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A NOVEL UNSTRUCTURED MESH FINITE ELEMENT
METHOD FOR SOLVING THE TIME-SPACE

FRACTIONAL WAVE EQUATION ON A
TWO-DIMENSIONAL IRREGULAR CONVEX DOMAIN

Wenping Fan 1, Fawang Liu 2, Xiaoyun Jiang 3, Ian Turner 4

Abstract
Most existing research on applying the finite element method to discretize
space fractional operators is studied on regular domains using either uni-
form structured triangular meshes, or quadrilateral meshes. Since many
practical problems involve irregular convex domains, such as the human
brain or heart, which are difficult to partition well with a structured mesh,
the existing finite element method using the structured mesh is less effi-
cient. Research on the finite element method using a completely unstruc-
tured mesh on an irregular domain is of great significance. In this paper, a
novel unstructured mesh finite element method is developed for solving the
time-space fractional wave equation on a two-dimensional irregular convex
domain. The novel unstructured mesh Galerkin finite element method is
used to discretize in space and the Crank-Nicolson scheme is used to dis-
cretize the Caputo time frational derivative. The implementation of the
unstructured mesh Crank-Nicolson Galerkin method (CNGM) is detailed
and the stability and convergence of the numerical scheme are analysed.
Numerical examples are presented to verify the theoretical analysis. To
highlight the ability of the proposed unstructured mesh Galerkin finite ele-
ment method, a comparison of the unstructured mesh with the structured
mesh in the implementation of the numerical scheme is conducted. The pro-
posed numerical method using an unstructured mesh is shown to be more
effective and feasible for practical applications involving irregular convex
domains.
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1. Introduction

In recent years, fractional calculus has attracted great attention as a
useful approach for modelling a range of anomalous transport phenomena
due to its excellent performance in describing phenomena and processes
with memory and hereditary properties. Fractional differential equations
have been widely used to model important applications in various fields,
such as physics, chemistry, biology, polymer rheology, viscoelastic mate-
rials, and control theory [22, 17, 1, 18, 21]. With the rapid development
of fractional calculus, extensive research has been carried out on the im-
plementation of efficient numerical methods, including the finite difference
[11, 26, 5, 25, 15], the finite element [13, 19, 29], the finite volume [12, 16],
and spectral methods [30, 26].

The finite element method has been demonstrated to be a useful nu-
merical tool for solving fractional differential equations involving space frac-
tional operators. Zhao et al. [28] considered the finite element method for
two-dimensional space-fractional advection-dispersion equations. Zhuang
et al. [32] proposed two numerical methods for a new one-dimensional
space-fractional Boussinesq equation based on the finite volume and finite
element methods, respectively. Choi et al. [6] studied the finite element
solutions for a one-dimensional space fractional diffusion equation with a
nonlinear source term. Bu et al. [3] considered a class of two-dimensional
space and time fractional Bloch-Torrey equations with the time fractional
derivative order defined between 0 and 1 using the finite element method
implemented on a structured mesh. Zhu et al. [31] considered a fully
discrete finite element method for the two-dimensional nonlinear Fisher’
equation with Riesz fractional derivatives in space.

However, most existing research on applying the finite element method
to fractional PDEs is studied on regular domains using either uniform struc-
tured triangular meshes, or quadrilateral meshes. Since many practical
problems involve irregular convex domains, such as the simulation of bi-
ological processes evolving in the human brain or heart, research on the
finite element method using a completely unstructured mesh on an irregu-
lar domain is of great significance.

In this paper, we consider the two-dimensional time-space fractional
wave equation on an irregular convex domain Ω:





C
0 Dγ

t u = Kx
∂2αu
∂|x|2α + Ky

∂2βu
∂|y|2β + f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = ψ0(x, y), (x, y) ∈ Ω,
ut(x, y, 0) = ψ1(x, y), (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ],

(1.1)
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Figure 1.1. A convex domain Ω with boundaries
xL(y), xR(y), yD(x), yU (x).

where 1 < γ < 2, 1/2 < α, β < 1, Kx > 0,Ky > 0. As shown in Fig.
1.1, an irregular convex domain Ω is defined as Ω = {(x, y)|xL(y) ≤ x ≤
xR(y), yD(x) ≤ y ≤ yU (x)}, where xL(y), xR(y) are the left and right
boundaries of Ω, and yD(x), yU (x) are the lower and upper boundaries
of Ω. The time fractional derivative is defined in the Caputo sense
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C
0 Dγ

t u =
1

Γ(n− γ)

∫ t

0
(t−s)n−1−γ

(
d

ds

)n

u(x, y, s)ds, n−1 < γ < n, n ∈ N.

(1.2)
The Riesz space fractional derivatives ∂2αu

∂|x|2α and ∂2βu
∂|y|2β are defined [20] by

∂2αu(x, y)
∂|x|2α

= −cα

(
xD2α

L u(x, y) + xD2α
R u(x, y)

)
, (1.3)

∂2βu(x, y)
∂|y|2β

= −cβ

(
yD

2β
D u(x, y) + yD

2β
U u(x, y)

)
, (1.4)

where cα = 1
2 cos(απ) , cβ = 1

2 cos(βπ) , and the Riemann-Liouville fractional
derivative operators with n− 1 < µ < n are defined as

xDµ
Lu(x, y) =

1
Γ(n− µ)

∂n

∂xn

∫ x

xL(y)
(x− s)n−µ−1u(s, y)ds, (1.5)

xDµ
Ru(x, y) =

(−1)n

Γ(n− µ)
∂n

∂xn

∫ xR(y)

x
(s− x)n−µ−1u(s, y)ds, (1.6)

yD
µ
Du(x, y) =

1
Γ(n− µ)

∂n

∂yn

∫ y

yD(x)
(y − s)n−µ−1u(x, s)ds, (1.7)

yD
µ
Uu(x, y) =

(−1)n

Γ(n− µ)
∂n

∂yn

∫ yU (x)

y
(s− y)n−µ−1u(x, s)ds. (1.8)

The existing finite element method used to discretize space fractional
operators is designed for regular domains, such as Ω = [a, b]× [c, d], where
a, b, c, d are constants. Using a structured mesh to partition the regular
domain, the nodes and elements in the partition can be numbered according
to a certain law. Then, the elements in the partition can be divided into
two kinds, one is the odd elements, and the other is the even elements. As
a result, the computation of the fractional derivative operators can also be
divided into two similar cases, one to treat the odd elements and the other
to treat the even elements [3]. By optimising the numerical algorithm to
take advantage of the structured property of the mesh, the implementation
of the numerical scheme can be efficient and easy.

However, different from the regular domain, an irregular domain will
have more complex boundaries, and it is difficult to partition well using a
structured mesh. In view of this, an unstructured mesh will be much more
efficient in the implementation of the finite element method for solving frac-
tional partial differential equations on irregular domains. As a direct result
of the non-regular locations of the nodes and elements in the unstructured
partition, the implementation of the numerical method will be much more
challenging. For the finite element method using an unstructured mesh,
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the existing finite element scheme using a structured mesh is invalid. The
main contribution of this research is to develop a new discretization proce-
dure using the finite element method intended for use on both regular and
irregular domains.

Hence, in this paper, a novel unstructured mesh finite element method is
derived for solving the two-dimensional time-space fractional wave equation
(1.1) defined on an irregular convex domain. The Crank-Nicolson method
is used for the temporal discretization. To discretize in space, the Galerkin
finite element method using a completely unstructured mesh is applied.
The stability and convergence of the numerical scheme are discussed. To
verify the theoretical analysis, two numerical examples on different convex
domains are studied. Furthermore, to highlight the ability of the unstruc-
tured mesh compared with the structured mesh in the implementation of
the numerical scheme, a comparison of the accuracy and the computational
cost between the two kinds of partition is studied.

The rest of this paper is organized as follows. In Section 2, some def-
initions and lemmas are given. In Section 3, the Crank-Nicolson Galerkin
method (CNGM) for the two-dimensional time-space fractional wave equa-
tion is derived. The implementation of the numerical scheme using an
unstructured mesh is detailed in Section 4. In Section 5, the stability and
convergence of the numerical scheme are discussed. Finally, two numerical
examples are presented in Section 6 to verify the theoretical analysis. A
comparison between the structured mesh and the unstructured mesh is also
studied in Section 6 to show the ability of the unstructured mesh in the
implementation of the numerical scheme.

