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ABSTRACT Recursive least square (RLS) algorithms are considered as a kind of accurate parameter

identification method for lithium-ion batteries. However, traditional RLS algorithms usually employ a fixed

forgetting factor, which does not have adequate robustness when the algorithm has interfered. In order to

solve this problem, a novel variable forgetting factor method is put forward in this paper. Comparing with

traditional variable forgetting factor methods, it has higher stability and sensitivity by using somemathematic

improvements. The improvements in the robustness of recursive least square with a variable forgetting

factor (VFF-RLS) algorithm is verified in this paper. A Thevenin model which is frequently-used in battery

management system is employed in the verification. A data loss battery working condition is designed

to simulate the interference to the algorithm. A simulation platform is established in MATLAB/Simulink

software, and the data used in the verification is obtained by battery experiments. The analysis indicated

that the novel VFF-RLS algorithm has better robustness and convergence ability, and has an acceptable

identification accuracy.

INDEX TERMS Lithium battery, variable forgetting factor, recursive least square, parameter identification,

robustness.

I. INTRODUCTION

With the increasingly global environment problems and

energy crisis, people is trying to find more sustainable clean

energies to replace now used fossil fuels. The electricity

is considered as a feasible option. Electric vehicles (EVs)

are becoming more and more popular all over the world

based on electricity. As the core energy storage component in

the EVs, Lithium-ion batteries’ performance has made great

progresses in the past few decades. But battery management

is still needed to keep batteries cells, as well as battery

package, working in safe conditions, high efficiency, and best

performance to meet the miles demands of the vehicles. State

of Charge (SOC), as a crucial parameter in battery manage-

ment, illustrates the electricity energy left in battery. How-

ever, different from the traditional inner combustion vehicles,
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the battery SOC cannot be measured directly in EVs. It can

only be estimated by using several terminal parameters of the

battery, such as current, voltage, temperature, etc. High accu-

rate SOC estimation algorithm has received a huge amount of

attention because of its importance and difficulties [1].

The SOC estimation procedure can be divided into three

steps: battery modeling, parameter identification and SOC

estimation. In order to improve the estimation accuracy

and convergence online, an appropriate battery model with

high accuracy and simple structure is inevitable. Nowadays,

the equivalent circuit models of lithium battery are the most

commonly used in the studies of online SOC estimation

[2], [3]. Battery behaviors are represented by an equivalent

circuit, including an equilibrium voltage source, an internal

resistance and at least one RC pair which are connected in

series [4]. The RC pairs are used to represent the electro-

chemical polarization dynamics in the battery. The higher the

RC pairs order is, the more complex the model is. Because
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the number of model parameters, such as resistances and

capacitances, are not too much, the equivalent circuit models

have their unique advantages in simplicity and robustness.

Thevenin model and DP model are used in equivalent circuit

models mostly [5], [6]. However, this kind of models cannot

predict the degradation of the battery. The parameters in the

model need to be regularly updated.

The performance of the SOC estimation is affected greatly

by the accuracy of the battery model’s parameter identifica-

tion. These parameter values are not always constant. They

will be changed in different working situations such as battery

charging/discharging, battery aging, and working tempera-

ture. In traditional method on parameter identification, it is

needed to obtain the parameter table in different SOC and

temperature. This kind of methods are mostly realized by

using the Least Square (LS) algorithm. The LS algorithm has

many advantages such as high accuracy, no calculation speed

limit and easy designed. However, the disadvantages of this

method are also very obvious. Firstly, all the identified param-

eters need to be stored in the Battery Management System

(BMS), and it will take up a lot of storage space. Secondly,

after the battery works for a period of time, the parameters in

the battery model will be changed. It will lead to big error

in SOC estimation. Therefore, in recent years, an on-line

parameter identification method has started to be devel-

oped [7]. In 2012, a method of on-line parameter identifica-

tion which based on RLS algorithms was put forward by He

and Xiong [8]. This method has been widely concerned, and

used in academic studies. For example, Wei et al. [9] applied

this RLS method to a vanadium redox flow battery model

whose OCV parameter is decoupled from RLS observer to

reduce the possibility of cross interference and the number of

RLS parameter.

