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Abstract—Previous video salient object detection (VSOD) ap-
proaches have mainly focused on designing fancy networks to
achieve their performance improvements. However, with the
slow-down in development of deep learning techniques recently,
it may become more and more difficult to anticipate another
breakthrough via fancy networks solely. To this end, this paper
proposes a universal learning scheme to get a further 3% per-
formance improvement for all state-of-the-art (SOTA) methods.
The major highlight of our method is that we resort the “motion
quality”—a brand new concept, to select a sub-group of video
frames from the original testing set to construct a new training
set. The selected frames in this new training set should all
contain high-quality motions, in which the salient objects will
have large probability to be successfully detected by the “target
SOTA method”—the one we want to improve. Consequently,
we can achieve a significant performance improvement by using
this new training set to start a new round of network training.
During this new round training, the VSOD results of the target
SOTA method will be applied as the pseudo training objectives.
Our novel learning scheme is simple yet effective, and its semi-
supervised methodology may have large potential to inspire the
VSOD community in the future.

Index Terms—Motion Quality Assessment; Video Salient Ob-
ject Detection; Semi-supervised Learning.

I. INTRODUCTION AND MOTIVATION

Different from images that comprise spatial information
only, video data usually contain both spatial (appearances) and
temporal (motions) information. To alleviate the computational
burden, most of the video related applications [1], [2], [3], [4],
[5], [6], [7] have adopted the video salient object detection
(VSOD) approaches as the pre-processing tool to filter the
less important video contents while highlighting the salient
objects that attract our visual system most, aiming to strike
the trade-off between efficiency and performance.

After entering the deep learning era, the state-of-the-art
(SOTA) VSOD approaches have achieved steady performance
improvements via various fancy networks, such as ConvL-
STM [10] and 3D ConvNet [11]. However, with the slow-down
in development of the deep learning techniques recently, we
shouldn’t anticipate for new breakthrough via fancy networks
solely. For example, compared with the leading SOTA method
in 2019 (i.e., MGA [12]), the performance improvement made
by the most recent work in 2020 (i.e. PCSA [13]) is really
marginal with a performance gap less than 1% averagely.
This fact motivates us to wonder why wouldn’t we develop a
universal learning scheme, rather than using fancy networks,
to get the SOTA performances further improved?
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Given an off-the-shelf VSOD approach (we name it as
the “target SOTA method”), this paper aims to improve its
performance via a novel learning scheme, and we formulate
our idea as following.
1) We shall select a sub-group of video frames from the
original testing set to construct a new training set, and these
selected frames are needed to be the ones that have been
“successfully detected” by the target SOTA method.
2) Consequently, we will achieve a significant performance
improvement by using this new training set to start a new
round of network training, in which the VSODs of the corre-
sponding SOTA method will be used as the training objectives
(pseudo-GT).
So, without using any saliency ground truth (GT) of the
original testing set, all that remains now is how can we know
which frames will be successful detected by the target SOTA
method in advance.

Our key idea is quite simple and straight-froward, which
is inspired by a common phenomenon in the SOTA methods;
i.e., for most of the SOTA VSOD methods, their performances
usually vary from frame to frame, even though these frames
belong to an identical video sequence sharing similar scenes.
For example, as is shown in Fig. 1, the 1st row shows 10
consecutive frames with similar scenes containing a worm as
the salient object; however, as is shown in the 3rd row, the
VSOD results of the SOTA method (SSAV [9]) in the frame
#17, #18, #21 and #24 are clearly better than other frames. The
main reason is that the VSOD performance is determined by
both spatial and temporal saliency clues. Though the spatial
saliency clues are usually stable between consecutive video
frames, the motion saliency clues may vary a lot due to
the unpredictable nature of movements, not to mention other
additional challenges induced by camera view angle changes.
So, we propose a brand new concept—“motion quality”, to
predict which video frames will have large probability to be
successfully detected by the target SOTA approach.

For those clear motions (e.g., rigid movements) which
can positively facilitate the VSOD task by separating salient
objects from their non-salient surroundings nearby, we name
it as the “high-quality motions”, and we call other cases as
the “low-quality motions” accordingly, see Fig. 2.

