

A Lyapunov number is the divergence rate average of very close points along an orbit and it is the natural al-
gorithm of the Lyapunov exponent (see Equation (9) [91]). Therefore, the Lyapunov exponent is used with 
chaotic behaviour to measure the sensitivity dependence on the initial condition [88]. This means that, in 
one-dimensional chaos maps, the Lyapunov numbers are used to measure separation rates of nearby points along 
the real line. The Lyapunov exponent is used to help in choosing the initial parameters of chaotic maps that fall 
in chaotic areas. The Lyapunov exponent has three different cases of dynamics as follows [89]: 

1. If all Lyapunov exponents are less than zero, there is a fixed point behaving like an attractor. 
2. If some of the Lyapunov exponents are zero and others are less than zero, there is an ordinary attractor, 

which is simpler than a fixed point. 
3. If at least one of the Lyapunov exponents is positive, the dynamical system is not stable (chaotic) and vice 

versa. 

( ) ( ) ( ) ( )1 1lim 1 ln ln n
n

h x n f x f x
→∞

 ′ ′= + +                         (9) 

A logistic map shows a chaotic behaviour that can arise from very simple non-linear dynamical equations (see 
Figure 7 [124]). Logistic map behaviour seems to be a random jumble of dots and mainly depends on two pa-
rameters (x0 and r). We can observe different logistic map behaviours by changing the value(s) of one or both of 
these parameters. The general idea of a logistic map was built based on an iterations function, where the next 
output value depends on the previous output value (see Equation (1)). Figure 8 shows the calculated Lyapunov 
exponent value of a logistic map with different values of parameter r ∈ [0, 4]. In a logistic map equation, x0 and 
r represent the initial conditions, x0 ∈ [0, 1] and r ∈ [0, 4]. Chaotic behaviour is exhibited with 3.57 > r ≥ 4, but 
it shows non-chaotic behaviour with some values of parameter r (see Figure 9 and Figure 10). In this section, 
we refer to x0 and r parameters as the initial conditions of a logistic map. 
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Figure 7. Bifurcation diagram of logistic map.                                    
 

 

Figure 8. Lyapunov exponent of Logistic map with t ∈ [0, 4].                      
 

 

Figure 9. Logistic map bifurcation diagram of a periodic window.                         
 

A small range of logistic map parameters are consider as valid values to show chaotic behaviour [69]. In gen-
eral, chaotic behaviour is exhibited with values of parameter r greater than 3.57 and less than or equal to 4. It is 
very clear from Figure 9 that the logistic map periodic window becomes significantly complicated with 3.57 > r 
≥ 4. In Figure 9 and Figure 10, we plotted a portion of logistic map bifurcation and its Lyapunov exponent, re-
spectively, using MATLAB software, to give a clear picture of the chaotic areas. There are non-chaotic areas 
with some values of parameter r over the chaotic interval, which are called stability or islands. It is very clear  
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Figure 10. Lyapunov exponent of Logistic map with t ∈ [3.575, 4].                 
 
that there is a 3-periodic window between 3.828429 and 3.841037 [69]. The value of r = 3.840 falls in the 
3-periodic window and the value of r = 3.845 fall in the 6-periodic window. Therefore, after a small number of 
iterations with different initial values of x, (x0) will end up in one of these periodic. The cryptosystems fall 
within the 3-perodic and the 6-periodic windows with r = 3.840 and 3.845, respectively, and were utilized for 
the purpose of attacking them [125]. Moreover, the logistic map population will cover the full interval of x, 
([0,1]), only with r = 4. 