Serval variant RLS algorithms, which are not focus on for-

getting factor, were used in parameter identification. In [10], a

decoupled weighted RLS was developed to identify Lithium

battery model’s fast dynamic parameters and slow dynamic

parameters that response in different time scale. However,

this algorithm considers the fast dynamic parameters and

slow dynamic parameters as constant during different work-

ing condition and require to offline training, without high

adaptive ability. Another variant RLS in [11] enhance the

robustness of RLS in battery impedance estimation by set

dead-zone to the covariance matrix of RLS to prevent its

wind-up problem, but this dead-zone limits the adaptive abil-

ity of RLS at large error conditions. Unlike this decoupled

weighted RLS, Dai et al. [12] proposed a method to estimate

the slow dynamic battery parameters by coupling an extended

Kalman filter, which relies on of estimation of SOC result

from BMS system.

In RLS algorithm, the forgetting factor is a very impor-

tant parameter. Its value will affect the convergence rate

of the algorithm and the sensitivity to noise. In traditional

studies, the forgetting factor was always obtained by trial

and error method or Newton’s method [10], and was used

as a constant in the algorithm. A well-known self-tuning

method for exponentially varying forgetting factor is derived

by Fortescue et al. for control system in chemical plants [13].

However, Kim et al. addressed that Fortescue’ forgetting

factor and its variants cannot solve the wind-up problem of

covariance matrix in RLS of battery parameter identification

[14], where variable forgetting factors are constrained within

a small region near one, instead of previous exponential

varying range from 0 to 1, which may heavily limit the

adaptive ability of RLS. A variants of Fortescue’s variable

forgetting factors regulator also adopted by Duong et al., to

a vector type RLS with multiple adaptive forgetting factors

and achieved accurate identified results for LiFePO4 battery’s

ECMmodel parameters [15], while how to tune the sensitive-

ness of multiple forgetting factors is not mentioned, which

is more difficult than single forgetting factors. Moreover,

the RLS parameters decoupling ability of this vector type

RLSmay not as satisfying as assumed, because the decoupled

parameters are coupled during both the update gain vector

calculation in vector type RLS and reversed solution from

RLS parameters to battery’s equivalent circuit model param-

eters. These multiple forgetting factors were optimized by

Rozaqi et al. [16], which also conducted comparison between

the optimized performance by particle swarm optimization,

single objective genetic algorithm and multiple objective

genetic algorithm. However, this optimization by evolution

algorithms are developed for fixed forgetting factors, instead

of optimizing variable adaptive forgetting factors for more

working conditions that required more training with more

data.

In 2016, an improved battery on-line parameter identi-

fication method was put forward by Li et al. [17]. In his

research, the astringency and reliability of the RLS algorithm

are proved. The importance of the forgetting factor also be

mentioned in the paper. Zhirun Li pointed out that the sample

time would affect the optimal value of the forgetting factor.

In [19], in order to improve the stability of the algorithm,

a certain number (window) of past data points are used to

identify the parameters. In [20], RLS algorithm is used to

the estimate open circuit voltage (OCV) of lithium batteries

that has strong relationship with SOC.

In this paper, a new method to obtain the forgetting factor

which is named VFF-RLS algorithm is put forward. The

forgetting factor in this method is determined by the pre-

diction error, and is changed adaptively with the processing

of the algorithm. This method can improve the parameter

identification’s convergence rate when the signals fluctuate

violently or when the signals change drastically. The method

can also ensure a high identification accuracy when the sig-

nals are stable. In reference [21], a variable forgetting factor

method is put forward to improve the robustness of system

identification.

