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Abstract—Gaussian/non-Gaussian impulsive noises in underwa-
ter acoustic (UWA) channel seriously impact the quality of under-
water acoustic communication. The common denoising algorithms
are based on Gaussian noise model and are difficult to apply to the
coexistence of Gaussian/non-Gaussian impulsive noises. Therefore,
a new UWA noise model is described in this paper by combining the
symmetric α-stable (SαS) distribution and normal distribution.
Furthermore, a novel underwater acoustic signal denoising algo-
rithm called AWMF+GDES is proposed. First, the non-Gaussian
impulsive noise is adaptively suppressed by the adaptive window
median filter (AWMF). Second, an enhanced wavelet threshold
optimization algorithm with a new threshold function is proposed
to suppress the Gaussian noise. The optimal threshold parameters
are obtained based on good point set and dynamic elite group guid-
ance combined simulated annealing selection artificial bee colony
(GDES-ABC) algorithm. The numerical simulations demonstrate
that the convergence speed and the convergence precision of the
proposed GDES-ABC algorithm can be increased by 25%∼66%
and 21%∼73%, respectively, compared with the existing algo-
rithms. Finally, the experimental results verify the effectiveness of
the proposed underwater acoustic signal denoising algorithm and
demonstrate that both the proposed wavelet threshold optimization
method based on GDES-ABC and the AWMF+GDES algorithm
can obtain higher output signal-to-noise ratio (SNR), noise sup-
pression ratio (NSR), and smaller root mean square error (RMSE)
compared with the other algorithms.

Index Terms—Gaussian/non-Gaussian noise, median filter, SαS,
SNR, wavelet threshold optimization.

I. INTRODUCTION

T
HE acoustic wave is widely used in the field of under-

water communication because it is the only carrier that
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can realize underwater medium and long-distance transmission.

However, in the process of underwater acoustic (UWA) com-

munication, the complex marine environmental noise affects

the acoustic signal leading to the degradation and distortion

of the acoustic signal and the decline of the communication

quality [1], [2].

According to the central limit theorem of statistics, the UWA

noise can be described as the Gaussian noise. Therefore, most

of the acoustic signal processing methods in underwater are

based on Gaussian noise assumption. However, few sources

will dominate on a particular range of frequency, which will

contradict the central limit theorem by limiting the number

of noise sources [3]. Moreover, the stochastic non-Gaussian

impulsive noise exists in signals [4]–[6] and the probability

density function (PDF) of UWA noise has a “heavier tail” than

the Gaussian distribution. This will make the performance of the

system sub-optimal or even worse when designed using Gaus-

sian noise behavior. Therefore, it is essential to comprehensively

investigate the UWA noise model.

Several models have been proposed in the literature for the

PDF of UWA noise [3], [7]–[11], [14]. The Gaussian mixture

model is widely used to characterize the UWA noise. However,

it is unable to capture the heavier tail with a small number

of Gaussian [3]. Compared with the Gaussian mixture model,

the symmetric α-stable (SαS) distribution has “heavier tail”

statistical characteristics of impulsive noise, which makes it

consistent with the generation mechanism and the propagation

conditions of the underwater impulsive noise [7]. Unfortunately,

it has a limitation of not having a closed-form distribution

except for α = 1, 2 [3]. By describing the spacetime discipline

of the noise source and the propagation characteristic of the

noise, the parameters of the Middleton model possess physical

meaning [11]. In practice, the UWA noise simultaneously suffers

from the no-Gaussian impulsive noise and the Gaussian noise

as shown in Fig. 1 [12], [13]. For this reason, it is difficult to

determine several parameters with the Middleton model [14].

Therefore, this paper describes the combined noise model of

UWA noise combining the SαS distribution and the normal

distribution models. Furthermore, the energies of Gaussian noise

and non-Gaussian impulsive noise are defined by SNR and

mixed signal-to-noise ratio (MSNR), respectively.

The above-described non-Gaussian impulsive noise can be

suppressed using the standard median filter (SMF). However,
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Fig. 1. Underwater anthropogenic and natural non-Gaussian impulsive noise
sources.

the SMF processes the useful part of the received signal and

distorts the signal of interest (SOI). To solve this problem,

various improved filtering algorithms have been proposed [15],

[16]. Vijaykumar et al. [17] proposed a fast switching based

median-mean filter, using extreme minimum and maximum

values to identify the noise and replaced it with median or mean

value. Chanu et al. [18] proposed a two-stage switching vector

median filter that detected the impulsive noise twice and replaced

the noise with weighted vector median to suppress the impulsive

noise while preserving the details of the SOI.

On the other hand, the Gaussian noise can be effectively

suppressed using various existing methods such as filtering

methods, wavelet transform (WT) methods, empirical mode de-

composition (EMD) methods [19]–[21] and multistage singular

spectrum analysis (MSSA) [22]. Among these methods, the

wavelet threshold method is widely used because it can obtain

the asymptotic optimal estimation of the SOI [23]–[25]. The

threshold estimation and the construction of threshold func-

tion are the two key factors of the wavelet threshold method.

Currently, the widely used threshold estimation method is the

unified threshold estimation method proposed by Donoho and

Johnstone et al. [26]–[28]. The unified threshold estimation

method is based on the decision theory of multi-dimensional

independent normal variables under the Gaussian noise model.

Furthermore, the soft and hard threshold functions are designed

to shrink the wavelet coefficients and obtain high denoising

performance. However, the above-mentioned methods depend

on the accurate estimation of noise variance and are difficult

to apply to the actual unknown noise variance. Moreover, the

above-mentioned methods shrink the wavelet coefficients ac-

cording to a fixed structure, which lacks self-adaptability and

reduces the flexibility of signal processing.

To overcome the above-described limitations, Yi et al. [29]

proposed an improved threshold method based on Sigmoid

function and discussed the effects of the types of wavelet basis

functions, numbers of decomposition layers, threshold selection

rules and threshold functions on the denoising performance.

Sumithra et al. [30] proposed a trimmed thresholding method to

achieve a compromise between the soft and the hard thresholding

in order to effectively enhance the quality of the SOI in the

background noise. Singh et al. [31] used the modulation channel

selection as the threshold function and proposed a denoising

method based on wavelet packet that was able to obtain a higher

output SNR compared with other algorithms. Based on the

improved thresholding function, Zhang et al. [32] proposed a

dual-tree complex wavelet transform (ITF-DTCWT) denoising

algorithm to ensure the approximate translation invariance and

reduce the signal distortion.

In order to further improve the performance of wavelet thresh-

old methods, various swarm intelligence optimization meth-

ods have been used to optimize the threshold parameters. Sun

et al. [33] proposed a denoising scheme based on Shearlet

transform and particle swarm optimization (PSO) algorithm.

The scheme was able to efficiently eliminate the pseudo-Gibbs

phenomenon and the noise. Bhutada et al. [34] optimized the

adaptive threshold parameters based on PSO algorithm by mini-

mizing the mean squared error (MSE) between the expected and

the output signals. He et al. [35] proposed an improved threshold

function based on a hyperbolic tangent function and minimized

the MSE of reconstructed and expected signals using artificial

fish swarm algorithm to obtain the optimal threshold parameters.