In most cases, we believe that those video frames con-
taining “high-quality motions” should be selected into our
new training set. To predict motion quality in advance, we
advocate a semi-supervised scheme to train our motion quality
perception module (MQPM) within a frame-wise manner, see
the Fig. 3-C and it will be detailed in Sec. III-B. As one of the
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Fig. 1. The key motivation of our method is to select a sub group video frames from the original testing set to construct a new training set, and these selected
frames should have high-quality motions (by our MQPM) and their VSOD provided by the target SOTA method will be used as the pseudo-GT to start a new
round training which will improve the target SOTA method significantly. SOD: the salient object detection results by feeding the optical flow data into the
pre-trained image salient object detection model (we choose CPD [8] here, see Eq. 1); SOTA: the VSOD of the target SOTA method (we take the SSAV [9]
for example) which we aim to improve its performance, and it can be any other SOTA methods; Ours: the final VSOD results after using our novel learning
scheme, of which the overall performance have outperformed the SOTA results, significantly.

Fig. 2. Motion quality demonstrations, where the high-quality motions can
usually separate salient objects from their non-salient surroundings nearby,
while the low-quality motions cannot achieve this.

key components in our learning framework, the MQPM takes
motion patterns (sensed by optical flow) as input, and then it
makes a binary decision regarding whether or not the given
frame contains high-quality motions. Meanwhile, in the case
of a video frame has some high-quality motions, the MQPM
will also provide the corresponding spatial locations of these
high-quality motions, and these spatial locations will be used
to facilitate the data filtering scheme (Sec. III-C2), another
key component in our learning framework, to double-check if
these motions really belong to the high-quality cases.

In summary, the main contributions of our method can be
summarized as following four aspects:

• A semi-supervised learning scheme to conduct Motion
Quality Perception (to the best of our knowledge, this is
the first attempt to improve the VSOD performance from
the motion quality perspective);

• A universal scheme to improve the performance of any

other SOTA methods (at least 3% performance improve-
ment in general);

• Extensive quantitative validations and comparisons (al-
most all SOTA methods in recent 3 years over 5 largest
datasets);

• Method source code and results are all publicly available
at https://github.com/qduOliver/MQP, which will have
large potential to benefit the VSOD community in the
future.

II. RELATED WORK

A. Image Salient Object Detection

The main target of image saliency ([14], [15], [16]) is to
fast locate the most eye-catching objects in a given image. In
general, there are two typical methods for the image salient
object detection (ISOD) task, including the full convolutional
networks (FCNs) based methods and the multi-task learning
(MTL) based methods, and we will briefly introduce several
most representative methods regarding these two types.

1) The FCNs based methods: The key rationale of the
FCNs based methods [17], [18], [8] is to utilize the multi-
scale/multi-level contrast computation to sense saliency clues.
In fact, different network layers usually show different saliency
perception abilities, i.e., those deeper layers tend to preserve
localization information solely, yet those shallower layers are
mainly abundant in tiny details. Thus, Hou et al. [17] proposed
to use short connections between different layers to achieve the
multi-scale ISOD, in which the coarse localization information
was introduced into the shallower layers, achieving a much
improved performance. Similarly, Wang et al. [18] adopted
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a top-down and bottom-up inference network, implementing
step-by-step optimization via a cooperative and iterative feed-
forward and feed-back strategy. Although these two most rep-
resentative methods have achieved significant performance im-
provements, their network structures are generally too heavy.
In contrast, Wu et al. [8] proposed a lightweight framework,
which discarded those high-resolution deep features to speed
up detection, of which the motivation is that those deep
features in shallower layers usually contribute less to the
overall performance yet at high computational costs.

2) The MTL based methods: The key rationale of the MTL
based methods is to resort additional auxiliary information
to boost the overall performance of the conventional single
stream methods, in which such information frequently in-
cludes depths [19], image captions [20] and edge clues [21],
[22], [23]. Zhu et al. [19] proposed to learn a switch map
to adaptively fuse the RGB saliency clues with the depth
saliency clues to formulate final ISOD result. Zhang et al. [20]
leveraged the image captions to facilitate their newly proposed
weakly supervised ISOD learning scheme, in which the key
idea is to utilize the feature similarities between different
caption categories to shrink the given problem domain. Qin
et al. [22] proposed a novel edge related loss function to
further refine the tiny details in the final ISOD maps. Similarly,
Zhao et al. [23] combined the edge loss function with multi-
level features to further improve the ISOD performance, in
which the edge related saliency clues are treated as an explicit
indicator to coarsely locate the salient objects.