II. BATTERY EXPERIMENTS

In order to obtain the basic parameters of the battery, such

as capacity and SOC-OCV relationship, some battery exper-

iments are carried out. The experiments include four tests:
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FIGURE 1. Profiles of battery experiments. (a) Capacity Test Profile.
(b) HPPC test profile. (c) DST test profile. (d) UDDS test profile.

Capacity test, HPPC test, DST test [22], and UDDS test. The

obtained profiles of these tests are shown in Fig. 1.

The experiments are carried out on a battery test bench

which is shown in Fig. 2. The batteries are installed in an

environment chamber to maintain a stable working condition.

The charging and discharging operation are controlled by

the battery tester Digatron MCT 50-05-8 ME with a 0.1%

accuracy on current and voltage sensors. The programs of

the battery tests are designed on the host computer. A paper-

less recorder which has temperature sensors is employed in

this experiment. The sensors can detect the temperatures on

TABLE 1. Experimental battery specifications.

the surface of the batteries in real-time. All the test data is

returned to the host computer and stored for further analysis.

According to the Capacity test, the actual capacities of the

batteries are obtained. They are shown as follows:

TABLE 2. Capacities of the battery samples.

The SOC and OCV of Lithium-ion batteries have a very

strong relationship. The OCV values every 10% SOC dis-

charging points are obtained from the HPPC test. Since this

SOC-OCV relationship is only used to obtain a benchmark

for algorithm reference, a polynomial least square curve fit-

ting is adopted and calculated by MATLAB offline. For real

embedded application, piece-wise linear fitting or look-up

table can be used to substitute this high order polynomial

curve fitting SOC-OCV relationship. The SOC-OCV rela-

tionship is described as (1):

UOC = f (SOC)

= b1SOC
6
+ b2SOC

5
+ b3SOC

4
+ b4SOC

3

+ b5SOC
2
+ b6SOC + b7 (1)

By using LS algorithm, the parameters of bi(i =

1, 2, . · · · 7) could be solved. The SOC-OCV relationship of

the batteries is shown in Fig. 3.

The DST and UDDS test are used to verify the algorithms

of parameter identification. The actual OCV values in these

tests are seen as references in algorithm verification. The

obtaining process of the actual OCV values is introduced as

follows.

Step 1:Obtaining the actual capacities of the battery, which

are shown in Table 2.

Step 2: Computing the actual SOC values in these tests.

The method is shown in (2):
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FIGURE 2. Battery experiment bench.

SOCRef (k) =

(

CCap × SOCInitial + CAccu(k)
)

CCap
(2)

where, SOCRef (k) is the actual SOC value; CCap is the actual

capacity of the battery, CAccu(k) is the accumulated charge in

the test, and is recorded by the battery tester.

Step 3: According to the SOC-OCV relationship shown

in (1), obtaining the actual OCV values.

FIGURE 3. SOC-OCV relationship.

III. BATTERY MODELING

Thevenin models are widely used in recent SOC estimation

studies [23]–[25]. The polarization phenomenon of Lithium

batteries can be characterized by this model with simple

model structure shown in Fig. 4. There are only 4 param-

eters in this model: the internal resistance, the polarization

resistance, the polarization capacity, and the OCV value.

The terminal voltage and the battery current are regarded as

observed value.

According to the equivalent circuit, the relationship

between the parameters and observed values can be expressed

as (3):

UL(s) = UOC (s) − IL(s)

(

R0 +
R1

1 + R1C1s

)

(3)

where, s is the frequency operator. Then, the transfer function

of this system is shown as (4):

FIGURE 4. Thevenin model.

G(s) =
UL(s) − UOC (s)

I (s)
= −R0 −

R1

1 + R1C1s

= −
R0 + R1 + R0R1C1s

1 + R1C1s
(4)

By employing a bilinear transformation which is shown

in (5), the function in (4) can be discretized as (6).

s =
2

T

1 − z−1

1 + z−1
(5)

where, z is the discretization operator.