However, the above-mentioned swarm intelligence optimiza-

tion algorithms still have some shortcomings, such as slow

convergence and weakness of local refinement [36]–[38]. Kong

et al. [39] proposed an improved artificial bee colony (ABC)

algorithm based on elite group guidance and combined breadth-

depth search strategy (ECABC) that was able to achieve high

convergence precision in a short time. Based on three dynamic

adjustment strategies to improve the optimization performance

of PSO algorithm, Zhang et al. [40] proposed a parameter

wavelet threshold signal denoising method (MPSO) to optimize

the wavelet threshold parameters. The MSE between the recon-

struct and the expected signals was used as the fitness function

of the MPSO and both the SNR and the noise suppression ratio

(NSR) of the output signal were effectively improved.

The actual underwater acoustic channel contains both Gaus-

sian and non-Gaussian impulsive noises. Therefore, it is difficult

to directly apply the above-mentioned denoising algorithms

based on swarm intelligence optimization. First, it is difficult

to construct the threshold function due to the lack of the general

principle of establishing the threshold function. Second, the

determination of threshold parameters is an iterative process that

usually reaches the suboptimal value rather than the optimal

value. Third, the increase in the number of iterations reduces

the diversity of the population, which will make the above-

mentioned algorithms fall into local optimum.

Therefore, this paper proposes a novel underwater acoustic

signal denoising algorithm named AWMF+GDES, which is

based on adaptive window median filter combined with wavelet

threshold optimization. First, the Gaussian/non-Gaussian im-

pulsive noises in the underwater acoustic channel are described

by combining the SαS distribution and the normal distribution

models. Then, an adaptive window median filter (AWMF) is

proposed to suppress the non-Gaussian impulsive noise. Second,

a new threshold function is designed based on the traditional

wavelet threshold method to obtain the threshold parameters

to be optimized. Then, the optimal threshold parameters are

obtained using the GDES-ABC algorithm and the Gaussian



WANG et al.: A NOVEL UNDERWATER ACOUSTIC SIGNAL DENOISING ALGORITHM FOR GAUSSIAN/NON-GAUSSIAN IMPULSIVE NOISE 431

noise is suppressed. The main improvements of GDES-ABC

algorithm include the population initialization based on good

point set, neighborhood searching based on dynamic elite group,

and simulated annealing selection mechanism.

The contributions of this paper are as follows:
� By combining the SαS distribution and the normal distribu-

tion, a new UWA noise model is described and the energies

of Gaussian noise and non-Gaussian impulsive noise are

defined by SNR and MSNR, respectively. Compared with

the several existing models, the proposed model can cap-

ture a heavier tail with a small number of Gaussian and

have a closed-form distribution for each α.
� According to the impulsive noise content, the AWMF

adaptively changes the size of the filter window based on

the proposed adaptive adjustment rule, which effectively

balances the filtering performance and the computational

complexity of the filter.
� To reduce the pseudo-Gibbs phenomenon, a new threshold

function is designed and validated to improve the con-

tinuity and smoothness of the threshold shrinkage pro-

cessing. Meanwhile, the GDES-ABC algorithm is utilized

to obtain the optimal threshold parameters, which im-

proves the estimation precision of the threshold parameters.

The numerical simulations demonstrate that the proposed

wavelet threshold optimization method can effectively re-

duce Gaussian noise.
� The three improvements of GDES-ABC algorithm are as

follows: 1) The initial population is initialized based on the

theory of good point set in order to ensure the averageness

and the diversity of the population. 2) The random domain

search method is replaced with the domain search method

based on the dynamic elite group to accelerate the con-

vergence speed and improve the search efficiency. 3) The

domain selection based on simulated annealing mechanism

is used to prevent the algorithm from falling into a local op-

timum. The numerical simulation results demonstrate that

the convergence speed and the convergence precision of

the GDES-ABC algorithm can be increased by 25%∼66%

and 21%∼73%, respectively, compared with the existing

algorithms.
� In this paper, the performance is examined in details

and compared with the existing approaches using both

simulated and real data. The numerical simulations and

the experimental results demonstrate and validate that the

proposed AWMF+GDES method can effectively improve

the reception performance of underwater acoustic signals.

The rest of this paper is organized as follows. Section II

introduces the system model. Section III describes the proposed

underwater acoustic signal denoising algorithm. The effective-

ness of the proposed algorithm is validated using simulated

data and real data in Sections IV and V, respectively. Finally,

Section VI concludes the paper.

II. SYSTEM MODEL

For a single input single output (SISO) underwater acoustic

communication system, the signal y(t) received by receiver is

described here in its digital form, as a set of discrete samples:

y(i) = s(i) + e(i), i = 1, 2, . . ., N, (1)

where s(i) is the random SOI with random amplitude and phase;

e(i) is the additive background noise; and N is the total number

of samples. The purpose of denoising is to recover the estimated

signal s′(i) of the SOI from y(i) by using filters, WT, EMD or

other signal processing methods, which would reduce the impact

of e(i) on the SOI.

The common denoising algorithms assume that the additive

background noise in an underwater acoustic channel is a Gaus-

sian noise source, and the PDF of the instantaneous intensity x
of this source is:

fGauss(x) =
1√

2πσe

e
− x2

2σ2
e . (2)

The SNR is defined as:

SNR = 10 log
σ2
s

σ2
e

, (3)

where σ2
s and σ2

e are the variances of the SOI and the additive

white Gaussian noise (AWGN), respectively.

However, in the actual underwater acoustic channel, the PDFs

of the non-Gaussian noise signal shown in Fig. 1 are similar to

the Gaussian distribution. However, the tails are longer, and the

probability of strong amplitude is higher, while the duration of

those noise sources is shorter. The non-Gaussian noise has the

characteristic of spike pulse that is regarded as a type of burst

non-Gaussian impulsive signal. Therefore, it is difficult to apply

the common denoising algorithms based on Gaussian model to

the actual underwater acoustic channel.

The SαS distribution is a limit distribution model that satisfies

the generalized central limit theorem, and can be consistent

with the generation mechanism and propagation conditions of

the above-mentioned non-Gaussian impulsive noise. Therefore,

using the SαS distribution to describe the underwater spike

impulsive noise has more advantages than the Gaussian distri-

bution. If the characteristic function of a random variable X can

be expressed as:

ϕ(x) = exp{jax− γ|x|α[1 + jβsgn(x)ω(x, α)]}, (4)

where j =
√
−1, a is the local paremeter and −∞ < a < ∞,

and

ω(x, α) =

{

tan(απ
2
), α �= 1

2
π log |x| , α = 1

, (5)

sgn(x) =

⎧

⎨

⎩

1, x > 0

0, x = 0

−1, x < 0

. (6)

Then, the random variable X satisfies the α stable distribution.

Where α is the characteristic exponent that determines the

degree of pulse characteristics of the distribution and 0 < α ≤ 2.

The bigger the α is, the more obvious the pulse characteristic

will be. When α = 2, the α stable distribution is equivalent to

Gaussian distribution. β is the symmetric parameter that is used

to determine the slope of the distribution and −1 ≤ β ≤ 1. γ is
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Fig. 2. Process of the processed scheme.

the dispersion of the distribution and γ > 0, which is similar to

the variance of Gaussian distribution.