5. Novel Triangular Chaotic Map (TCM) 

In this section, a novel Triangular Chaotic map (TCM) is proposed. TCM is a one-dimensional chaotic map of 
degree two with full chaotic population over infinite interval of parameter t values (see Equation (10)). The Tri-
angular Chaotic Map behaviour mainly depends on the initial values of parameters y0 and t. TCM behaviour 
seems to be a random jumble of dots, and depends on initial conditions (y0 and t). The y0, yn are positive real 
numbers between 0 and 1, yn ∈ [0, 1], and t can be any positive real number t ∈ [0, ∞]. Figure 11 shows a TCM 
map bifurcation diagram and Figure 11 shows the calculated Lyapunov exponent value over r ∈ [0, 4]. It is very 
clear from the figures that TCM shows perfect chaotic behaviour over the full interval. Figure 12 shows a TCM 
diagram with initial value of t very close to zero and random number of y0, iterating TCM map many times, and 
then plotting the t series of values of yn using MATLAB software. In other words, we plotted corresponding 
points of yn to a given value of t and increased t to the right. TCM is very sensitive to any change(s) in one or 
both initial conditions and is unpredictable in the long term, as shown in Figure 11 and Figure 12. In this paper, 
we refer to y0 and t parameters as the initial conditions of TCM map. 

( )
( )( )

( )1

1 %1 %2 0

%1 %2! 0

n n

n n

n

t y y n
f y y

y nπ β
+

 × × − == = 
× × =

                     (10) 

where yn is a number between zero and one, y0 represents the initial population, t is a positive real number, n is a 
number of iterations, β: is a positive odd number between 3 and 99. 

The general idea of a TCM map was built based on an iteration function. The result of the next output value 
(yn+1) in TCM depends on the previous output value (yn) (see Equation (3)). A TCM map over a different range 
of parameter t values will give different f maps. To show TCM sensitivity we plotted the behaviour of three 
nearby initial values of y0 and three nearby initial values of t. Three nearby initial values of y0 (0.990000, 
0.990001, and 0.990002) for t = 1 started at the same time and rapidly diverged exponentially over time with no 
correlation between each of them (see Figure 13). Moreover, we plotted populations of three slightly different 
parameter values of t (4.000000, 4.000001, and 4.000002) and y0 = 0.5 to show great sensitivity to initial condi-
tions of the TCM map (see Figure 14). 

TCM diagram and population distribution histograms have been plotted for population of TCM over the t ∈ 
[32, 36]. TCM iterated 43686 times with initial conditions values of t0 = 32 and y0 = 0.5. We draw the TCM dia-
gram by plotting corresponding points of yn to a given value of t and increasing t to the right (see Figure 15).  
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Figure 11. TCM chaotic map bifurcation diagram with t ∈ [0, 4].                 
 

 

Figure 12. Lyapunov exponent of TCM chaotic map with t ∈ [0, 4].                 
 

 

Figure 13. TCM iterations with t = 1 and three different initial values of y0.          
 
TCM population interval, [0, 1], is divided into 10 equal sub-intervals and the number of points in each interval 
has been counted for each sub-interval and plotted (see Figure 16). It is very clear from Figure 15 and Figure 

16 that TCM population is uniformly distributed over the interval [0, 1] with t ∈ [32, 36]. We draw the TCM 
diagram and population distribution histogram with different initial t values (0, 4, 8, 12, ... etc.) and the overall 
results confirm that the TCM population distributions are uniformly distributed with t ≥ 12 and interval size 4. In 
conclusion, TCM is a new one-dimensional chaotic map with perfect chaotic behaviour over infinite interval,  
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Figure 14. TCM iterations with y0 = 0.5 and three different initial values of t.          
 

 

Figure 15. TCM chaotic map bifurcation diagram with t ∈ [32, 36].              
 

 

Figure 16. TCM distribution of yn values over t ∈ [32, 36].                  
 
high positive Lyapunov exponent value, uniform distribution, and great sensitivity to any change(s) in the initial 
condition or the control parameter. 

As we explained earlier, a small range of logistic map parameters are considered valid values to show chaotic 
behaviour r > 3.57 ≥ 4. In addition, the logistic map population will cover the full interval of x, xn ∈ [0, 1], only 
with r = 4. Therefore, we propose to use a modified version of the logistic map defined in Equation (8). We used 
the remainder of dividing the logistic map by 1 to ensure that all the output values will be between zero and one, 
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xn ∈ [0, 1], and we added a small real number (β ≤ 0.001) to ensure xn ≠ 0 or 1. Consequently, in the modified 
version the value of parameter r can be any value greater than 0, r ∈ [0, ∞]. We plotted the modified version of 
logistic map bifurcation and its Lyapunov exponent over different intervals using MATLAB software (see Fig-