2. Preliminaries

In this section, we need to recall some theories that has been studied
previously by Ervin and Roop [9, 10], Bu et al. [4, 2], and Zhu et al.
[31]. For a convex domain Ω ⊂ R2 shown in Fig. 1.1, resulting from
its irregularity, with xmin = min

(x,y)∈Ω
xL(y), xmax = max

(x,y)∈Ω
xR(y), ymin =

min
(x,y)∈Ω

yD(x) and ymax = max
(x,y)∈Ω

yU (x), we denote the inner product and

L2-norm as

(u, v)L2(Ω) :=
∫

Ω
uvdΩ =

∫ ymax

ymin

∫ xR(y)

xL(y)
u(x, y)v(x, y)dxdy,

=
∫ xmax

xmin

∫ yU (x)

yD(x)
u(x, y)v(x, y)dydx,

(2.1)

‖u‖L2(Ω) = ((u, u)L2(Ω))
1/2. (2.2)
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Definition 2.1. ([10, 4, 31]) (Left fractional derivative space). For
µ > 0, we define the semi-norm

|u|Jµ
L(Ω) :=

(∥∥
xDµ

Lu
∥∥2

L2(Ω)
+

∥∥
yD

µ
Du

∥∥2

L2(Ω)

) 1
2
, (2.3)

and norm

‖u‖Jµ
L(Ω) :=

(
‖u‖2

L2(Ω) + |u|2
Jµ

L(Ω)

) 1
2
, (2.4)

where Jµ
L(Ω), Jµ

L,0(Ω) denote the closure of C∞(Ω), C∞
0 (Ω) with respect to

‖ · ‖Jµ
L(Ω).

Definition 2.2. ([10, 4, 31]) (Right fractional derivative space). For
µ > 0, we define the semi-norm

|u|Jµ
R(Ω) :=

(∥∥
xDµ

Ru
∥∥2

L2(Ω)
+

∥∥
yD

µ
Uu

∥∥2

L2(Ω)

) 1
2
, (2.5)

and norm

‖u‖Jµ
R(Ω) :=

(
‖u‖2

L2(Ω) + |u|2
Jµ

R(Ω)

) 1
2
, (2.6)

where Jµ
R(Ω), Jµ

R,0(Ω) denote the closure of C∞(Ω), C∞
0 (Ω) with respect to

‖ · ‖Jµ
R(Ω).

Definition 2.3. ([10, 4, 31]) (Fractional Sobolev space). For µ > 0,
we define the semi-norm

|u|Hµ(Ω) := ‖|ξ|µF(u)(ξ)‖L2(Ω) (2.7)

and norm

‖u‖Hµ(Ω) :=
(
‖u‖2

L2(Ω) + |u|2Hµ(Ω)

) 1
2
, (2.8)

where F(u)(ξ) is the Fourier transformation of the function u, and Hµ(Ω),
Hµ

0 (Ω) denote the closure of C∞(Ω), C∞
0 (Ω) with respect to ‖ · ‖Hµ(Ω).

Definition 2.4. ([10, 4, 31]) (Symmetric fractional derivative space).
For µ > 0, µ 6= n− 1

2 , n ∈ N, we define the semi-norm

|u|Jµ
S (Ω) :=

(∣∣∣
(
xDµ

Lu, xDµ
Ru

)
L2(Ω)

∣∣∣ +
∣∣∣
(
yD

µ
Du, yD

µ
Uu

)
L2(Ω)

∣∣∣
) 1

2
, (2.9)

and norm

‖u‖Jµ
S (Ω) :=

(
‖u‖2

L2(Ω) + |u|2
Jµ

S (Ω)

) 1
2
, (2.10)

where Jµ
S (Ω), Jµ

S,0(Ω) denote the closure of C∞(Ω), C∞
0 (Ω) with respect to

‖ · ‖Jµ
S (Ω).
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Lemma 2.1. ([10]) If µ > 0, µ 6= n − 1
2
, n ∈ N, then Jµ

L,0(Ω), Jµ
R,0(Ω),

Jµ
S,0(Ω) and Hµ

0 (Ω) are equivalent with equivalent norms and semi-norms.

Lemma 2.2. ([10]) If u ∈ Jµ
L,0(Ω), 0 < η < µ, then we have

‖u‖L2(Ω) ≤ C1|u|Jµ
L(Ω), |u|Jη

L(Ω) ≤ C
′
1|u|Jµ

L(Ω). (2.11)

If u ∈ Jµ
R,0(Ω), 0 < η < µ, then we have

‖u‖L2(Ω) ≤ C2|u|Jµ
R(Ω), |u|Jη

R(Ω) ≤ C
′
2|u|Jµ

R(Ω), (2.12)

where C1, C
′
1, C2, C

′
2 are some positive constants independent of u. Similar

results can be followed for the fractional Sobolev space Hµ
0 (Ω) with µ 6=

n− 1/2, n ∈ N.

Lemma 2.3. ([10]) If µ > 0, µ 6= n− 1
2
, n ∈ N, u ∈ Jµ

L,0(Ω) ∩ Jµ
R,0(Ω),

then there exist positive constants C1, C ′
1 and C2, C ′

2 independent of u such
that

C1|u|Hµ(Ω) ≤ |u|Jµ
L(Ω) ≤ C ′

1|u|Hµ(Ω), (2.13)

C2|u|Hµ(Ω) ≤ |u|Jµ
R(Ω) ≤ C ′

2|u|Hµ(Ω). (2.14)

Lemma 2.4. ([23]) For u ∈ Hµ
0 (Ω), 0 < η < µ, then there exist positive

constants C1, C2, C3, C4 independent of u such that

‖u‖L2(Ω) ≤ C1‖xDη
Lu‖L2(Ω) ≤ C2‖xDµ

Lu‖L2(Ω), (2.15)

‖u‖L2(Ω) ≤ C3‖yD
η
Du‖L2(Ω) ≤ C4‖yD

µ
Du‖L2(Ω). (2.16)

Lemma 2.5. ([27]) If µ ∈ (1, 2), u, v ∈ Jµ
L,0(Ω) (or Jµ

R,0(Ω)), then

(xDµ
Lu, v)L2(Ω) = (xD

µ/2
L u, xD

µ/2
R v)L2(Ω),

(yD
µ
Du, v)L2(Ω) = (yD

µ/2
D u, yD

µ/2
U v)L2(Ω),

(xDµ
Ru, v)L2(Ω) = (xD

µ/2
R u, xD

µ/2
L v)L2(Ω),

(yD
µ
Uu, v)L2(Ω) = (yD

µ/2
U u, yD

µ/2
D v)L2(Ω).

The proofs of the lemmas can be found in the corresponding references
by considering u to be a zero-extension outside the domain Ω. Throughout
the proceeding sections, we denote (·, ·) = (·, ·)L2(Ω), ‖ · ‖0 = ‖ · ‖L2(Ω).
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3. Crank-Nicolson Galerkin method for the two-dimensional
time-space fractional wave equation

We first use the Crank-Nicolson finite difference scheme to approximate
the Caputo time fractional derivative C

0 Dγ
t u (1 < γ < 2). Let τ = T/N be

the time step, tn = nτ, n = 0, 1, ..., N. Denote u(x, y, tn) = un, un−1/2 =
un+un−1

2 , δtu
n−1/2 = un−un−1

τ .
For 1 < γ < 2, n = 1, 2, ...N , by [24], we have the Crank-Nicolson

discrete scheme

C
0 Dγ

t un−1/2 =
τ1−γ

Γ(3− γ)

[
bγ
0δtu

n−1/2 −
n−1∑

j=1

(bγ
n−1−j − bγ

n−j)δtu
j−1/2 − bγ

n−1u
0
t

]

+ Rγ
n,

(3.1)

where bγ
j = (j + 1)2−γ − j2−γ , j = 0, 1, ..., n− 1 satisfy bγ

0 = 1,
∑n

j=1 bγ
n−j =

n2−γ ,
∑n−1

j=1 (bγ
n−1−j − bγ

n−j) + bγ
n−1 = 1. The truncation error is given by

|Rγ
n| ≤ C max

0≤t≤T

∣∣∣∣
∂3u(x, y, t)

∂t3

∣∣∣∣ τ3−γ . (3.2)

For n ≥ 1, we denote

∇γ
t un−1/2 =

τ1−γ

Γ(3− γ)

[
bγ
0δtu

n−1/2 −
n−1∑

j=1

(bγ
n−1−j − bγ

n−j)δtu
j−1/2 − bγ

n−1u
0
t

]
,

(3.3)
then we obtain the variational formulation of problem (1.1): find un ∈ V ,
such that

(∇tγun−1/2, v) + B(un−1/2, v) = (fn−1/2, v), ∀v ∈ V, t ∈ (0, T ],(3.4)
(u0, v) = (ψ0, v), ∀v ∈ V, (3.5)
(u0

t , v) = (ψ1, v), ∀v ∈ V, (3.6)

where V = Hα
0 (Ω) ∩Hβ

0 (Ω). The bilinear form B(u, v) is derived as

B(u, v) =Kxcα

{
(xDα

Lu, xDα
Rv) + (xDα

Ru, xDα
Lv)

}

+ Kycβ

{
(yD

β
Du, yD

β
Uv) + (yD

β
Uu, yD

β
Dv)

}
.