When β = 0, Eq. (4) can be written as:

ϕ(x) = exp(jax− γ|x|α). (7)

In this case, the distribution is called the SαS distribution,

recorded as X ∼ SαS. For simplicity, the local parameter a is

assumed to be 0. Then, the PDF of the SαS distribution is:

fSαS(γ, x) =
1

2π

∫ ∞

−∞
exp(−γ|ω|α)e−jωxdω. (8)

It is impossible to calculate the variance of non-Gaussian im-

pulsive noise satisfied with the SαS distribution. Therefore, the

MSNR is used to describe the power of non-Gaussian impulsive

noise. The MSNR is defined as:

MSNR = 10 log

(

σ2
s

γ

)

, (9)

where σ2
s and γ are the variance of the SOI and the dispersion

of non-Gaussian impulsive noise satisfied with the SαS distri-

bution, respectively.

To more realistically describe the noise in the real environ-

ment, it is assumed that the underwater acoustic noise is obtained

by the superposition of Gaussian noise and non-Gaussian impul-

sive noise. Therefore, the underwater acoustic noise model e(i)
is defined as:

e(i) = eGauss(i) + eSαS(i), (10)

where the PDFs of eGauss(i), eSαS(i), and σe and γ are provided

in Eqs. (2), (8), (3) and (9), respectively.

III. UNDERWATER ACOUSTIC SIGNAL DENOISING ALGORITHM

AWMF+GDES

To effectively reduce the impact of Gaussian and non-

Gaussian impulsive noises on the received signal, a new under-

water acoustic signal denoising method is proposed by combin-

ing the AWMF with the wavelet threshold optimization method

based on GDES-ABC. The overall process of the processed

scheme is shown in Fig. 2 and the specific steps are as follows.

Fig. 3. Initial sliding window W when LW = 2n+ 1.

A. Adaptive Window Median Filter

The SMF replaces all the samples, resulting in the distortion of

the SOI. Therefore, the AWMF is proposed in this paper. First,

the number of impulsive noise points in the preset window is

detected, and the position of impulsive noise is determined based

on the differential method, and the number of impulsive noise

points is counted. Then, according to the number of impulsive

noise points in the preset window, the size of the new sliding

window is re-determined based on the adaptive adjustment rule.

Finally, the impulsive noise points are replaced with the median

point in the new window.

1) Impulsive Noise Detection: Assuming that the signal re-

ceived by the receiver is y = [y(1), y(2), . . ., y(N)], the length

of the initial sliding window W is LW = 2n+ 1 as shown in

Fig. 3.

By using the initial sliding window W , the sample w(i) at the

i moment is obtained from the received signal y excluding the

center point y(i) as:

w(i) = [w1(i), w2(i), . . ., w2n(i)]

= [y (i− n) , . . ., y(i− 1), y(i+ 1), . . ., y (i+ n)] .
(11)

Sorting the signal points in w(i) in ascending order to obtain:

r(i) = sort(w(i))

= [r1(i), r2(i), . . .r2n(i)],
(12)

where sort(·) is the sort function. Set Med = median(r(i)),
where median(·) represents the median. Then, the differential

noise point detector is defined as:

d(i) =

{

rn(i)− y(i), y(i) ≤ Med

rn+1(i)− y(i), y(i) > Med
. (13)

For a given pre-set impulsive threshold Tnoise, if d(i) >
Tnoise, then y(i) is an impulsive noise and N(i) = 1; else y(i)
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is the no-noise SOI, and N(i) = 0, where N(i) is the impulsive

noise marker variable. In the underwater acoustic receiving

signal, if the sound velocity is c, the amplitude isA, the sampling

frequency is fs, and the carrier frequency is fc. Then, the change

rate of any adjacent samples is:

∆ ≤
2A× fs × sin

(

π − πfs
fc

)

c
, (14)

and the length between the adjacent samples of the underwa-

ter acoustic signal is Lsimple =
c
fs

. Therefore, the impulsive

threshold is set to

Tnoise = Lsimple ×∆ = 2A× sin

(

π − πfs
fc

)

. (15)

2) Adaptive Window Size Determination: The performance

of the common median filters is limited by the proportion

of impulsive noise in the window. The filtering performance

declines with the increase in the proportion of impulsive noise.

According to this proportion, this paper adaptively adjusts the

size of the new window to reduce the proportion of impulsive

noise and effectively improve the denoising performance.

For the initial sliding window W , the length LW = 2n+ 1.

When the center point y(i) is impulsive noise, the number of

noise points in the window is calculated as:

Num(y(i)) =

k=n
∑

k=−n

N(i+ k). (16)

Then, the length of the new window Wnew is defined as:

LWnew
(y(i)) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2n+ 1, 0 ≤ Num(y(i)) < 4

4n+ 1, 4 ≤ Num(y(i)) < 8
...

...

(n+ 1)n+ 1, 2n− 2 ≤ Num(y(i)) < 2n+ 2

.
(17)

3) Signal Filtering: According to the size of new window

LWnew
(y(i)) and the impulsive markerN(i), the received signal

is filtered as follow. The impulsive noise is replaced by the

median in the new window, while the non-noise SOI remains

unchanged. Suppose yip(i) is an impulsive noise in Wnew, then

the other samples are:

wnew(i) = [w1(i), w2(i), . . ., w(LWnew−1)/2(i)]

= [y(i− (LWnew
− 1)/2), . . ., y(i− 1),

y(i+ 1), . . ., y(i+ (LWnew
− 1)/2)].

(18)

Sorting the signal points in wnew(i) in ascending order to

obtain:

rnew(i) = sort(wnew(i))

= [r1(i), r2(i), . . .rLWnew
(i)].

(19)

Then, the impulsive noise yip(i) is replaced as:

y′ip(i) = median(rnew(i)), (20)

where y′ip(i) is the filtered signal.

B. Wavelet Threshold Optimization Based on GDES-ABC

The steps involved in the proposed wavelet threshold method

are as follow. First, the appropriate wavelet basis function and the

number of decomposition layers are selected to decompose the

filtered signal y′ip(i), and the wavelet coefficients are obtained.

Then an appropriate threshold and the threshold function are

selected to shrink the wavelet coefficients. Finally, the estimated

signal s′(i) is reconstructed by inverse wavelet transform of the

processed wavelet coefficients.

To overcome the limitations of traditional wavelet threshold

method, this paper constructs a new threshold function and

optimizes the threshold parameters using the enhanced ABC

algorithm to improve the denoising performance.

1) Construction of a New Threshold Function: The threshold

function reflects the different processing strategies and the esti-

mation methods of wavelet coefficients, which directly affect the

final denoising effect. The common threshold function includes

hard and soft threshold functions. However, the hard threshold

function is discontinuous at the threshold, leading to serious

oscillation of the signal after reconstruction. While the soft

threshold function shrinks the large wavelet coefficients and

losses some information, leading to a deviation between the

reconstructed and the SOI. Therefore, many semi-soft thresh-

old functions have been proposed to determine a compromise

strategy between hard and soft threshold functions to avoid the

above-mentioned problems. Eq. (21) shows one of the semi-soft

threshold function:

⌢
wj,k =

{

sgn (wj,k) (|wj,k| − ∂ ∗ λ) , |wj,k| ≥ λ

0, |wj,k| < λ
, (21)

where wj,k and
⌢
wj,k denote the original and the processed

wavelet coefficients, respectively; λ is the threshold, and j and

k denote the kth coefficient of jth layer; sgn(·) is Signum

function and ∂ is the regulatory factor with 0 ≤ ∂ ≤ 1. Eq.