G(z−1) = −

(

R0T+R1T+2R0R1C1
T+2R1C1

+
R0T+R1T−2R0R1C1

T+2R1C1
z−1

)

1 +
T−2R1C1
T+2R1C1

z−1
(6)

Define:

a1 = −
T − 2R1C1

T + 2R1C1

a2 = −
R0T + R1T + 2R0R1C1

T + 2R1C1
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a3 = −
R0T + R1T − 2R0R1C1

T + 2R1C1

Then, the identified parameters of R0, R1 and C1 are

changed to be a1, a2 and a3.

The (6) can be rewritten as (7).

G(z−1) =
a2 + a3z

−1

1 − a1z−1
(7)

The (3) after discretization is written as (8):

UL(k) − UOC (k) = a1 (UL(k − 1) − UOC (k − 1))

+ a2IL(k) + a3IL(k − 1) (8)

where, k = 1, 2, 3 . . .. Define yk = UL(k). The (8) is

rewritten as (9):

yk = UOC (k) + a1 (UL(k − 1) − UOC (k − 1))

+ a2IL(k) + a3IL(k − 1) (9)

The mathematic recursive function of the battery model is

shown in (10):











ϕ1(k) = [1 UL(k−1) − UOC (k−1) IL(k) IL(k−1)]

θ1(k) = [UOC (k) a1 a2 a3]
T

yk = ϕ1(k)θ1(k)

(10)

The parameters that need to be used in SOC estimation are

R0, R1, and C1. However, the parameters identified by RLS

algorithms are UOC (k), a1, a2, and a3. Thus R0, R1, and C1

need to be solved by a1, a2, and a3, and the equations are

shown as follows:

R0 =
a3 − a2

a1 − 1

R1 =
2(a1a2 − a3)

a21 − 1

C1 =
T (a21 − 2a1 + 1)

4(a3 − a1a2)
(11)

IV. PARAMETER IDENTIFICATION

A. RLS ALGORITHM

The RLS algorithm has been widely used in many studies.

The core equations are listed in (12).











































yk = ϕ1(k)θ1(k) + e(k)

e(k) = UL(k) − ϕ1(k)θ̂1(k − 1)

K (k) =
P(k − 1)ϕT1 (k)

λ + (k)P(k − 1)ϕT1 (k)

P(k) =
P(k − 1) − K (k)ϕ1(k)P(k − 1)

λ
θ̂1(k) = θ̂1(k − 1) + K (k)e(k)

(12)

where, e(k) is the prediction error of the UL , θ̂1(k) is the

estimated parameter vector,K (k) is the algorithm gain vector,

P(k) is the covariance matrix, and λ, as a constant here, is the

forgetting factor.

B. VFF-RLS ALGORITHM

The forgetting factor is very significant for obtaining a desir-

able result in parameter identification. When λ = 1, the for-

getting function is not employed in the algorithm. The iden-

tification result is impacted by all the errors of the past data.

The RLS algorithm is as same as LS algorithm in this case.

When λ = 0, the identification result is only affected by the

current data error.

Here, a modified RLS algorithm which has a variable for-

getting factor (VFF-RLS) is put forward. In 1991, a variable

forgetting factor method is put forward by J.D. Park [18].

In his paper, the forgetting factor of RLS algorithms could be

optimized according to the prediction error at the present data

point. The equations of this method are shown as follows:

λ(k) = λmin + (1 − λmin) · 2L(k) (13)

L(k) = −NINT(ρe(k)2) (14)

where, NINT(x) is a function that makes x to the nearest

integer, ρ is a sensitivity gain. λmin is the minimum value

of the forgetting factor. In this method, the forgetting factor

would fluctuate between 1 and λmin, Which is affected by

the prediction errors e(k). If e(k) is infinity or a very large

value, the λmin will be obtained. When the e(k) is close to

zero, the λ will be close to 1 (the maximum value). λ would

change in an exponential rate and this rate is determined by

ρ. However, the battery parameter identification by using this

method cannot obtain a good result. Thus, J.D. Park’s method

need to be improved.