(3.7)

Assume that {Th} is a family of unstructured triangulations of domain
Ω and h is the maximum diameter of the triangular elements in Th. The
conforming finite element space Vh ∈ V is defined as

Vh = {vh|vh ∈ C(Ω) ∩ V, vh|E ∈ Ps(E), ∀E ∈ Th}, (3.8)

where Ps(E) is the set of polynomials with degree at most s in element E.
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Let un
h be the finite element solution at time t = tn, then the fully dis-

crete Crank-Nicolson and Galerkin method (CNGM) for the time-space
fractional wave equation can be expressed as: find un

h ∈ Vh for n =
1, 2, ..., N such that

(∇γ
t u

n−1/2
h , vh) + B(un−1/2

h , vh) = (fn−1/2, vh), ∀vh ∈ Vh, (3.9)

and {
u0

h = Pψ0(x, y),
(u0

h)t = Pψ1(x, y), (3.10)

where P : L2(Ω) → Vh is a projection operator.
Inserting Eq.(3.3) into Eq.(3.9), we obtain for n > 1,

2$(un
h, vh)+τB(un

h, vh) = 2$(un−1
h , vh) + 2τ$bγ

n−1

(
(u0

h)t, vh

)

+ 2$
n−1∑

j=1

(bγ
n−1−j − bγ

n−j)
[
(uj

h, vh)− (uj−1
h , vh)

]

− τB(un−1
h , vh) + 2τ

(
fn + fn−1

2
, vh

)
, ∀vh ∈ Vh,

(3.11)

where $ = τ1−γ

Γ(3−γ) .
For n = 1, Eq.(3.9) yields

(∇γ
t u

1/2
h , vh) + B(u1/2

h , vh) = (f1/2, vh), ∀vh ∈ Vh, (3.12)

that is

2$(u1
h, vh) + τB(u1

h, vh) =2$(u0
h, vh)− τB(u0

h, vh) + 2τ$bγ
0

(
(u0

h)t, vh

)

+ 2τ

(
f1 + f0

2
, vh

)
, ∀vh ∈ Vh.

(3.13)

4. Implementation of the unstructured mesh CNGM

For the unstructured triangulations of a convex domain Ω, as shown in
Fig. 4.1, the set of nodes are defined as {(xk, yk) : k = 1, 2, ..., Np}, where
Np is the total number of nodes in the mesh. Let ϕk(xl, yl) = δkl, (k, l =
1, 2, ..., Np) be the basis functions, where δkl is the Kronecker symbol. Then,
for each time step t = tn, the finite element solution un

h can be expressed
as

un
h =

Np∑

k=1

un
kϕk(x, y). (4.1)
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Figure 4.1. The unstructured triangular mesh of do-
main Ω with four nonzero support domains of the frac-
tional derivative for node k. Ωk

Lx is the nonzero support
domain for xDα

Lϕk(x, y); Ωk
Rx is for xDα

Rϕk(x, y), Ωk
Dy is for

yD
β
Dϕk(x, y), and Ωk

Uy is for yD
β
Uϕk(x, y).

Choosing vh be the basis function ϕl(x, y), and inserting Eq.(4.1) into the
finite element equations (3.11) and (3.13), then we have for n = 1,

Np∑

k=1

(2$(ϕk, ϕl) + τB(ϕk, ϕl))u1
k = 2$(u0

h, ϕl)− τB(u0
h, ϕl)

+ 2τ$bγ
0

(
(u0

h)t, ϕl

)
+ 2τ

(
f1 + f0

2
, ϕl

)
, l = 1, 2, ..., Np,

(4.2)
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and for n ≥ 2,

Np∑

k=1

(2$(ϕk, ϕl) + τB(ϕk, ϕl))un
k =

Np∑

k=1

(2$(ϕk, ϕl)− τB(ϕk, ϕl))un−1
k

+ 2$

n−1∑

j=1

(bγ
n−1−j − bγ

n−j)




Np∑

k=1

(ϕk, ϕl)u
j
k −

Np∑

k=1

(ϕk, ϕl)u
j−1
k




+ 2τ$bγ
n−1

(
(u0

h)t, ϕl

)
+ 2τ

(
fn + fn−1

2
, ϕl

)
, l = 1, 2, ..., Np.

(4.3)

Eqs.(4.2) and (4.3) can be rewritten in matrix form as:

(2$M + τA)u1 = 2$W 0
1 − τW 0

2 + 2τ$W 0
3 + 2τF 1, (n = 1), (4.4)

(2$M + τA)un =(2$M − τA)un−1 + 2$M
n−1∑

j=1

(bγ
n−1−j − bγ

n−j)(u
j − uj−1)

+ 2τ$bγ
n−1W

0
3 + 2τFn, (n ≥ 2),

(4.5)

where un = (un
1 , un

2 , ..., un
Np

)T is the unknown solution vector. The matrix
M = ((ϕk, ϕl))Np×Np

is the mass matrix, and A = (B(ϕk, ϕl))Np×Np
is the

stiffness matrix. We also have the matrices W 0
1 = (w1

1, w
2
1, ..., w

Np

1 )T , where
wl

1 = (u0
h, ϕl); W 0

2 = (w1
2, w

2
2, ..., w

Np

2 )T , where wl
2 = B(u0

h, ϕl); W 0
3 =

(w1
3, w

2
3, ..., w

Np

3 )T , where wl
3 =

(
(u0

h)t, ϕl

)
; and Fn = (Fn

1 , Fn
2 , ..., Fn

Np
)T ,

Fn
l =

(
fn+fn−1

2 , ϕl

)
, l = 1, 2, ..., Np, n = 1, 2, ..., N .

In order to calculate the inner product elements in the matrices, for
example (ϕk, ϕl), the following Gauss quadrature formula [7, 8] will be
used:

(ϕk, ϕl) =
∫

Ω
ϕk · ϕldxdy

=
∑

E∈Th

∫

E
ϕk · ϕldxdy

=
∑

E∈Th

∑

(xci,yci)∈GE

ϕk|(xci,yci) · ϕl|(xci,yci) · ωi,

(4.6)

where GE is the set of the Gauss points in a certain element E and ωi are
the weights corresponding to the Gauss points (xci, yci).



12 W. Fan, F. Liu, X. Jiang, I. Turner

As a result of the non-local characteristics of the fractional derivatives,
compared with the finite element method used for solving traditional dif-
ferential equations, the implementation of the finite element scheme for
fractional differential equations is much more complex. In order to obtain
the unknown solution vector un given in Eqs. (4.4) and (4.5), constructing
the matrix A will be the most critical part. The (k, l) element in the matrix
A is given by

B(ϕk, ϕl) =Kxcα

{
(xDα

Lϕk, xDα
Rϕl) + (xDα

Rϕk, xDα
Lϕl)

}

+ Kycβ

{
(yD

β
Dϕk, yD

β
Uϕl) + (yD

β
Uϕk, yD

β
Dϕl)

}
.

(4.7)

There are four components to approximate in the right hand of Eq.(4.7).
Taking the first component (xDα

Lϕk, xDα
Rϕl) as an example, application of

Gauss quadrature yields:

(xDα
Lϕk, xDα

Rϕl) =
∫

Ω
xDα

Lϕk · xDα
Rϕldxdy

=
∑

E∈Th

∫

E
xDα

Lϕk · xDα
Rϕldxdy

=
∑

E∈Th

∑

(xci,yci)∈GE

xDα
Lϕk|(xci,yci) · xDα

Rϕl|(xci,yci) · ωi.