(21) denotes hard and soft threshold functions when ∂ = 0

and ∂ = 1, respectively. However, ∂ is usually set to a certain

value, resulting in the lack of adaptability, and still some fixed

deviations and discontinuities in the denoising process.

A reasonable threshold function needs to satisfy the continuity

of the input-output curve, the processing should relatively be

smooth, and the wavelet coefficient processing of the desired

signal should remain unchanged. Therefore, a new adaptive

threshold function is proposed in this paper as:

⌢
wj,k =
{

sgn (wj,k)
(

|wj,k| − |wj,k|η(λj−|wj,k|) ∗ λj

)

, |wj,k| ≥ λj

0, |wj,k| < λj

,

(22)

where η is the exponential factor having non-negative value; and

λj denotes the jth layer threshold, j = 1, 2, . . . , L, where L is

the number of decomposition layers.

According to the definition of continuity, it is easy to prove that

Eq. (22) is continuous in the ranges of (−∞,−λj), (−λj ,+λj),
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and (+λj ,+∞). When wj,k ≥ λj , Eq. (22) can be written as:

⌢
wj,k = wj,k − wj,k

η(λj−wj,k) ∗ λj . (23)

Therefore,

lim
wj,k→λj

+

⌢
wj,k = lim

wj,k→λj
+
wj,k − wj,k

η(λj−wj,k) ∗ λj

= λj − λj
η(λj−λj) ∗ λj = 0. (24)

When wj,k = λj ,
⌢
wj,k = 0. And when |wj,k| < λj , Eq. (22)

can be presented as
⌢
wj,k = 0, then

lim
wj,k→λj

−

⌢
wj,k = 0. (25)

Thus,

lim
wj,k→λj

+

⌢
wj,k = lim

wj,k→λj
−

⌢
wj,k = 0. (26)

It can be observed that Eq. (22) is continuous atwj,k = λj . When

wj,k < −λj , Eq. (22) can be written as:

⌢
wj,k = −

(

−wj,k − (−wj,k)
η(λj+wj,k) ∗ λj

)

. (27)

Therefore,

lim
wj,k→(−λj)

−

⌢
wj,k

= lim
wj,k→(−λj)

−
−
(

−wj,k − (−wj,k)
η(λj+wj,k) ∗ λj

)

= −
(

λj − λj
η(λj−λj) ∗ λj

)

= 0.

(28)

When |wj,k| ≤ λj ,
⌢
wj,k = 0, that is, limwj,k→(−λj)

+

⌢
wj,k =

0. Thus,

lim
wj,k→(−λj)

−

⌢
wj,k = lim

wj,k→(−λj)
+

⌢
wj,k = 0. (29)

And Eq. (22) is continuous at wj,k = −λj .

When wj,k → +∞,

lim
wj,k→+∞

⌢
wj,k

wj,k
= lim

wj,k→+∞
wj,k − wj,k

η(λj−wj,k) ∗ λj

wj,k

= 1 − λj ∗ lim
wj,k→+∞

wj,k
η(λj−wj)−1

= 1 − λj ∗ e
lim

wj→+∞
(η(λj−wj,k)−1) lnwj,k

= 1 − 0 = 1. (30)

When wj,k → −∞,

lim
wj,k→+∞

⌢
wj,k

wj,k
= lim

wj,k→+∞
wj,k − wj,k

η(λj−wj,k) ∗ λj

wj,k

= 1 − λj ∗ lim
wj,k→+∞

wj,k
η(λj−wj,k)−1

= 1 − λj ∗ e
lim

wj,k→+∞
(η(λj−wj,k)−1) lnwj,k

= 1 − 0 = 1.

(31)

Fig. 4. Different threshold functions, when threshold λ = 5.

Thus,

lim
wj,k→∞

⌢
wj,k − wj,k = 0. (32)

Therefore,
⌢
wj,k = wj,k is an asymptote of Eq. (22).

Fig. 4 compares the different threshold functions, when

threshold λ = 5. The horizontal and longitudinal axes represent

the original and the processed wavelet coefficients (ranging from

−10 to 10) obtained by threshold shrinkage, respectively. It can

be seen from the figure that the threshold function presented

in Eq. (22) is a compromise strategy between hard and soft

threshold functions. It has better continuity and smoothness,

while retaining larger wavelet coefficients. This means that the

threshold function of Eq. (22) is more fidelity to the SOI.

2) Threshold Parameters Optimization Based on GDES-

ABC: The traditional threshold estimation method based on

unified threshold depends on the estimation accuracy of noise

variance. When the threshold is set too small, the denoised signal

still contains noise. Otherwise, it will filter out the characteristics

of the SOI, resulting in the distortion of the reconstructed signal.

To improve the estimation accuracy of the threshold, λj and η
in Eq. (22) are regarded as unknown threshold parameters and

are optimized using the GDES-ABC algorithm to ensure the

denoising performance of the proposed algorithm.

a) Artificial bee colony algorithm: The ABC algorithm is

inspired by the honey-gathering behavior of bees in nature. It

abstracts the honey source into a point in the solution space,

and uses the amount of honey source as the fitness value of the

optimization problem. Therefore, the process of gathering honey

by bees is the process of searching for the optimal solution in the

solution space. The ABC algorithm mainly includes employed,

onlooker and scout bees. Thus, the algorithm mainly includes

four stages: initialization, employed bees, onlooker bees and

scout bees.

–Initialization stage: Suppose the solution space of the opti-

mization problem is D dimensional and the population size is
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SN . The population is denoted as:

Xi = [xi1, xi2, . . ., xiD], i = 1, 2, . . ., SN. (33)

The upper and the lower bounds of the solution are:

Ub = [Ub1, Ub2, . . ., UbD] (34)

and

Lb = [Lb1, Lb2, . . .LbD]. (35)

The initial solution of ABC algorithm is generated randomly,

and is expressed as:

xid = Lbd + (Ubd − Lbd) ∗ rand, (36)

where i = 1, 2, . . ., SN , d = 1, 2, . . ., D, rand is a random real

number between 0 and 1, and xid denotes the dth component of

solution Xi.

–Employed bees stage: Each employed bee looks for only

one honey source, and the process of finding the honey source

is random. The new honey source is based on the current honey

source field search:

vid = xid + φid(xid − xkd), (37)

where vid denotes the dth dimension of solution Vi, φid is a

random real number between −1 and 1, and xkd denotes a

randomly selected neighbor of xid, k ∈ {1, 2, . . ., SN}, k �= i.
After the new solution is generated, the population is updated

using the greedy selection strategy according to the fitness value.

The fitness value fiti of solution Xi is calculated by:

fiti =

{

1
1+fi
1 + |fi|

fi ≥ 0

otherwise
, (38)

where fi is the objective function value by bringing solution Xi

into the optimization problem.

According to the greedy selection strategy, if the fitness

value of the new solution Vi is larger than that of the current

solution Xi, then Vi is a better solution that replaces Xi, and

the population is updated. Otherwise, Vi is a worse solution,

and is abandoned, keeping the population unchanged while

the repeated value trial(i) adds 1, where trial(i) denotes the

number of repeated searches for bee i.
–Onlooker bees stage: The searching process of onlooker bees

is based on the honey source obtained by employed bees. The

onlooker bees generate new solutions using Eq. (37) according

to the selection probability paccept(i). Then the population is

updated using the greedy selection strategy. The selection prob-

ability paccept(i) is calculated by:

paccept(i) =
fiti

∑SN
j=1 fitj

. (39)

–Scout bees stage: When a solution is not improved within the

previously set number of searches (denoted as limit), this solu-

tion is abandoned. Then, a new solution is randomly generated

using Eq. (36) to replace the abandoned solution.