Firstly, the functionNINT(x) is employed to reduce the cal-

culation burden. However, it would lead to a serious problem

that the sensitivity of the algorithm is very low. For instance,

as long as the ρe(k)2 is smaller than 0.5, the L(k) would be

zero, which often occurs in battery model parameter identi-

fication. In this case, the λ would always be its maximum

value, which is hard to obtain good parameter identification

results. Thus, the effects of removing this function from the

algorithm on the calculation complexity is analyzed. It can

be seen from (13) that the L(k) is the exponential part of the

operation. The computational differences between fractional-

exponential and integer-exponential arithmetic in computers

are the object of concern here. The method of exponential

operation in computers is as follows:

xa = e(a ln x) (15)

In this method, whether a is an integer or a fraction number,

it would only affect the complexity of a multiplication step,

and the influence on the global complexity of the exponential

operation is little. Thus, removing NINT(x) would not lead to

much extra calculation burden on the algorithm.

Secondly, J.D. Park’s method only limits the minimum

value of the forgetting factor. Whether 1 is an appropriate
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value of themaximum forgetting factor needs to be discussed.

In Fig. 5, the parameter identification results in UDDS test are

illustrated. The algorithms used here are RLS algorithm with

different fixed forgetting factors.

FIGURE 5. Parameter identification results with different forgetting
factors. (a) OCV identification results. (b) R0 identification results.
(c) R1 identification results. (d) C1 identification results. (e) identification
results of dynamic voltage of R-C network.

Fig. 5 respectively show the parameter identification

results of UOC , R0, R1, and C1. The lines in blue, red, and

yellow color are respectively represent the parameter identi-

fication results of RLS algorithmwith 0.995, 1, and 0.985 for-

getting factor. It can be seen from the figures that when the

forgetting factor equals to 1, the identification results cannot

follow the changes of the parameters. It cannot competent in

the parameter identification of the lithium-ion batterymodels.

Thus, in this paper the maximum value in the variable forget-

ting factor is replaced by another value λmax. In battery model

parameter identification, e(k) would be affected by battery

working conditions. When the signals of current and voltage

are stable, the prediction errors of the algorithm would be

relatively small. Contrarily, when the signal changes dra-

matically, e(k) would be a large value. UDDS test is a very

dynamic battery working condition, and the forgetting factor

under this test should be a small value. This is the reason

that the RLS algorithm with a 0.985 forgetting factor has the

best parameter identification results among these algorithms.

Comparing with the parameter identification results of the

RLS algorithm with 0.985 forgetting factor, the parameter

identification results of the RLS algorithm with 0.995 for-

getting factor could only partly keep up with the changes of

parameters, and the accuracy is not satisfactory in this battery

working condition. However, in order to meet the demand for

large forgetting factor values under steady battery working

conditions, the maximum value of the forgetting factor in

this paper is selected as 0.995 that has good identification

performance in stable battery working conditions.

Additionally, the stability of J.D. Park’s method is not high.

This is because that the forgetting factor is determined by only

one data point, but the battery working condition need some

time to be reflected. In order to solve this shortcoming, a data

window theory is employed in this paper. In this method, the

originally single value is replaced by the mean square of all

the data in a window that moves over time. It could reduce the

disturbance of individual data points and increase the stability

of the algorithm

Therefore, the novel variable forgetting factor method is

shown as follows:

L(k) = −ρ

k
∑

i=k−M+1

eie
T
i

M
(16)

λ(k) = λmin + (λmax − λmin) · 2L(k) (17)

where, M is the range of the window.