(4.8)

To calculate the non-local fractional derivatives xDα
Lϕk(x, y)|(xci,yci)

(xDα
Lϕl(x, y)|(xci,yci)), the piecewise continuous basis functions ϕk(x, y)

(ϕl(x, y)) should be formed first.
As is well known, for a certain triangle4(1, 2, 3), the nodes (1, 2, 3) with

coordinates (xi, yi)(i = 1, 2, 3) are numbered in a counter-clockwise order.
The corresponding values of the function u(x, y) are labelled as u1, u2, u3.
The element basis functions for 4(1, 2, 3) can be written as

Ni(x, y) =
1

2A∗
(ai + bix + ciy), i = 1, 2, 3, (4.9)

where A∗ is the area of the triangle expressed by the absolute value of Ã,

where Ã = 1
2

∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, ai = xjyk − xkyj , bi = yj − yk, ci = xk − xj ,

the subscripts (i, j, k) = (1, 2, 3) or (2, 3, 1) or (3, 1, 2). Then the function
u(x, y) on triangle 4(1, 2, 3) can be approximated by

u(x, y) =
3∑

i=1

Ni(x, y)ui. (4.10)
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Figure 4.2. The support domain Ωek
composed of six tri-

angular elements E1, E2, ..., E6, and the nonzero support do-
main Ωk

Lx for the fractional derivative operator xDα
Lϕk(x, y).

On this basis, according to the unstructured triangular mesh shown in
Fig. 4.1, every node k is a common vertex of the neighboring triangular
elements. The support domain of the basis function ϕk(x, y) is a poly-
gon composed by triangles sharing the common node k, denoted by Ωek

,
enclosed with sides A2A3, A3A4, A4A5, A5B3, B3B2.

As shown in Fig. 4.2, noting that the support domain Ωek
is composed

of six triangular elements E1, E2, ..., E6, then by combining the local ele-
ment basis function Nk(x, y) of each triangle, we can form the piecewise
continuous basis function ϕk(x, y). Since ∀(x, y) ∈ ∂Ωek

, ϕk(x, y) = 0, the
domain of definition of the basis function ϕk(x, y) can be extended from
Ωek

to the whole domain Ω.
It follows that only when the Gauss point P (xc, yc) is within the re-

gion Ωk
Lx, (shown in Fig. 4.2), the corresponding value of xDα

Lϕk(xc, yc) is
nonzero. Thus, ∀P (xc, yc) ∈ Ωk

Lx, by the definition given in Eq. (1.5), we
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Figure 4.3. The support domain Ωek
intersected by the

line y = yc.

have

xDα
Lϕk(xc, yc) =

(
xL(yc)D

α
xϕk(x, yc)

) |x=xc

=

(
1

Γ(1− α)
d

dx

∫ x

xL(yc)
(x− s)−αϕk(s, yc)ds

)

x=xc

,
(4.11)

which requires an integeral from the left boundary xL(yc) to xc. As is shown
is Fig. 4.3, the line y = yc intersects the support domain Ωek

at three points
P1(x1, y1), P2(x2, y2), and P3(x3, y3). The basis function ϕk(x, yc) can be
written in the following interpolation form:

ϕk(x, yc) =





0, x < x1 or x > x3,
ϕk1(x, yc) = x−x2

x1−x2
z1 + x−x1

x2−x1
z2, x1 ≤ x < x2,

ϕk2(x, yc) = x−x3
x2−x3

z2 + x−x2
x3−x2

z3, x2 ≤ x ≤ x3,
(4.12)

where zi = ϕk(xi, yc), (i = 1, 2, 3) are the values of ϕk(x, y) at points
P1, P2, P3, which can be obtained by two-point interpolation between the
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two vertices of the triangle edge. We have that

xDα
Lϕk(x, yc) =





0, x < x1,

x1D
α
xϕk1(x, yc), x1 ≤ x < x2,

x1D
α
x2

ϕk1(x, yc) + x2D
α
xϕk2(x, yc), x2 ≤ x < x3,

x1D
α
x2

ϕk1(x, yc) + x2D
α
x3

ϕk2(x, yc), x3 ≤ x.
(4.13)

Inserting Eq.(4.12) into Eq.(4.13), and noting that on ∂Ωek
, z1 = z3 =

0, we have

xDα
Lϕk(x, yc) =





0, x < x1,
ωλ1(x− x1)1−α, x1 ≤ x < x2,
ωλ1(x− x1)1−α + ω(λ2 − λ1)(x− x2)1−α, x2 ≤ x < x3,
ωλ1(x− x1)1−α + ω(λ2 − λ1)(x− x2)1−α

−ωλ2(x− x3)1−α, x3 ≤ x,
(4.14)

where ω = 1
Γ(2−α) , λi = zi+1−zi

xi+1−xi
, (i = 1, 2, 3). We then find the interval to

which xc belongs, and replace x with xc to obtain xDα
Lϕk(xc, yc).

Similarly, the fractional derivatives xDα
Rϕk(xc, yc), yD

β
Dϕk(xc, yc) and

yD
β
Uϕk(xc, yc) can also be calculated with support domains being Ωk

Rx, Ωk
Dy,

Ωk
Uy (shown in Fig. 4.1), respectively. This procedure allows the matrix A

to be formed.
For each node k (k = 1, 2, ..., Np), Algorithm 1 summarizes the algo-

rithm for calculating xDα
Lϕk(xc, yc).

5. Stability and convergence

To analyse the stability and convergence of the fully discrete scheme
CNGM, some definitions and lemmas should be given in advance. Based
on the bilinear form B(u, v), the semi-norm | · |(α,β) and the norm ‖ · ‖(α,β)

are defined as:

|u|(α,β) =
(
Kx‖xDα

Lu‖2
0 + Ky‖yD

β
Du‖2

0

)1/2
, (5.1)

‖u‖(α,β) =
(
‖u‖2

0 + |u|2(α,β)

)1/2
. (5.2)

Throughout the following sections, we suppose C is a positive constant
that may be different depending on the context.

5.1. Stability.
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Algorithm 1 The algorithm for the calculation of xDα
Lϕk(xc, yc).

1: Partition the convex domain Ω using an unstructured triangular mesh
via a suitable mesh generation software; Output the numbered nodes
and corresponding coordinates (xk, yk) (k = 1, 2, ..., Np), and the trian-
gular elements Ej ∈ Th (j = 1, 2, ..., Ne) characterized by three vertices.

2: for k = 1, 2, ..., Np do
3: for j = 1, 2, ..., Ne do
4: if the vertices of the element Ej include the node k then
5: Ej ∈ Ωek

6: end if
7: Generate the set of Gauss points GEj = {(xci, yci)|i = 1, ..., N2

g }
for each element Ej and the corresponding weights ωi. Here Ng is
a control parameter and is usually chosen as 1 or 2.

8: end for
9: Construct the support domain Ωek

of the basis function ϕk(x, y).
10: Calculate the yk = min{y|(x, y) ∈ Ωek

}, yk = max{y|(x, y) ∈ Ωek
},

then construct the nonzero support domain Ωk
Lx of the fractional

derivative xDα
Lϕk(x, y), which is enclosed by the left-side boundary

of Ωek
, the right boundary xR(y) of domain Ω, line y = yk and line

y = yk, as shown in Fig. 4.2.
11: for all Gauss point (xc, yc) ∈ GE1 ∪GE2 · · · ∪ GENe

do
12: if (xc, yc) ∈ Ωk

Lx then
13: Intersect Ωek

with line y = yc, calculate the coordinates of the
intersection points and corresponding values of zi on each inter-
section point, as shown in Fig. 4.3.

14: Form the piecewise continuous basis function ϕk(x, yc) given by
Eq.(4.12), and then calculate the xDα

Lϕk(xc, yc) based on Eqs.
(4.13)-(4.14).