Although, the ABC algorithm has good convergence perfor-

mance, the random generation of the initial population leads to

the lack of diversity of the population, and the convergence speed

Algorithm 1: GDES-ABC Algorithm.

1: Initialization: Generate the initial population using Eqs. (40)-(42); set

SN , D, Ub, Lb, T0, K, pmax, pmin, limit, tmax; and t = 1;

2: while t <= tmax do

3: Calculate the center of a dynamic elite group with Eq. (45);

4: for i = 1 : SN do

5: Randomly select a solution Xt from the population;

6: Generate a new solution Vt with Eq. (44);

7: Evaluate the fitness value fitv of Vt, and fitx of Xt;

8: if fitv > fitx then

9: Xt = Vt, fitx > fitv , trial(t) = 0;

10: else if e−[fitv−fitx]/KTt < rand then

11: Xt = Vt, fitx > fitv , trial(t) = trial(t) + 1;

12: else

13: trial(t) = trial(t) + 1;

14: end if

15: end for

16: Update the center of the dynamic elite group with Eq. (45);

17: flag = 1;

18: for i = 1 : SN do

19: if flag = 1 then

20: Randomly select a solution Xt from the dynamic elite group;

21: end if

22: Generate a new solution Vt with Eq. (44);

23: Evaluate the fitness value fitv of Vt, and fitx of Xt;

24: if fitv > fitx then

25: Xt = Vt, fitx > fitv , trial(t) = 0, flag = 0;

26: else if e−[fitv−fitx]/KTt < rand then

27: Xt = Vt, fitx > fitv , trial(t) = trial(t) + 1, flag = 1;

28: else

29: trial(t) = trial(t) + 1, flag = 1;

30: end if

31: end for

32: Record the current optimal solution XGbest;

33: if trial(t) > limit then

34: Replace Xt by a new solution generated by Eq. (36);

35: trial(t) = 0;

36: end if

37: t = t+ 1; Tt = Tt−1 ∗ e−0.7Tt−1/σfit ;

38: end while

Output:The global optimal solution Xopt.

of the random neighborhood search method is slow. Moreover,

the update method based on greedy selection strategy directly

abandons the bad solutions, which significantly reduces the

development ability of the colony and makes the algorithm to fall

into local optimum that can result in poor convergence accuracy

and even non-convergence.

b) GDES algorithm: To overcome the shortcomings of the

ABC algorithm and obtain the optimal threshold parameters in

Eq. (22), the GDES-ABC algorithm is proposed in this paper

based on three improvement strategies. The pseudocode of the

proposed GDES-ABC algorithm is provided in Algorithm 1, and

the main improvements are summarized as follows.

–Population initialization based on good point set: The first

improvement strategy of the proposed GDES-ABC algorithm

is to initialize the population based on good point set. The

population initialization based on good point set can effectively

improve the diversity of the population and prevent the algorithm

from falling into a local optimum. The method of constructing
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good points is:

rk = deci

{

2 cos
2πk

p

}

, 1 ≤ k ≤ D, (40)

where p denotes the minimum prime number, and (p−
3)/2 ≥ D; D is the dimension of the solution; deci{·}
denotes obtaining the decimal, and rk denotes the good

points. Therefore, the construction method of good point set

[PSN (1), PSN (2), . . ., PSN (SN)]T is given by:

PSN (i) = {deci {r1 ∗ i} , . . ., deci {rD ∗ i}} , i = 1, . . ., SN,
(41)

where [·]T denotes the transpose and SN is the the population

size. Then, the initial population is obtained by:

Xi = Lb+ (Ub− Lb) ∗ PSN (i), i = 1, . . ., SN, (42)

where Ub and Lb are the upper and the lower bounds of the

solution, respectively.

–Neighborhood searching based on dynamic elite group:

The second improvement strategy of the proposed GDES-ABC

algorithm is to perform neighborhood search based on the

dynamic elite group. The dynamic elite group contains bet-

ter solutions in the population, and its size varies with the

number of iterations. Therefore, the neighborhood searching

based on dynamic elite group can effectively accelerate the

convergence speed and improve the searching efficiency. Ac-

cording to the fitness value, the dynamic elite group DXE =
[DXE1, DXE2, . . ., DXETelite]

T is constructed by the top

Telite = ceil(pElite ∗ SN) honey bees, where ceil(·) denotes

rounding up and pElite is the proportion of dynamic elite group

in the population, which is given by:

pElite = pmax +

(

tmax − t

tmax

)

∗ (pmin − pmax) , (43)

where pmax and pmin are the maximum and the minimum

values of pElite, respectively; tmax is the maximum number

of iterations and t is the current iteration number. It can be seen

from Eq. (43) that, in the early stage of the algorithm, both t
and pElite are small, and this elite group contains the best few

solutions. Therefore, the neighborhood searching method based

on this elite group is more decisive and the convergence speed

can be significantly accelerated. However, in the later stage of the

algorithm, both t and pElite are large, and this elite population

contains a large number of solutions from which some might be

poor solutions. Therefore, the population is more diverse, and

the ability to prevent falling into the local optimum and find the

global optimum is strengthened.

The improved neighborhood searching method based on the

dynamic elite group of GDES-ABC algorithm is given by:

vid = DXECd + φid(Gbestd − xkd), d = 1, 2, . . ., D, (44)

where φid is a random real number between −1 and 1, Gbest is

the global optimum, xkd is a randomly selected neighbor of xid,

and DXEC = [DXEC(1), DXEC(2), . . ., DXEC(D)] is a

center of the elite group, which is given by:

DXEC(d) =
1

Telite

Telite
∑

n=1

DXEnd, d = 1, 2, . . ., D. (45)

The neighborhood searching strategy based on the dynamic

elite group can be described as follows. For each neighborhood

search, the employed bees randomly search the neighborhood

with the same probability, and a new solution is generated using

Eq. (44). The onlooker bees search the neighbor randomly to

form the dynamic elite group and generate a new solution using

Eq. (44). For onlooker bees, if the new solution is better than the

previous one, it is selected for the next neighborhood search;

otherwise, a new onlooker bee in the dynamic elite group is

randomly selected in the next neighborhood search. This neigh-

borhood searching strategy is carried out in a random manner to

ensure the population diversity and avoid the invalid search.

–Simulated annealing selection mechanism: The third im-

provement strategy of the proposed GDES-ABC algorithm is

simulated annealing selection mechanism. According to a cer-

tain probability, the simulated annealing selection mechanism

accepts poor solutions that can effectively prevent the algorithm

from falling into a local optimum and enhance the ability of the

algorithm to search for the global optimum. Assume that the

current temperature is Tt at the tth iteration and the annealing

parameter is K, then a new solution Vt is generated using Eq.

(43) with fitness value fitv . The simulated annealing selection

mechanism is as follows: If fitv > fitx, the new solution is

accepted directly, where fitx is the fitness value of the current

solution; otherwise, the new solution is accepted according to

the acceptance probability p′accept that changes with the number

of iterations. The acceptance probability is calculated as:

p′accept = e
−[fitv−fitx]/KTt

< rand, (46)

where

Tt = Tt−1 ∗ e−ςTt−1/σfit , (47)

where ς is a constant and ς ≤ 1, which is usually set to 0.7, and

σfit is the standard deviation of fitness value of all solutions.