B. Video Salient Object Detection

1) Conventional hand-crafted methods: Different to the
above mentioned ISOD methods, the video salient object
detection (VSOD) is more challenge due to the newly available
temporal information. Previous hand-crafted approaches [24],
[25], [26], [27], [28] have widely adopted the low-level
saliency clues, which were revealed individually from either
spatial branch or temporal branch, to formulate their VSOD.
To fuse spatial and temporal saliency clues, Wang et al. [24]
resorted both the spatial edges and the temporal boundaries
to facilitate the salient object localization. Guo et al. [25]
designed a primitive approach to identify the salient object by
ranking and selecting the salient proposals. Chen et al. [26]
devised a bi-level learning strategy to model long-term spatial-
temporal saliency consistency. Guo et al. [27] proposed a
fast VSOD method by using the principal motion vectors to
represent the corresponding motion patterns, and such motion
message coupling with the color clues together will be fed
into the multi-clue optimization framework to achieve the
spatiotemporal VSOD.

2) Deep-Learning based methods: The development of
convolutional neural networks (CNNs) has fulfilled the needs
for performance improvement in the VSOD field. To date,
since the spatial saliency can be measured via the off-the-
shelf ISOD deep models, considerable researches have been
paid to the measurement of temporal saliency within the deep
learning framework, in which the current mainstream works
can be categorized into two groups according to their network

structures [29], i.e., the single-stream network based methods
and the bi-stream network based methods.

We will introduce the single-stream network based methods
firstly. Le et al. [30] designed an end-to-end 3D network to
directly learn spatiotemporal information. This 3D framework
has added a refinement component at the end of its encoder-
decoder backbone network, and its key rationale is to resort
the semantical information of the deeper layers to refine its
spatiotemporal saliency maps. Li et al. [31] developed a novel
FCNs based network to conduct VSOD within a stage-wise
manner which mainly consists of two main stages; i.e., the
spatial saliency maps (using RGB information solely) will be
computed in advance, and then those spatial saliency maps
within consecutive video frames will be simultaneously fused
as the spatiotemporal saliency maps. To enlarge the temporal
sensing scope, Wang et al. [32] adopted the optical flow based
correspondences to warp long-term information into the cur-
rent video frame. Similarly, Song et al. [33] presented a novel
scheme to sense the multi-scale spatiotemporal information,
in which the key idea is to resort the bi-LSTM network to
extract long-term temporal features. Meanwhile, this work has
adopted the pyramid dilated convolutions to extract multi-scale
spatial saliency features, which will latterly be fed into the
above mentioned bi-LSTM network to achieve the long-term
and multi-scale VSOD. Fan et al. [9] developed an attention-
shift baseline and also released a large-scale saliency-shift-
aware dataset for the VSOD problem.

Different from the single-stream networks with limited
motion sensing ability [34], [35], the bi-stream networks [36],
[37] are usually capable of sensing the motion clues explicitly,
in which both the RGB frames and the optical flow maps
are treated as the input of their two subbranches, individually.
Then, both the spatial saliency clues and the temporal saliency
clues will be computed respectively and latter be fused as
the final VSOD results. Tokmakov et al. [38] proposed to
feed the concatenated spatial and temporal deep features into
the ConvLSTM network, aiming to strike an optimal balance
between its temporal branch and spatial branch. Li et al. [12]
exploited the motion message as attention to boost the overall
performance of its spatial branch. Most recently, Gu et al. [13]
learned the non-local motion dependencies across several
frames, and then it followed the pyramid structure to capture
the spatiotemporal saliency clues at various scales.

III. PROPOSED APPROACH

A. Method Overview

Given a pre-trained SOTA method (i.e., the target SOTA
method), our key idea is to use a subgroup of testing frames
with high-quality VSODs to train a novel appearance model,
and this novel model will significantly outperform the target
SOTA method eventually. To achieve it, our method mainly
consists of three steps, and the detailed method overview can
be found in Fig. 3.
1) Firstly, we weakly train a novel deep model, i.e., the Motion
Quality Perception Module (MQPM, blue box).
2) Next, we use the MQPM to select a subgroup video frames
(with high-quality motions) in testing set to formulate a new
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Fig. 3. The overall method pipeline. Our novel learning scheme can be applied to the conventional learning scheme (see subfigure-A), and it mainly consists of
three steps which have been marked by different colors (red, green and blue) in the subfigure-B; The motion quality perception module is the most important
component, and we have demonstrated its details in subfigure-C, where the marks from 1 to 7 respectively show the detailed dataflow.

training set (red box).
3) Finally, this new training set will be used to train a novel
appearance model with much improved VSOD performance
(green box).