15: else
16: xDα

Lϕk(xc, yc) = 0
17: end if
18: end for
19: end for

Lemma 5.1. For u ∈ V , the semi-norm | · |(α,β) and norm ‖ · ‖(α,β) are
equivalent, and the following inequality holds

C1‖u‖(α,β) ≤ |u|(α,β) ≤ ‖u‖(α,β) ≤ C2|u|Hµ(Ω), (5.3)

where C1, C2 are positive constants independent of u.
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P r o o f. By definitions (5.1)-(5.2), we have that

|u|(α,β) ≤ ‖u‖(α,β). (5.4)

By lemma 2.4, there exists a constant C, such that ‖u‖0 ≤ C|u|(α,β). Then

‖u‖(α,β) ≤
(
C|u|2(α,β) + |u|2(α,β)

)1/2
≤ C ′|u|(α,β). (5.5)

Thus,

C1‖u‖(α,β) ≤ |u|(α,β), where C1 =
1√

C ′2 + 1
. (5.6)

By lemma 2.4 again, |u|(α,β) ≤ C|u|Jλ
L(Ω) and lemma 2.3 gives

‖u‖(α,β) ≤
1
C1
|u|(α,β) ≤

C

C1
|u|Jλ

L(Ω) ≤ C2|u|Hµ(Ω) (5.7)

Then the proof can be completed by combining (5.4), (5.6) and (5.7). 2

Lemma 5.2. ([3]) The bilinear form B(u, v) is symmetrical, continuous
and coercive, and therefore ∃ C1, C2 satisfying

B(u, v) ≤ C1‖u‖(α,β)‖v‖(α,β), B(u, u) ≥ C2‖u‖2
(α,β), ∀u, v ∈ Hα

0 (Ω)∩Hβ
0 (Ω).
(5.8)

Theorem 5.1. (Stability) The fully discrete CNGM scheme (3.9) is
unconditionally stable.

P r o o f. Suppose that ũn
h is an approximate numerical solution of

(3.9), let εn
h = un

h − ũn
h, then ε

n−1/2
h satisfies

(∇γ
t ε

n−1/2
h , vh) + B(εn−1/2

h , vh) = 0, ∀vh ∈ Vh. (5.9)

Let vh = δtε
n−1/2
h in (5.9), then we have

$bγ
0‖δtε

n−1/2
h ‖2

0+B(εn−1/2
h , δtε

n−1/2
h ) = $bγ

n−1

(
(ε0

h)t, δtε
n−1/2
h

)

+ $

n−1∑

j=1

(bγ
n−1−j − bγ

n−j)
(
δtε

j−1/2
h , δtε

n−1/2
h

)
.

(5.10)

Using the Cauchy-Schwarz inequality,

$‖δtε
n−1/2
h ‖2

0+B(εn−1/2
h , δtε

n−1/2
h ) ≤ $

2
bγ
n−1

(
‖(ε0

h)t‖2
0 + ‖δtε

n−1/2
h ‖2

0

)

+
$

2

n−1∑

j=1

(bγ
n−1−j − bγ

n−j) ·
(
‖δtε

j−1/2
h ‖2

0 + ‖δtε
n−1/2
h ‖2

0

)
.

(5.11)
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Noting that
∑n−1

j=1 (bγ
n−1−j − bγ

n−j) + bγ
n−1 = 1, ε

n−1/2
h = εn

h+εn−1
h

2 and

δtε
n−1/2
h = εn

h−εn−1
h

τ , Eq.(5.11) can be rewritten as

$

2
‖δtε

n−1/2
h ‖2

0+
1
2τ

(
B(εn

h, εn
h)−B(εn−1

h , εn−1
h )

) ≤ $

2
bγ
n−1‖(ε0

h)t‖2
0

+
$

2

n−1∑

j=1

(bγ
n−1−j − bγ

n−j)‖δtε
j−1/2
h ‖2

0.
(5.12)

Then we have

τ$‖δtε
n−1/2
h ‖2

0 + B(εn
h, εn

h) + τ$
n−1∑

j=1

bγ
n−j‖δtε

j−1/2
h ‖2

0 ≤ B(εn−1
h , εn−1

h )

+ τ$

n−1∑

j=1

bγ
n−1−j‖δtε

j−1/2
h ‖2

0 + τ$bγ
n−1‖(ε0

h)t‖2
0.

(5.13)

Denote

ln = B(εn
h, εn

h) + τ$
n∑

j=1

bγ
n−j‖δtε

j−1/2
h ‖2

0, (5.14)

then from (5.13) we obtain

ln ≤ ln−1 + τ$bγ
n−1‖(ε0

h)t‖2
0

≤ ln−2 + τ$bγ
n−2‖(ε0

h)t‖2
0 + τ$bγ

n−1‖(ε0
h)t‖2

0

· ··

≤ l0 + τ$
n∑

j=1

bγ
n−j‖(ε0

h)t‖2
0.

(5.15)

Since
∑n

j=1 bγ
n−j = n2−γ , τ$ = τ2−γ

Γ(3−γ) , τn ≤ T , we have

ln ≤ l0 +
T 2−γ

Γ(3− γ)
‖(ε0

h)t‖2
0. (5.16)

Returning to (5.14), note that

τ$

n−1∑

j=1

bγ
n−j‖δtε

j−1/2
h ‖2

0 ≥ 0, (5.17)

and therefore

B(εn
h, εn

h) ≤ B(ε0
h, ε0

h) +
T 2−γ

Γ(3− γ)
‖(ε0

h)t‖2
0. (5.18)
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By lemma 5.2, it can be obtained that

‖εn
h‖2

(α,β) ≤ C
(
‖ε0

h‖2
(α,β) + ‖(ε0

h)t‖2
0

)
. (5.19)

Hence, the fully discrete CNGM scheme is unconditionally stable. 2

5.2. Convergence. To proceed with the convergence analysis for the fully
discrete scheme CNGM shown in (3.9), we suppose that for u ∈ Hµ(Ω),
0 < µ ≤ s + 1, 0 ≤ ν ≤ µ, there exists a constant C such that

‖u−qhu‖Hν(Ω) ≤ Chµ−ν‖u‖Hµ(Ω), (5.20)

where qh : Hs+1(Ω) → Vh is an interpolation operator [9]. For u ∈ V , we
define a projection operator Ph : V → Vh characterized by

B(u, vh) = B(Phu, vh), ∀vh ∈ Vh. (5.21)

An approximation property of the operator Ph can be obtained via the
following lemma.

Lemma 5.3. ([4]) If u ∈ Hµ(Ω) ∩ V, λ < µ ≤ s + 1, λ = max{α, β},
then there exists a constant C independent of h and u such that

|u− Phu|(α,β) ≤ Chµ−λ‖u‖Hµ(Ω). (5.22)

Theorem 5.2. (Convergence) Assume that un = u(x, y, tn) is the
exact solution of problem (1.1) with u, uttt,

C
0 Dγ

t u ∈ L∞(Hµ(Ω); 0, T ),
λ < µ ≤ s + 1, λ = max{α, β}, then the numerical solution un

h satisfies

‖un
h − un‖2

(α,β) ≤ Ch2µ−2λ
(
‖un‖2

Hµ(Ω) + ‖u0‖2
Hµ(Ω) + ‖u0

t ‖2
Hµ(Ω)

)

+ C

{
τ2(3−γ) + h2µ−2λ max

1≤j≤n
‖ C

0 Dγ
t uj−1/2‖2

Hµ(Ω)

}
.