It can be seen from Eqs. (46)-(47) that, t is small and Tt is

high in the early stage of the algorithm. Hence, p′accept is high,

which implies that the algorithm accepts some poor solutions,

and the bee colony has strong development ability. However,

in the later stage of the algorithm, t becomes large, and Tt

gradually decreases. Hence, p′accept becomes smaller. Therefore,

the algorithm rejects the poor solutions, ensures the ability of the

algorithm to search for the optimal solution, and avoids invalid

search.

c) The fitness function: The MSE between the SOI and the

reconstructed signal can be used as the fitness function [33],

[34], [40]. Therefore, the optimal threshold parameter in Eq.

(22) is obtained by minimizing the MSE between the training

and the reconstructed signals using the GDES-ABC algorithm.

The fitness function is defined as:

fit = MSE(s, s′) =
1

N

N
∑

i=1

|s(i)− s′(i)|2, (48)

where s(i) and s′(i) are the training and the reconstructed

signals, respectively, and N is the length of the signal. It can be

seen that the threshold function shown in Eq. (22) is a function

of the threshold parameters λj and η. Once both λj and η
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TABLE I
BENCHMARK FUNCTIONS

are determined, Eq. (22) is also determined. Then, the wavelet

coefficients can be obtained after threshold shrinkage and the

denoising signal s′(i) can be reconstructed. Therefore, in the

GDES-ABC algorithm, the vector composed of λj and η can be

regarded as the location of the honey source, and the optimal

threshold parameters can be obtained by minimizing the fitness

function shown in Eq. (48).

IV. NUMERICAL SIMULATION

In the numerical simulation, the efficiency of the proposed

GDES-ABC algorithm, the wavelet threshold optimization

method based on GDES-ABC, and the underwater acoustic

signal denoising algorithm based on AWMF+GDES are verified.

A. Simulated Results of GDES-ABC

To verify and compare the performance of the GDES-ABC

algorithm with ABC, ECABC, PSO, and MPSO algorithms,

six benchmark functions were selected. Table I shows the six

benchmark functions, where f1 and f2 are the continuous uni-

modal function and the discontinuous step function, respec-

tively; f3 − f5 are the continuous multimodal functions. When

D ≤ 3, f6 is a unimodal function and when D > 3, f6 turns into

a multimodal function. For f1−f5, the optimal value is 0, while

the acceptable value is 1 × 10−8 that represents the satisfactory

solution of the function, and for f6, the optimal value is 0 too

while the acceptable value is 1 × 10−1. D is the dimension of

the solution. The simulations were performed using MATLAB

R2015b running on a computer with Intel i5-4570 processor and

4G memory.

Fig. 5 shows the convergence performances of different algo-

rithms on f1−f6. The parameter settings of GDES-ABC used

in simulations are shown in Table II, where the other parameters

of PSO, MPSO, ABC and ECABC algorithms are shown in

Table III. It can be seen from Fig. 5 that ABC, ECABC, GDES-

ABC, and MPSO algorithms obtain satisfactory solutions for

f1 where the convergence speed of the GDES-ABC algorithm

is at least 25% higher than the other algorithms. In addition,

when the iteration number t = 1000, the convergence precision

of GDES-ABC is at least 21% higher than the other algorithms.

TABLE II
PARAMETER SETTINGS OF GDES-ABC

TABLE III
PARAMETER SETTINGS OF PSO, MPSO, ABC AND ECABC

For f2, ABC, ECABC, GDES-ABC, and MPSO algorithms

obtain the global optimum where PSO algorithm falls into a local

optimum, and the convergence speed of GDES-ABC is at least

33% higher than the other algorithms. For f3, the GDES-ABC

algorithm obtains the global optimum at t = 300 while both PSO

and MPSO fall into local optimum, and the convergence speed

of GDES-ABC is at least 20% higher than the other algorithms.

For f4, only the GDES-ABC and the ECABC algorithms obtain

satisfactory solutions, and the convergence speed of GDES-ABC
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Fig. 5. Convergence performances of different algorithms on six different benchmark functions, f1 − f6. (a) f1. (b) f2. (c) f3. (d) f4. (e) f5. (f) f6.

TABLE IV
COMPLEXITIES AND AVERAGE RUNNING TIMES OF ABC, ECABC, AND GDES-ABC ALGORITHMS FOR THE 6 BENCHMARK FUNCTIONS f1−f6

is at least 23% higher than the ECABC. For f5, only the GDES-

ABC obtains the global optimum. For f6, only the GDES-ABC

and the ECABC algorithms obtain satisfactory solutions, and

the convergence speed of GDES-ABC is at least 66% higher

than the ECABC. When t = 1000, the convergence precision of

GDES-ABC is at least 73% higher than the ECABC. Overall, the

proposed GDES-ABC algorithm achieves better performance in

terms of convergence speed and convergence precision than the

other algorithms.

Fig. 5 shows that the convergence performances of ABC,

ECABC, and GDES-ABC algorithms are generally better than

PSO and MPSO algorithms. For further comparison, Table IV

only lists the computational complexities and the average run-

ning times of ABC, ECABC, and GDES-ABC algorithms for

f1−f6. Each algorithm was run for 50 times, and the average

running time was calculated for each function. The ABC al-

gorithm mainly includes population update and fitness calcu-

lation, and the computational complexity is O(D · SN). The

ECABC algorithm has the computational complexity of O(D ·
SN + SN · log(SN) + SN), which mainly lies in selecting

the elite population and computing the elite population center.

The computational complexity of the proposed GDES-ABC is

O(D · SN + SN · log(SN) + SN + 2 ·D + 1) and is mainly

in the population initialization based on good point set, the

neighborhood searching based on the dynamic elite group, and

the simulated annealing selection mechanism. It can be seen

form Table IV that the average running time of the GDES-ABC

algorithm is slightly longer than that of the ABC algorithm.

However, there is no significant difference in the average running

times of GDES-ABC and ECABC algorithms. Considering the

fact that the proposed GDES-ABC algorithm has higher com-

plexity than the other two algorithms, the average running time

of the proposed algorithm is acceptable.

B. Simulated Results of the Wavelet Threshold Optimization

Method Based on GDES-ABC

To verify the effectiveness of the proposed wavelet threshold

optimization method based on GDES-ABC in removing the
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Fig. 6. Comparison of output SNRs, RMSEs, and NSRs of denoising two benchmark signals using different denoising algorithms. (a) Output SNR of Bumps.
(b) RMSE of Bumps. (c) NSR of Bumps. (d) Output SNR of Doppler. (e) RMSE of Doppler. (f) NSR of Doppler.