In this method, the NINT(x) function is removed. The

maximum value of the forgetting factor is replaced from 1 to

λmax. The λ(k) is determined by the mean square value ofM

prediction errors. Therefore, the VFF-RLS algorithm is put

forward. This algorithm can quickly be converged when the

signal fluctuation is violent, and will keep a high estimation

accuracywhen the signal is stable. In this paper, an analysis of

convergence and robustness of this algorithm is done below.

V. SIMULATION ANALYSIS

Robustness is the ability of resisting the disturbance of sig-

nals. In order to simulate the situations that the BMS is
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FIGURE 6. Data loss working condition test profile.

failed or the data from sensors is not accurate, a ‘‘data loss’’

working condition is designed in this paper. This test is

modified from the DST test, and the profile of UL and IL is

shown in Fig. 6. In order to verify the robustness and conver-

gence ability of the VFF-RLS algorithm, this test is manually

divided into two sections. The first section is called the data

loss test section. In this section, five places of measured data

of both current and voltage for one thousand seconds, are

deleted manually in order to simulate a special situation that

some data are missing or unrecorded in actual measurement.

The data loss points are marked in Fig. 6, which time are at

1000 s, 2000 s, 3000 s, 4000 s and 5000 s. Because of the

impact of these missing data, the parameter values around

these points would change abruptly and the prediction error

would be very large. Thus, the higher the robustness and con-

vergence ability of the algorithm, the faster the identification

results converges to the real parameter value.

The second section is named standard DST section. In this

section, the profile of the current is in accordance with the

DST which is a kind of standard operation conditions. The

accuracy of the VFF-RLS which is under a normal battery

working condition would be verified in this section.

This simulation is carried out inMatlab/Simulink software.

The simulation platform is shown in Fig. 7.

FIGURE 7. Parameter identification simulation platform.

The identification result of parameter OCV in RLS algo-

rithm and VFF-RLS algorithm are shown in Fig. 8. The line

in blue color and red color are the parameter identification

results of OCV in these two methods respectively. And the

green line is the true value of OCV.

In RLS algorithm, the forgetting factor λ is set to be 0.965,

which is the best optimal value under this test. In VFF-RLS

algorithm, the maximum value of the forgetting factor λmax is

also set to be 0.965 in order to have a comparison with RLS

algorithm. The minimum value of the forgetting factor λmin

is 0.7 to improve the convergence ability of this algorithm.

The sensitive gain ρ is set to be 12000 in order to ensure the

sensitivity and stability of the algorithm. For the initial values

of θ , the first element OCV is set to the initial terminal voltage

4.178, and another three elements α1, α2, and α3 are 0.001.

The subfigures (a) to (e) in Fig. 8 illustrate the identification

results around the data loss points. It is easy to see that

the VFF-RLS algorithm has greater convergence ability at

the time of 1000 s, 2000 s and 4000 s, and it converges

earlier about 60 s than RLS algorithm. At time of 3000 s,

the prediction error of the VFF-RLS algorithm is accidentally

not large, so there is no obvious difference between these two

algorithms. At 5000 s, because of the accuracy of the algo-

rithm itself, the true value of OCV is close to the identified

value after the abrupt change. This situation also lead to a

small prediction error. So the VFF-RLS algorithm and RLS

algorithm have similar identification results around this point.

The subfigure (f) shows a period of the parameter identifica-

tion results in the standard DST section. The identification

results of OCV in VFF-RLS algorithm and RLS algorithm

have few differences in this section. While, close to the end

of the test, the identification results of these two algorithms

are slightly different. This is because that at the end of the

test, the OCV drops rapidly and the identification accuracy

of the algorithm itself is not high.
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FIGURE 8. OCV identification results of data loss working condition test.

FIGURE 9. Parameter identification errors of OCV.

It can be concluded that, mostly, when the OCV changes

drastically, meanwhile the signal is unstable or the system

fails, the identification results in VFF-RLS algorithm can

converge faster than in RLS algorithm. And after the conver-

gence period, the estimated OCV value is close to the real

value. The λ in VFF-RLS algorithm comes into a suitable

value to ensure the accuracy of the algorithm.