(5.23)

P r o o f. ∀vh ∈ Vh we have

( C
0 Dγ

t un−1/2, vh) + B(un−1/2, vh) = (fn−1/2, vh), (5.24)

(∇γ
t u

n−1/2
h , vh) + B(un−1/2

h , vh) = (fn−1/2, vh). (5.25)

Let en = un
h − un, then en−1/2 satisfies

(∇γ
t en−1/2, vh) + B(en−1/2, vh) = ( C

0 Dγ
t un−1/2 −∇γ

t un−1/2, vh). (5.26)

Denote en−1/2 = θn−1/2 + ρn−1/2, where ρn−1/2 = Phun−1/2 − un−1/2,
θn−1/2 = u

n−1/2
h − Phun−1/2. Noting that B(ρn−1/2, vh) = 0, and taking
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vh = δtθ
n−1/2, then equation (5.26) can be rewritten as

(∇γ
t θn−1/2,δtθ

n−1/2) + B(θn−1/2, δtθ
n−1/2)

= ( C
0 Dγ

t un−1/2 −∇γ
t un−1/2, δtθ

n−1/2)− (∇γ
t ρn−1/2, δtθ

n−1/2).
(5.27)

Let Rn = C
0 Dγ

t un−1/2 −∇γ
t un−1/2 −∇γ

t ρn−1/2,

$
([

bγ
0δtθ

n−1/2 −
n−1∑

j=1

(bγ
n−1−j−bγ

n−j)δtθ
j−1/2 − bγ

n−1θ
0
t

]
, δtθ

n−1/2
)

+ B(θn−1/2, δtθ
n−1/2) = (Rn, δtθ

n−1/2).
(5.28)

Since B(θn−1/2, δtθ
n−1/2) = 1

2τ

(
B(θn, θn)−B(θn−1, θn−1)

)
, then by the

Cauchy-Schwarz inequality, we have

2τ$‖δtθ
n−1/2‖2

0+B(θn, θn) ≤ B(θn−1, θn−1))

+ 2τ$
n−1∑

j=1

(bγ
n−1−j − bγ

n−j)‖δtθ
k−1/2‖0 ‖δtθ

n−1/2‖0

+ 2τ$bγ
n−1‖θ0

t ‖0 ‖δtθ
n−1/2‖0 + 2τ(Rn, δtθ

n−1/2)
(5.29)

Similar to the proof of stability, by using the Cauchy- Schwarz inequality,
the inequality (5.29) can be rewritten as

τ$‖δtθ
n−1/2‖2

0 + B(θn, θn) + τ$
n−1∑

j=1

bγ
n−j‖δtθ

k−1/2‖2
0

≤ B(θn−1, θn−1) + τ$

n−1∑

j=1

bγ
n−1−j‖δtθ

k−1/2‖2
0

+ τ$bγ
n−1‖θ0

t ‖2
0 + 2τ(Rn, δtθ

n−1/2).
(5.30)

Let

En = B(θn, θn) + τ$
n∑

j=1

bγ
n−j‖δtθ

j−1/2‖2
0, (5.31)
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then we have

En ≤En−1 + τ$bγ
n−1‖θ0

t ‖2
0 + 2τ(Rn, δtθ

n−1/2)

≤ E0 + τ$

n∑

j=1

bγ
n−j‖θ0

t ‖2
0 +

n∑

j=1

2τ(Rj , δtθ
j−1/2)

≤ E0 +
T 2−γ

Γ(3− γ)
‖θ0

t ‖2
0 +

n∑

j=1

2τ(Rj , δtθ
j−1/2).

(5.32)

That is

B(θn, θn) + τ$

n∑

j=1

bγ
n−j‖δtθ

j−1/2‖2
0 ≤ B(θ0, θ0) +

T 2−γ

Γ(3− γ)
‖θ0

t ‖2
0

+
n∑

j=1

2τ(Rj , δtθ
j−1/2).

(5.33)

Since
n∑

j=1

2τ(Rj , δtθ
j−1/2) = 2τ

n∑

j=1

( 1√
$bγ

n−j

Rj ,
√

$bγ
n−jδtθ

j−1/2
)

≤ 2τ
n∑

j=1

( 1
2$bγ

n−j

‖Rj‖2
0 +

$bγ
n−j

2
‖δtθ

j−1/2‖2
0

)

=
τ

$

n∑

j=1

1
bγ
n−j

‖Rj‖2
0 + τ$

n∑

j=1

bγ
n−j‖δtθ

j−1/2‖2
0,

(5.34)

then we have

B(θn, θn) ≤ B(θ0, θ0) +
T 2−γ

Γ(3− γ)
‖θ0

t ‖2
0 + C max

1≤j≤n
‖Rj‖2

0. (5.35)

By lemma 5.2, the inequality (5.35) yields

‖θn‖2
(α,β) ≤ C‖θ0‖2

(α,β) + C
T 2−γ

Γ(3− γ)
‖θ0

t ‖2
0 + C max

1≤j≤n
‖Rj‖2

0. (5.36)

By the Minkowski inequality and lemma 5.3,

‖θ0‖2
(α,β) = ‖u0

h − Phu0‖2
(α,β) = ‖u0

h − u0 + u0 − Phu0‖2
(α,β)

≤ C
(
‖u0

h − u0‖2
(α,β) + ‖u0 − Phu0‖2

(α,β)

)

≤ C‖u0
h − u0‖2

(α,β) + Ch2µ−2λ‖u0‖2
Hµ(Ω).

(5.37)
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Note that ‖ · ‖0 ≤ C‖ · ‖(α,β), then

‖θ0
t ‖0 = ‖(u0

h − Phu0)t‖2
0 = ‖(u0

h − u0 + u0 − Phu0)t‖2
0

≤ C
(
‖(u0

h)t − u0
t ‖2

0 + ‖u0
t − Phu0

t )‖2
0

)

≤ C‖(u0
h)t − u0

t ‖2
0 + Ch2µ−2λ‖u0

t ‖2
Hµ(Ω).

(5.38)

The term ‖Rj‖2
0 can be estimated as

‖Rj‖2
0 =‖ C

0 Dγ
t uj−1/2 −∇γ

t uj−1/2 −∇γ
t ρj−1/2‖2

0

≤ C
(
‖ C

0 Dγ
t uj−1/2 −∇γ

t uj−1/2‖2
0 + ‖∇γ

t ρj−1/2‖2
0

)

≤ Cτ2(3−γ) max
0≤t≤T

‖uttt‖2
0 + C‖∇γ

t ρj−1/2‖2
0

≤ Cτ2(3−γ) + C‖∇γ
t ρj−1/2‖2

0.

(5.39)

By lemma 5.3,

‖∇γ
t ρj−1/2‖2

0 =‖∇γ
t ρj−1/2 − C

0 Dγ
t ρj−1/2 + C

0 Dγ
t ρj−1/2‖2

0

≤ C
(
‖∇γ

t ρj−1/2 − C
0 Dγ

t ρj−1/2‖2
0 + ‖ C

0 Dγ
t ρj−1/2‖2

0

)

≤ Cτ2(3−γ) max
0≤t≤T

‖ρj−1/2
ttt ‖2

0 + C‖ C
0 Dγ

t ρj−1/2‖2
0

≤ Cτ2(3−γ) + Ch2µ−2λ‖ C
0 Dγ

t uj−1/2‖2
Hµ(Ω).

(5.40)

Therefore, by inequalities (5.39)-(5.40), we have

‖Rj‖2
0 ≤ Cτ2(3−γ) + Ch2µ−2λ‖ C

0 Dγ
t uj−1/2‖2

Hµ(Ω). (5.41)

Inserting inequalities (5.37), (5.38) and (5.41) into the estimate (5.36),
then we obtain

‖θn‖2
(α,β) ≤C‖u0

h − u0‖2
(α,β) + Ch2µ−2λ‖u0‖2

Hµ(Ω)

+ C
(
‖(u0

h)t − u0
t ‖2

0 + h2µ−2λ‖u0
t ‖2

Hµ(Ω)

)

+ C max
1≤j≤n

{
τ2(3−γ) + h2µ−2λ‖ C

0 Dγ
t uj−1/2‖2

Hµ(Ω)

}
.

(5.42)

Since un
h − un = en = ρn + θn,

‖ρn‖2
(α,β) = ‖Phun − un‖2

(α,β) ≤ Ch2µ−2λ‖un‖2
Hµ(Ω), (5.43)
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and hence

‖un
h − un‖2

(α,β) ≤ C(‖ρn‖2
(α,β) + ‖θn‖2

(α,β))

≤ Ch2µ−2λ‖un‖2
Hµ(Ω) + C‖u0

h − u0‖2
(α,β) + Ch2µ−2λ‖u0‖2

Hµ(Ω)

+ C‖(u0
h)t − u0

t ‖2
0 + Ch2µ−2λ‖u0

t ‖2
Hµ(Ω)

+ C
{

τ2(3−γ) + h2µ−2λ max
1≤j≤n

‖ C
0 Dγ

t uj−1/2‖2
Hµ(Ω)

}
.