Gaussian noise, its performance in denoising the two bench-

mark signals, named as Bumps and Doppler, is compared with

the wavelet semi-soft threshold function with unified threshold

method (Semi-soft), Bayes shrink method with soft threshold

function (Soft-BS), wiener filter (WF), ITF-DTCWT, and the

wavelet threshold optimization methods based on MPSO and

ECABC (MPSO and ECABC). The noise is AWGN. The output

SNR, RMSE, and NSR are used to evaluate the performance of

denoising and are defined as:

SNR = 10log10

∑N
i=1 s

2(i)
∑N

i=1 [s(i)− s′(i)]2
, (49)

RMSE =

√

√

√

√

1

N

N
∑

i=1

(s(i)− s′(i))2, (50)

NSR =

∑N
i=1 (s(i)− s̄) (s′(i)− s̄′)

√

∑N
i=1 [s(i)− s̄]2 ×∑N

i=1 [s
′(i)− s̄′]2

, (51)

where s(i) and s′(i) are the SOI and the reconstructed signal, re-

spectively; s̄ and s̄′ are the means of s(i) and s′(i), respectively;

and N is the length of the signal.

Fig. 6 compares the output SNRs, RMESs, and NSRs of

denoising the two benchmark signals using different algorithms.

The input SNR is defined as Eq. (3), ranging from −10 dB to

30 dB. Where the wavelet basis function used in this paper

is sym7, and the number of decomposition layers is L = 5.

The orders of WF is 100. The ITF-DTCWT performs a 4-

level transform on the noising signal using the 13,19-tap fil-

ters for level 1 and the Q-shift 14-tap filters for level 2. The

lengths of samples and training signals are Nsnap = 1024,

and Ntrain = 100, respectively, while the maximum number

of iterations is 300. It can be seen from the figures that for

the two different benchmark signals, the proposed GDES-ABC

method yields better performance than the other algorithms in

terms of output SNRs, RMSEs, and NSRs. Moreover, when

the input SNR is small, the noise component is large, and

it is difficult for most algorithms to extract the signal com-

ponent. However, the proposed threshold function has better

differentiability and continuity, and can extract the SOI from

the noise environment more clearly than the other algorithms,

obtaining a better denoising performance. When the input SNR

continues to increase, the signal energy is enhanced, and the

algorithms can clearly distinguish between noise and signal

energies to obtain better denoising performance. Moreover, the

performance of the wavelet threshold optimization methods

is stronger than that of non-optimization algorithms. Due to

the superior optimization ability of the GDES-ABC algorithm,

the proposed wavelet threshold optimization method obtains

the best performance. Besides, when the input SNR is small, the

WF is sensitive to noise, and it is difficult to obtain satisfactory

denoising performance. With the increase of the input SNR,

the performance of WF has improves rapidly, even surpassing

the MPSO and ITF-DECWT. However, the performance of the

Soft-BS increases first with the increase in the input SNR and
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Fig. 7. Comparison of output SNRs, RMSEs, and NSRs of different denoising algorithms under different numbers of sample points. (a) Output SNR. (b) RMSE.
(c) NSR.

Fig. 8. Comparison of output SNRs, RMSEs, and NSRs under narrowband Gaussian noise using different denoising algorithms. (a) Output SNR. (b) RMSE.
(c) NSR.

then tends to be stable. This is because Soft-BS uses a soft

threshold function to process wavelet coefficients, leading to a

deviation between the reconstructed and the original signals and

achieving stable performance. Although the threshold function

of the ITF-DECWT method has continuity and divergence,

it lacks self-adaptability, resulting in poor denoising perfor-

mance. Furthermore, for Bumps signal, the output SNRs of

the GDES-ABC algorithm are slightly higher than the other

algorithms when input SNR ≤ 15 dB. However, the output

SNRs of the GDES-ABC algorithm increase rapidly and become

significantly higher than the other algorithms for input SNR >
15 dB. When the input SNR = 30 dB, the output SNR of the

GDES-ABC method is 4.09 dB higher than the other algorithms.

Overall, the efficient optimization ability of the GDES-ABC

algorithm enables the proposed algorithm to achieve the highest

output SNR and NSR and the minimum RMSE compared with

the other algorithms for the two benchmark signals.

Fig. 7 compares the output SNRs, RMSEs, and NSRs of the 8

algorithms with different numbers of sample points. Where the

Bumps is used as the SOI, the input SNR = 5 dB, Ntrain= 100,

and the number of sample points Nsnap ranges from 29 to 215. It

can be seen from Fig. 7 that the proposed algorithm obtains

the highest output SNR and NSR and the minimum RMSE

compared to the other algorithms.The denoising performant of

most algorithms improves with the increase in Nsnap. However,

the performance of the WF gradually decreases as the number

of sample points increases. The reason is that the order of the

WF cannot meet the demand for a large number of sample

points, and the denoising performance decreases. On the other

hand, the proposed algorithm can obtain the best performance

when the number of sample points is small, indicating that

the proposed algorithm is more suitable for underwater sparse

channel compared with other algorithms.

To test the robustness of the wavelet threshold optimization

method based on GDES-ABC, Fig. 8 shows the output SNRs,

RMSEs, and NSRs of different denoising algorithms with the

input SNR under narrowband Gaussian noise. The parameters of

each algorithm are similar to the parameters mentioned above.

Ntrain = 100, andNsnap = 1024. It can be seen from Fig. 8 that

the output SNR and NSR of the wavelet threshold optimization

methods such GDES-ABC, ECABC, MPSO, are lower and the

RMSEs are smaller than that of other algorithms when input

SNR > 10 dB. The reason is that the wavelet coefficient of

the narrowband noise is relatively larger, and does not obey the

Gaussian distribution when the input SNR is small. Thus, it

is difficult for these methods to estimate the optimal threshold
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Fig. 9. Comparison of output SNRs, RMSEs, and NSRs of three different wavelet threshold optimization methods under different numbers of iterations.
(a) Output SNR. (b) RMSE. (c) NSR.

parameters. Among them, Soft-BS and ITF-DTCWT can obtain

better threshold by using Bayesian estimation method and the

improved threshold determination method, respectively, to ob-

tain better performance. However, when the input SNR> 10 dB,

the performances of the wavelet threshold optimization methods

are better than that of non-optimization algorithms. The reason

is that, with the increase of input SNR, the wavelet coefficient

from the SOI is larger than that of the narrowband noise. In

this case, these methods can obtain better threshold parame-

ters and better performance. Although, the performance of the

GDES-ABC algorithm is poor when the input SNR is small, it

still achieves the best performance among the wavelet threshold

optimization methods. In addition, when the input SNR is large,

the GDES-ABC algorithm achieves the best performance in all

algorithms, indicating that the proposed algorithm has a certain

degree of adaptability to remove the narrowband noise.

Fig. 9 shows the comparison of output SNRs, RMSEs, and

NSRs of three wavelet threshold optimization methods under

different numbers of iterations. Where the Bumps is used as the

SOI, the input SNR = 5 dB, Ntrain= 100, and Nsnap = 1024.

It can be seen from the figure that the output SNRs and NSRs

of the three methods improve with the increase in the number

of iterations. Meanwhile, the proposed algorithm obtains the

highest output SNR and NSR compared with the other methods.

Moreover, when the number of iterations reaches 100, the per-

formance of all three wavelet threshold optimization methods

does not stabilize. It can be inferred that the performance of the

three methods will be improved with the increase in numbers

of iterations. These results are consistent with the convergence

performance analysis of the optimization algorithm presented in

section IV-A and further validate that the proposed GDES-ABC

algorithm has a better performance in terms of convergence

speed and convergence precision than the other algorithms.