The prediction errors’ results of the RLS algorithm and

VFF-RLS algorithm are shown in Fig. 9.

It can be seen from the Fig. 9 that the identification errors

in VFF-RLS algorithm are lower than the errors in RLS algo-

rithm in the data loss section. It is obviously that the errors

of VFF-RLS could drop quickly after the data loss points to

reduce the errors, because of the response of forgetting factors

to that can be seen from Fig. 10. In addition, the performance

of VFF-RLS algorithm is almost as good as RLS algorithm in

the middle period of standard DST section. The identification

errors of VFF-RLS are apparently larger than the errors of

RLS algorithm at the end of the test. The errors root mean

square (RMS) values of RLS algorithm and VFF-RLS algo-

rithm are 0.0196 and 0.0227 in data loss section, 0.0181 and

0.0180 from 6000 s to 10000 s, 0.0479 and 0.0462 from

10000 s to 13458 s (the end of the test), 0.0296 and 0.0294 in

the whole process. In standard DST section, especially in

the end period of the test, the RLS algorithm has higher

accuracy. This is because that 0.965 is the optimal value of

the forgetting factor in DST test and the VFF-RLS algorithm

is designed to adapt to different battery working conditions.
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FIGURE 10. Evolution of forgetting factors under data loss working condition.

The accuracy of VFF-RLS algorithms is slightly lower than

the RLS algorithm with the optimal forgetting factor in a

specific working condition that is acceptable. In the data

loss section, the accuracy of OCV identification is improved

by the VFF-RLS algorithm and the signal disturbance is

overcome. It can be concluded that the robustness of the

RLS algorithm is improved by employing this novel variable

forgetting factor method.

VI. CONCLUSION

In this paper, a novel variable forgetting factor method based

on J.D. Park’s research is provided. Several improvements

are put forward by considering the practical application

of lithium-ion battery model’s parameter identification and

some deficiencies of J.D. Park’s method. Firstly, because

computational differences between fractional-exponential

and integer-exponential arithmetic in computers are not large,

the NINT(x) function is removed. Secondly, comparing with

the parameter identification results with different forgetting

factors, 1 is not a suitable value of the maximum forgetting

factor that is proved. The maximum value is replaced by

λmax. Additionally, in order to reduce the disturbance of a

single data point, a moving data window is employed in this

algorithm. The forgetting factor would be determined by the

mean square value of the prediction errors in the window.

By the comparison between the VFF-RLS algorithm and

the RLS algorithm, it can be concluded that: (1) The

VFF-RLS algorithm has great performance in robustness and

convergence ability when the signals are unstable. And it

could converge to the true value more quickly than RLS algo-

rithm. (2) If the prediction error is not large when the OCV

changes drastically, the VFF-RLS’s advanced convergence

ability may become invalid. (3) Both the VFF-RLS algorithm

and RLS algorithm have acceptable identification perfor-

mance under standard and stable battery working conditions.

Comparing to the RLS algorithm, the VFF-RLS algorithm

can optimize the contradiction between the demand of fast

convergence rate and the small parameter estimation error.

In theory, the VFF-RLS algorithm should have higher accu-

racy in parameter identification than RLS algorithms and this

would be verified further. This proposed VFF-RLS algorithm

can feed its identification results to State of Charge and State

of Health estimation in batterymanagement system in electric

vehicle and other systems requiring to online battery param-

eter identification, to enhance the anti-interference ability

of these systems. Moreover, this variable forgetting factors

can be used to other of RLS observers such as vector type

RLS with multiple forgetting factors, and other equivalent

circuit models of battery. For further research, this VFF-RLS

algorithm can be optimized by evolution algorithm such as

genetic algorithm and particle swarm optimization [16] and

a quantity of experiment data of different working condition

for higher adaptive ability in different working condition.
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