(5.44)

When choosing the interpolations as initial values of u and ut at time
t0, i.e. u0

h = qhu0, (u0
h)t = qhu0

t , then by (5.20) we have

‖un
h − un‖2

(α,β) ≤ Ch2µ−2λ(‖un‖2
Hµ(Ω) + ‖u0‖2

Hµ(Ω) + ‖u0
t ‖2

Hµ(Ω))

+ C
{

τ2(3−γ) + h2µ−2λ max
1≤j≤n

‖ C
0 Dγ

t uj−1/2‖2
Hµ(Ω)

}
.

(5.45)

Then the convergence analysis is completed. 2

6. Numerical examples

In this section, the unstructured mesh Crank-Nicolson Galerkin method
is tested using linear triangular elements. By Theorem 5.2, we expect
that ‖un

h − u(tn)‖0 ∼ O(τ3−γ + h2), ‖un
h − u(tn)‖(α,β) ∼ O(τ3−γ + h2−λ),

where λ = max{α, β}, λ < µ ≤ s + 1. To assess the overall performance
of the proposed method, we give two numerical examples defined on the
domain Ω = [0, 1] × [0, 1] and the elliptical domain Ω = {(x, y)|x2

a2 + y2

b2
<

1}, respectively. The number of the Gauss points in a certain triangular
element E is taken as N2

g . To illustrate the ability of the unstructured
mesh formulation outlined in Section 4, a comparison of the accuracy and
the computational cost between the structured and unstructured mesh for
the same problem is conducted. The meshes are generated by the software
Gmsh [14].

6.1. Example 1. Consider the following problem




C
0 Dγ

t u = Kx
∂2αu
∂|x|2α + Ky

∂2βu
∂|y|2β + f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = 0, (x, y) ∈ Ω,
ut(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ],

(6.1)
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Table 6.1. The computation times and the corresponding
errors for the structured mesh and the unstructured mesh
with h ≈ 1/8, α = 0.8, β = 0.8, γ = 1.6.

Gauss points

(N2
g ) meshes ‖uN

h − u(tN )‖0 ‖uN
h − u(tN )‖(α,β) time(s)

Ng = 1 structured 1.1875e-4 8.4404e-4 15.4818
unstructured 8.4824e-5 6.1325e-4 24.9804

Ng = 2 structured 6.1607e-5 1.0193e-3 54.7318
unstructured 4.3817e-5 7.8474e-4 87.4780

where 1 < γ < 2, 1/2 < α, β < 1, Kx = Ky = 1. The domain Ω is assumed
to be Ω = [0, 1]× [0, 1]. The function f(x, y, t) is

f(x, y, t)

=
2t2−γ

Γ(3− γ)
x2(1− x)2y2(1− y)2 + Cy

1
Γ(3− 2α)

[x2−2α + (1− x)2−2α]

− Cy
6

Γ(4− 2α)
[x3−2α + (1− x)3−2α] + Cy

12
Γ(5− 2α)

[x4−2α + (1− x)4−2α]

+ Cx
1

Γ(3− 2β)
[y2−2β + (1− y)2−2β]− Cx

6
Γ(4− 2β)

[y3−2β + (1− y)3−2β]

+ Cx
12

Γ(5− 2β)
[y4−2β + (1− y)4−2β],

(6.2)

where Cx = t2x2(1−x)2

cos(βπ) , Cy = t2y2(1−y)2

cos(απ) . The exact solution is u(x, y, t) =
t2x2(1− x)2y2(1− y)2.

To clarify the ability of the unstructured mesh compared with the struc-
tured mesh in the implementation of the numerical scheme, the computa-
tional costs and the corresponding errors of the two kinds of partition for
T = 1 are studied. To show the differences, we take the cases with h ≈ 1/8
and h ≈ 1/16 as examples. The meshes used for Ω = [0, 1]× [0, 1] are shown
in Fig. 6.1.

With parameters assumed to be α = 0.8, β = 0.8, γ = 1.6, Table
6.1 and Table 6.2 present the computation times and the corresponding
errors for the structured and unstructured meshes with h ≈ 1/8 and h ≈
1/16, respectively. An immediate observation from Table 6.1 and Table
6.2, for both the structured and the unstructured partitions, is that the
computation times for the cases with h ≈ 1/16 are distinct much longer
than that for the cases with h ≈ 1/8. Also for a certain h, the unstructured
mesh requires a longer computation time compared with the structured
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Table 6.2. The computation times and the corresponding
errors for the unstructured mesh and the structured mesh
with h ≈ 1/16, α = 0.8, β = 0.8, γ = 1.6.

Gauss points

(N2
g ) meshes ‖uN

h − u(tN )‖0 ‖uN
h − u(tN )‖(α,β) time(s)

Ng = 1 structured 3.0455e-5 3.4951e-4 189.7850
unstructured 2.4247e-5 2.6063e-4 289.2325

Ng = 2 structured 1.4295e-5 4.4551e-4 634.0120
unstructured 1.0751e-5 3.5597e-4 998.1467

Table 6.3. Errors and convergence orders of the CNGM
for Example 1 with τ = 1/2000, Ng = 2.

h ‖uN
h − u(tN )‖0 order ‖uN

h − u(tN )‖(α,β) order
1/4 1.7830e-4 1.8402e-3

γ = 1.6 1/8 4.3817e-5 2.0248 7.8474e-4 1.2296
α = 0.8 1/16 1.0751e-5 2.0271 3.5597e-4 1.1404
β = 0.8 1/24 4.6863e-6 2.0479 2.1909e-4 1.1971

1/32 2.5419e-6 2.1264 1.5766e-4 1.1439
1/4 1.7679e-4 1.1925e-3

γ = 1.3 1/8 4.3331e-5 2.0286 4.5683e-4 1.3843
α = 0.7 1/16 1.0959e-5 1.9833 1.8633e-4 1.2938
β = 0.6 1/24 5.0812e-6 1.8957 1.1225e-4 1.2501

1/32 2.9345e-6 1.9084 77553e-5 1.2852

Table 6.4. Errors and convergence orders of the CNGM
for Example 1 with τ = 1/2000, Ng = 2.

h ‖uN
h − u(tN )‖0 order ‖uN

h − u(tN )‖(α,β) order
1/4 1.7938e-4 1.7078e-3

γ = 1.5 1/8 4.7596e-5 1.9141 7.1453e-4 1.2571
α = 0.6 1/16 1.2119e-5 1.9736 3.2985e-4 1.1152
β = 0.85 1/24 5.4457e-6 1.9729 2.0664e-4 1.1535

1/32 2.9609e-6 2.1181 1.5067e-4 1.0980
1/4 1.7607e-4 1.5657e-3

γ = 1.3 1/8 4.4268e-5 1.9918 6.3404e-4 1.3042
α = 0.65 1/16 1.0987e-5 2.0105 2.7995e-4 1.1794
β = 0.8 1/24 4.8568e-6 2.0134 1.7074e-4 1.2195

1/32 2.6718e-6 2.0774 1.2211e-4 1.1653
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Figure 6.1. The structured mesh and the unstructured
mesh for Ω = [0, 1]× [0, 1] with h ≈ 1/8.

.

mesh. In fact, the computational cost depends on the number of nodes
and elements in the partition. For the case of the structured meshes, there
are 81 nodes and 128 elements in the partition with h ≈ 1/8, and there
are 289 nodes and 512 elements in the partition with h ≈ 1/16. For the
case of the unstructured meshes, there are 109 nodes and 184 elements in
the partition with h ≈ 1/8, and there are 371 nodes and 676 elements in
the partition with h ≈ 1/16. A smaller h will lead to more nodes and
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Figure 6.2. The unstructured meshes for Ω = [0, 1]× [0, 1]
with h ≈ 1/4 and h ≈ 1/8.

.

elements, and more Gauss points needed to be calculated. As a result, a
denser partition will require a larger computational cost. Furthermore, for
a certain h, more elements result in more Gauss points needed to be handled
in the unstructured mesh, which accounts for the larger computational cost
required for the unstructured mesh compared with the structured mesh.

On the other hand, in each case, the errors for the unstructured meshes
are shown to be smaller than that for the structured meshes in both the
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‖ ·‖0 norm and the ‖ ·‖(α,β) norm. Note that for a certain h, there are more
nodes and elements in the unstructured mesh than the structured mesh. It
is demonstrated that a denser partition will lead to a better performance
of the numerical scheme, that is also in accordance with the fact presented
in Table 6.1 and Table 6.2. Therefore, for the proposed Galerkin method
using an unstructured mesh, compared with the existing method using a
structured mesh, the computational cost increases to some extent but the
precision of the scheme is improved.