B. Motion Quality Perception Module

We demonstrate the detailed MQPM pipeline in Fig. 3-C,
the ultimate goal of our approach is to provide a frame-wise
binary prediction regarding whether or not the given frame
contains high-quality motions. If yes, it will also provide the
spatial locations of the high-quality motions.

To achieve our goal, we should initially divide the training
instances (i.e., frames) of the original VSOD training set (i.e.,
Davis-TR [39]) into two groups, i.e., one includes frames with
high-quality motions, and another one includes frames with
low-quality motions only. Thus, the MQPM can be easily
trained by using this partition.

Now the problem is how can we automatically achieve such
motion-quality-aware partition in advance.

1) Motion Quality Measurement: As is shown in the 2nd
row of Fig. 1, we have demonstrated the corresponding optical
flow results (encrypted using RGB color) of some consecutive
frames in a given video sequence(i.e., the “worm” sequence
from the widely-used Davis set). Notice that these optical flow
results are computed by using the off-the-shelf optical flow
tool [40] to sense motions between two consecutive frames, in
which the RGB colors at different pixels denote the estimated
motion intensities and directions. It can be easily observed in
Fig. 1 that the video frames with high-quality motions (e.g., the
frame #18) usually share some distinct attributes in common,
i.e., the optical flow values inside the salient object (i.e., the
worm) will be totally different to the non-salient surroundings

nearby. Based on this, we propose a simple yet effective way
to measure the motion quality score (MQS) as Eq. 1 with a
quite straight froward rationale; i.e., the salient objects in those
frames with high-quality motions will have large probability
to be successfully detected by the off-the-shelf image salient
object detection method, and these frames should be assigned
with large MQSs.

MQSi = f
(
Θ(OFi),GTi

)
, (1)

where OFi denotes the optical flow result of the i-th frame,
and GT denotes the human well-annotated pixel-wise VSOD
saliency ground truth; Θ denotes a pre-trained image salient
object detection deep model, which we choose the off-the-shelf
CPD [8] due to its lightweight implementation; f denotes the
consistency measurement between the SOD made by Θ and
the GT. In fact, there are various consistency measurements
which are widely used to conduct quantitative evaluations,
such as MAE [41], F-Measure [42] and S-Measure [43].
For simplicity, we choose the S-Measure as the consistency
measurement f in Eq. 1. Notice that we have also tested
other measurements, but the overall performance won’t change
much, i.e., floating of two decimal places mostly.

2) Training Set for MQPM: To train our MQPM, we need
to weakly assign binary labels for each frame in the Davis
training set regarding whether it contains high-quality motions.
Therefore, we use the motion quality scores (MQS, Eq. 1) as
the key indicator to produce such labels (Labeli) as following:

Labeli =


0 if MQSi < λ

(i.e.,XL in F ig. 3C)
1 otherwise

(i.e.,XH in F ig. 3C)

, (2)
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Fig. 4. The detailed network architecture of our motion quality perception module (MQPM). For simplicity, we have omitted all up-sampling/down-sampling
operations.

where XH means high-quality optical flow frames, and XL
denotes low-quality movements. When motion quality scores
(MQS) is less than the threshold value λ, the label is assigned
to 1. Otherwise, the label is assigned to 0, where λ is a
pre-defined decision threshold. To ensure an optimal balance
between positive-1 and negative-0 training instances, we iter-
atively update λ until the convergence via Eq. 3 and Eq. 4.

ω =

∫∞
λ

MQS · P(MQS) d(MQS)∫∞
λ

P(MQS) d(MQS)
, (3)

λ = (1 + ω)/2, (4)

where P (MQS) is the probability distribution of MQS in the
entire VSOD training set.

Thus far, we can formulate the training set as {Xi, GTi,
Labeli}, where Xi denotes the i-th video frame, GT is the
original binary VSOD ground truth. Next, we will introduce
how to train the MQPM by using this training set.

3) MQPM Training: We formulate our MQPM training as a
multi-task procedure following the vanilla bi-stream structure,
in which one stream aims the binary motion quality prediction
(i.e., classification) and another stream conducts the pixel-wise
motion saliency detection (i.e., localization).