C. Simulated Results of the Underwater Acoustic Signal

Denoising Algorithm Based on AWMF+GDES

In underwater acoustic communication, QPSK and 16QAM

signals are widely used. These signals are considered as the SOI

in this paper, and the underwater acoustic noise is obtained by

combining the AWGN with the non-Gaussian impulsive noise

shown in Eqs. (2) and (8), respectively. The performance of

TABLE V
PARAMETER SETTINGS OF AWMF+GDES

the proposed underwater acoustic signal denoising algorithm

based on AWMF+GDES is presented and compared with differ-

ent algorithms obtained by combining AWMF, with Semi-soft,

MSSA, MPSO, and ECABC.

Fig. 10 shows the comparison of output SNRs, RMSEs, and

NSRs (when input MSNR = 20 dB) after denoising QPSK and

16QAM signals using the proposed AWMF+GDES, the AWMF,

the AWMF+MPSO, the AWMF+ECABC, the AWMF+Semi-

soft, the AWMF+MSSA, and the SMF methods. The parameter

settings of the proposed algorithm used in the simulations are

shown in Tables II and V. It can be seen that for both QPSK

and 16QAM signals, the output SNRs and NSRs of all the

7 algorithms increase at first with the increase in the input

SNR, and then tend to saturate. While the RMSEs of all the

7 algorithms gradually decrease and tend to flatten. The reason

for this is that both the non-Gaussian impulsive noise and the

Gaussian noise are strong when MSNR = 5 dB and input SNR

is small. Therefore, the SOI is blurred by the strong underwater

acoustic noise, and the performance of all denoising algorithms

is poor. As the input SNR gradually increases, the power of the

SOI also increases. Thus, the denoising algorithms can separate

SOI more clearly, and the performance increases accordingly. It

can be seen from the two curves obtained by AWMF and SMF

that, the proposed AWMF obtains higher output SNR and NSR

and a smaller RMSE than the SMF due to the ability to adaptively

adjust the size of the median filter window. In addition, the

performance of the optimized denoising algorithms is better

than that of the non-optimized algorithms. This shows that

the optimized denoising algorithm can effectively improve the
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Fig. 10. Comparison of output SNRs, RMSEs and NSRs as a function of the input SNR (when input MSNR = 20 dB) after denoising QPSK and 16QAM signals
using 7 different algorithms. (a) Output SNR of QPSK. (b) RMSE of QPSK. (c) NSR of QPSK. (d) Output SNR of 16QAM. (e) RMSE of 16QAM. (f) NSR of
16QAM.

denoising performance of the traditional denoising algorithm.

Moreover, the proposed AWMF+GDES algorithm obtains the

highest output SNRs for QPSK and 16QAM signals when the

input SNR > −5 dB and SNR > −10 dB, respectively. It can

be seen that the proposed AWMF+GDES algorithm is more

suitable for denoising the 16QAM signal, which means it is more

suitable for high-speed underwater acoustic communication.

Fig. 11 shows the comparison of output SNRs, RMSEs, and

NSRs as a function of the input MSNR (when input SNR =
5 dB) using 7 different algorithms. It can be seen that for

each SOI, the output SNRs, RMSEs, and NSRs of all the 7

algorithms gradually increase with the increase in the input

MSNR, and the NSRs tend to saturate. However, the RMSEs of

all the 7 algorithms gradually increase faster with the increase

in the input MSNR. The reason is that the amplitude of the

SOI is getting larger with the increase in the input MSNR and

the RMSEs after denoising are also increasing. Overall, the

proposed AWMF+GDES algorithm obtains the highest output

SNRs and NSRs, and the minimum RMSEs than the other 6

algorithms. It means that the proposed AWMF+GDES algorithm

can obtain better performance for deniosing the underwater

acoustic signals.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed underwater

acoustic signal denoising algorithm is evaluated with real data

collected during two sea trials. The first sea trial was per-

formed in a shallow-water acoustic channel at Qingdao landing

stage, Qingdao, China, on August 24, 2020. The depth of the

experiment field was about 4 m. The signals were transmitted

between two transducers under the bridge. Both the transducers

were suspended at a depth of 2 m. The average distance between

the transducers was 60 m. The second sea trial was performed

in a shallow-water acoustic channel at Jiaozhou Bay, Qingdao,

China, on September 22, 2020, and the average distance between

the transducers is 120 m. The depth of the experiment field was

about 30 m. The two transducers were carried on two fishing

boats. Both the transducers are suspended at a depth of 4 m

under the boats. The modulation format during the two sea trials

was BPSK with a bit rate of 3.5 k bps and a carrier frequency of

14 kHz.

The algorithm parameters of each algorithm are similar to the

numerical simulation presented in Section IV. Fig. 12 shows the

denoising results of the proposed AWMF+GDES algorithm for

a BPSK signal at the two sea trials. It can be seen that both the

original signals are blurred by the underwater acoustic noise.

When the average distance between the transducers was 60 m,

there was a small amount of non-Gaussian impulsive noise. And

when the average distance between the transducers was 120 m,

the BPSK signal was seriously blurred by the non-Gaussian

impulsive noise. However, after using the proposed algorithm,

most of the noise is eliminated, and the denoised signals retain

detail information of the original signals.

Table VI compares the output SNRs, RMSEs and NSRs

obtained by different methods during the two sea trials. When

the average distance between transducers was 60 m, the SNRs,

RMSEs, and NSRs obtained by each algorithm were similar. The

reason is that the SOI was less affected by the underwater noise

because the average distance between the transducers was short.
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Fig. 11. Comparison of output SNRs, RMSEs, and NSRs as a function of the input MSNR (when input SNR = 5 dB) after denoising QPSK and 16QAM signals
using 7 different algorithms. (a) Output SNR of QPSK. (b) RMSE of QPSK. (c) NSR of QPSK. (d) Output SNR of 16QAM. (e) RMSE of 16QAM. (f) NSR of
16QAM.

Fig. 12. Denoising of the BPSK signal collected during two sea trials using the proposed AWMF+GDES. (a) 60 m. (b) 120 m.

TABLE VI
COMPARISON OF OUTPUT SNRS, RMSES, AND NSRS OBTAINED BY DIFFERENT METHODS DURING TWO SEA TRIALS
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Therefore, all the algorithms obtained better performance due

to the strong SOI, and the output SNR reached 17 dB. However,

when the average distance between transducers was 120 m, the

denoising performance of SMF and AWMF+Semi-soft dropped

sharply, and even the reconstruction of the SMF algorithm failed.

In addition, the optimized denoising algorithm is better than

the non-optimized algorithm in terms of output SNR, RMSE,

and NSR, which is consistent with the numerical simulation

presented in Section IV. Thus, the algorithms proposed in this

paper can obtain the best denoising performance. Overall, the

obtained results show that the proposed underwater acoustic

signal denoising algorithm can obtain a satisfactory performance

for underwater acoustic signal denoising.

VI. CONCLUSION

In this paper, a novel underwater acoustic signal de-

noising method, named as AWMF+GDES, is proposed for

Gaussian/non-Gaussian impulsive additive noise for underwater

acoustic SISO channel. In the proposed method, the AWMF

is used to suppress the non-Gaussian impulsive noise, and the

wavelet threshold optimization algorithm based on GDES-ABC

is used to suppress the Gaussian noise. The numerical sim-

ulations and the experimental results show that the proposed

AWMF+GDES algorithm outperforms the existing algorithms

and obtains a better performance. Overall, the proposed algo-

rithm is able to achieve better denoising effect and retain the

information of the original underwater acoustic signal than the

other methods.
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