The number of Gauss points in a certain triangular element appears
better for Ng = 2, with smaller errors for both the meshes observed. In
view of this, to verify the theoretical analysis of the novel unstructured
mesh CNGM, we choose Ng = 2, which means there are four Gauss points
in each triangular element in the mesh. The domain Ω is partitioned by
the unstructured meshes as shown in Fig. 6.2.

For time T = 1, the errors and convergence orders for different values of
α, β, γ in the spatial direction by the ‖ · ‖0 norm and the ‖ · ‖(α,β) norm are
presented in Table 6.3 and Table 6.4 with τ = 1/2000, respectively. From
Table 6.3 and Table 6.4, for arbitrary values of α, β, γ, the convergence
orders in the ‖ · ‖0 norm approximate 2 and the convergence orders in the
‖ · ‖(α,β) norm approximate 2 −max{α, β}, which are consistent with the
theoretical analysis presented in Section 5. It is demonstrated that the
unstructured mesh Crank-Nicolson Galerkin method works well in solving
the two-dimensional time-space fractional wave equation.

6.2. Example 2. In this example, we consider a two-dimensional time-
space fractional wave equation defined on an elliptical domain Ω, where
Ω = {(x, y)|x2

a2 + y2

b2
< 1}.





C
0 Dγ

t u = Kx
∂2αu
∂|x|2α + Ky

∂2βu
∂|y|2β + f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = φ(x, y), (x, y) ∈ Ω,
ut(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ],

(6.3)
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where 1 < γ < 2, 1/2 < α, β < 1, φ(x, y) = (x2

a2 + y2

b2
− 1)2, and

f(x, y, t)

=
2t2−γ

Γ(3− γ)
(
x2

a2
+

y2

b2
− 1)2 + Cx

Γ(5)(x− xl)4−2α

a4Γ(5− 2α)
+ Cx

4xlΓ(4)(x− xl)3−2α

a4Γ(4− 2α)

+ Cx(
6x2

l

a4
+

2y2

a2b2
− 2

a2
)
Γ(3)(x− xl)2−2α

Γ(3− 2α)
+ Cx

Γ(5)(xr − x)4−2α

a4Γ(5− 2α)

− Cx
4xrΓ(4)(xr − x)3−2α

a4Γ(4− 2α)
+ Cx(

6x2
r

a4
+

2y2

a2b2
− 2

a2
)
Γ(3)(xr − x)2−2α

Γ(3− 2α)

+ Cy
Γ(5)(y − yl)4−2β

b4Γ(5− 2β)
+ Cy

4ylΓ(4)(y − yl)3−2β

b4Γ(4− 2β)

+ Cy(
6y2

l

b4
+

2x2

a2b2
− 2

b2
)
Γ(3)(y − yl)2−2β

Γ(3− 2β)
+ Cy

Γ(5)(yr − y)4−2β

b4Γ(5− 2β)

− Cy
4yrΓ(4)(yr − y)3−2β

b4Γ(4− 2β)
+ Cy(

6y2
r

b4
+

2x2

a2b2
− 2

b2
)
Γ(3)(yr − y)2−2β

Γ(3− 2β)
,

(6.4)

where Cx = Kx(t2+1)
2 cos(απ) , Cy = Ky(t2+1)

2 cos(βπ) , xl = −a
b

√
b2 − y2, xr = a

b

√
b2 − y2,

yl = − b
a

√
a2 − x2, yr = b

a

√
a2 − x2. The exact solution is u(x, y, t) = (t2 +

1)(x2

a2 + y2

b2
− 1)2.

We assume Kx = 2,Ky = 1, a = 1/2, b = 1/4, T = 1. Fig. 6.3 shows
the unstructured meshes for the convex elliptical domain with h ≈ 1/16
and h ≈ 1/32. For different values of α, β, γ, the errors and convergence
orders in the spatial direction by the ‖ · ‖0 norm and the ‖ · ‖(α,β) norm are
presented in Table 6.5 and Table 6.6 with τ = 1/3200, respectively.

Tables 6.5 and 6.6 show that for arbitrary values of α, β, γ, the conver-
gence orders in the ‖ · ‖0 norm approximate 2 and the convergence orders
in the ‖ · ‖(α,β) norm approximate 2 − max{α, β}. In other words, the
convergence orders in both the L2-norm and the ‖ · ‖(α,β) norm are in ac-
cordance with the theoretical analysis, indicating that the Crank-Nicolson
Galerkin method is efficient in dealing with the two-dimensional time-space
fractional wave equation on a convex domain.

Note that the convex elliptical domain is difficult to partition with a
structured mesh, the existing finite element method using the structured
meshes is less efficient. In many practical applications, the solution domain
tends to be irregular, such as the human brain or heart, and for such
applications, the proposed numerical method using an unstructured mesh
will be more effective and feasible. Furthermore, the structured mesh can
be treated as a special case of the unstructured mesh, but not vice versa.
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Figure 6.3. The unstructured meshes for elliptical domain
with h ≈ 1/16 and h ≈ 1/32

.

7. Conclusions

In this paper, a novel unstructured mesh finite element method is devel-
oped for solving the two-dimensional time-space fractional wave equation
on an irregular convex domain. The Crank-Nicolson scheme is used to
discretize the Caputo time frational derivative, and to discretize in space,
the novel Galerkin finite element method using a completely unstructured
mesh is applied. Then the implementation of the unstructured mesh Crank-
Nicolson Galerkin method is detailed and the stability and convergence of
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Table 6.5. Errors and convergence orders of the CNGM
for Example 2 with τ = 1/3200, Ng = 2.

h ‖uN
h − u(tN )‖0 order ‖uN

h − u(tN )‖(α,β) order
1/8 4.4247e-2 8.4576e-1

γ = 1.6 1/16 1.1467e-2 1.9481 3.9559e-1 1.0962
α = 0.8 1/22 6.1807e-3 1.9408 2.6931e-1 1.2075
β = 0.8 1/32 3.0282e-3 1.9042 1.7801e-1 1.1049

1/48 1.3708e-3 1.9548 1.1002e-1 1.1869
1/8 4.4985e-2 4.6146e-1

γ = 1.3 1/16 1.2109e-2 1.8934 1.9770e-1 1.2229
α = 0.7 1/22 6.5675e-3 1.9211 1.2800e-1 1.3651
β = 0.6 1/32 3.2885e-3 1.8461 8.2263e-2 1.1799

1/48 1.5239e-3 1.8969 4.9411e-2 1.2572

Table 6.6. Errors and convergence orders of the CNGM
for Example 2 with τ = 1/3200, Ng = 2.

h ‖uN
h − u(tN )‖0 order ‖uN

h − u(tN )‖(α,β) order
1/8 4.3560e-2 8.8461e-1

γ = 1.5 1/16 1.1197e-2 1.9599 4.473e-1 1.0929
α = 0.6 1/22 5.8478e-3 2.0398 2.8420e-1 1.1868
β = 0.85 1/32 2.7473e-3 2.0162 1.8481e-1 1.1486

1/48 1.2150e-3 2.0121 1.1609e-1 1.1468
1/8 4.3002e-2 5.6047e-1

γ = 1.6 1/16 1.0981e-2 1.9694 2.3503e-1 1.2538
α = 0.65 1/22 5.7921e-3 2.0086 1.5239e-1 1.3604
β = 0.7 1/32 2.7611e-3 1.9773 9.5672e-2 1.2425

1/48 1.2513e-3 1.9520 5.7342e-2 1.2625

the numerical scheme are analysed. Finally, some numerical examples are
given to verify the theoretical analysis. The results show that the unstruc-
tured mesh Crank-Nicolson Galerkin method works well in dealing with
the two-dimensional time-space fractional wave equation on an irregular
convex domain. Furthermore, by the comparison of the unstructured mesh
with the structured mesh in the implementation of the numerical scheme,
the proposed unstructured mesh finite element method is shown to require
a larger computational cost but leads to a better performance with smaller
errors of the numerical scheme compared with the existing finite element
method using the structured meshes. Given that many practical problems
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involve irregular convex domains, which are difficult to partition well with a
structured mesh, research on the finite element method using a completely
unstructured mesh is of great significance. More complex convex domains
and more general initial and boundary conditions will be considered in
future work.
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