ure 17 and Appendix A). It is very clear from Figure 18 that the modified version has bigger intervals of chao-
tic behaviour and it covers the full x interval over many different values of parameter r. Unfortunately, it still 
shows non-chaotic areas over different values within the intervals: [0, 4], [4, 8], [8, 12] and [12, 16], which are 
known as stability or islands. In contrast, the TCM map shows perfect chaotic behaviour and covers the entire 
range of y for every value of t (see Figure 18 and Appendix B). In other words, in the Triangular Chaotic Map 
at every value of f(x) there is at least one image value, but in the logistic map and modified logistic map there 
are no image values. 

6. Conclusion 

In this research, we propose a new Triangular Chaotic Map (TCM) with high-intensity chaotic areas over infi-
nite interval. The tests and analysis results of the proposed chaotic map show that it has very strong chaotic 
properties such as very high sensitivity to initial conditions, random-like, uniformly distributed population, de-
terministic nature, unpredictability, high positive Lyapunov exponent values, and perfect chaotic behaviour over 
infinite positive interval. TCM chaotic map is a one-way function that prevents the finding of a relationship be-
tween the successive output values, which increases sophistication and randomness of the proposed chaotic map. 
Therefore, TCM is considered as an ideal chaotic map with perfect and full population chaotic behaviour over 
the full interval. TCM characteristics are promising for possible utilization in many different fields of study to 
optimize exploitation chaotic maps.  
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(a)                                                         (b) 

 
(c)                                                         (d) 

Figure 17. Modified logistic map bifurcation diagrams over different intervals. (a) Modified logistic map diagram for a ∈ [0, 
4]; (b) Modified logistic map diagram for r ∈ [4, 8]; (c) Modified logistic map diagram for a ∈ [8, 12]; (d) Modified logistic 
map diagram for r ∈ [12, 16].                                                                                 
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(a)                                                         (b) 

 
(c)                                                         (d) 

Figure 18. TCM map bifurcation diagrams over different intervals. (a) TCM diagram for t ∈ [0, 4]; (b) TCM diagram for t ∈ 
[4, 8]; (c) TCM diagram for t ∈ [8, 12]; (d) TCM diagram for t ∈ [12, 16].                                            
 
Durham—UK. 
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Appendix A 

 

Figure A1. Logistic map bifurcation diagram with t ∈ [3.8, 3.9].                             
 

 

Figure A2. Lyapunov exponent of logistic map with t ∈ [3.8, 3.9].                             

 

 

Figure A3. Modified logistic map bifurcation diagram with t ∈ [4, 8].                       
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Figure A4. Lyapunov exponent of modified logistic map with t ∈ [4, 8].                     
 

 

Figure A5. Modified logistic map bifurcation diagram with t ∈ [8, 12].                      
 

 

Figure A6. Lyapunov exponent of modified logistic map with t ∈ [8, 12].                          
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Figure A7. Modified logistic map bifurcation diagram with t ∈ [12, 16].                        
 

 

Figure A8. Lyapunov exponent of modified logistic map with t ∈ [12, 16].                         
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Appendix B 

 

Figure B1. TCM chaotic map bifurcation diagram with t ∈ [4, 8].                               
 

 

Figure B2. Lyapunov exponent of TCM chaotic map with t ∈ [4, 8].                          
 

 

Figure B3. TCM chaotic map bifurcation diagram with t ∈ [8, 12].                             
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Figure B4. Lyapunov exponent of TCM chaotic map with t ∈ [8, 12].                               
 

 

Figure B5. TCM chaotic map bifurcation diagram with t ∈ [12, 14].                               
 

 

Figure B6. Lyapunov exponent of TCM chaotic map with t ∈ [12, 14].                           
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Figure B7. TCM chaotic map bifurcation diagram with t ∈ [32, 36].                            

 

 

Figure B8. Lyapunov exponent of TCM chaotic map with t ∈ [32, 36].                         

 

 

Figure B9. TCM chaotic map bifurcation diagram with t ∈ [10, 14].                                
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Figure B10. Lyapunov exponent of TCM chaotic map with t ∈ [10, 14].                            
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