As is shown in Fig. 4, the MQPM takes the RGB encrypted
optical flow data as input, and its output comprises two
parts: 1) motion saliency map; 2) motion quality prediction.
The main network structure of MQPM comprises three com-
ponents: one feature encoder (VGG-16 [44]) and two sub-
branches with different loss functions.

The motion saliency branch takes the last three encoder
layers as input. Next, each of these input will be fed into the
widely-used multi-scale dilated attention module (with dilation
factors ranging between {2,4,6,8}) to filter those irrelevant
features. Thus, the motion saliency map can be computed
by applying the U-Net [45] decoder iteratively, in which the
binary cross entropy loss (LBCE) is used. Meanwhile, the

classification branch only takes the last decoder layer as input.
Thus, the total loss function can be represented as Eq. 5.

Ltotal = LBCE + LS, (5)

where the binary cross entropy loss (LBCE) can be detailed as
Eq. 6, and the LS is a typical binary classification loss as is
shown in Eq. 7.

LBCE = −
∑

i

∑
u

GTi(u)× log
(

MSi(u)
)

−
∑

i

∑
u

(
1−GTi(u)

)
× log

(
1−MSi(u)

)
,

(6)

where MSi(u) denotes the predicted motion saliency value at
the u-th pixel in the i-th frame; GTi(u) represents ground truth
value at the u-th pixel in the i-th frame; “×” is a conventional
multiplication operation; log is a typical logarithmic mathe-
matical operation.

LS = −
∑

i

[
Labeli × logQi

+ (1− Labeli)× log(1−Qi)
]
,

(7)

where LS is a logistic regression cost loss function; Qi denote
the confidence regarding the category predictions (i.e., high-
quality/low-quality motions); Labeli is the previously deter-
mined motion quality label (Eq. 2).

C. New Training Set For VSOD

1) Initialization: Thus far, the motion quality perception
module (MQPM) has been trained, providing two vital infor-
mation which can be used to improve the target SOTA method:
1) the binary motion quality prediction; 2) the motion saliency
map.
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Fig. 5. Qualitative comparisons with the current SOTA methods. Due to the limited space, we only list six most representative ones here, including PCSA20 [13],
SSAV19 [9], MGA19 [12], COS19 [46], LSTI20 [47] and CPD19 [8].

As we have mentioned before, the former one can be used as
an explicit indicator to tell which frames in the VSOD testing
set should be selected, while the latter will be used as a double-
check to ensure the selected frames are really with high-quality
motions which are capable of benefiting the VSOD training in
practice. Here we will use both of these two to facilitate the
construction of a new training set, which only comprises video
frames containing high-quality motions. And this new training
set will be used to start a new round of network training and
improve the target SOTA method performance eventually.

For each frame in the VSOD testing set, we first compute
its optical flow results frame-by-frame, and then feed these
optical flow results into the well-trained MQPM, and thus
those frames (i.e., the original frames rather than their optical
flow results) which are predicted to have contained “High-
quality Motions” will be directly pooled as the initial version
of the new training set.

Next, for each training instance ({Xi,Yi}) in this new
training set, it mainly consists of two components, including
the original frame X and the corresponding VSOD result
predicted by the target SOTA method (trained using both
spatial and temporal information) as its training objective (i.e.,
Y, see the pictorial demonstration in the red box of Fig. 3).

Also, it is worthy mentioning that we can not directly use

the motion saliency maps (i.e., the output of the localization
branch in Fig. 4) as the training objectives. The main reason
is that the motion saliency maps are usually with blur object
boundaries (due to absent of spatial information), and thus
the performance improvement may be severally limited if
we directly apply the motion saliency maps as the pseudo-
GT during this new round training, and the corresponding
quantitative evidences can be found in Table. III.

2) Data Filtering: As we have mentioned before, our
rationale is based on the assumption that the SOTA methods
tend to exhibit high-quality VSOD over those frames with
high-quality motions (see the quantitative proofs in Table. II).
In fact, this assumption holds in most cases. However, there
still exists exceptions occasionally.

As is shown in Fig. 1, our MQPM has predicted that the
#20 frame has large probability of containing some high-
quality motions, and the optical flow result of the #20 frame
(in the 2nd row) is indeed capable of separating the salient
object from its non-salient surroundings nearby, producing
high-quality motion saliency map as well (in the 3rd row).
However, the VSOD predicted by the target SOTA method
(i.e., it can be any SOTA method, here, we simply choose the
SSAV [9] for example) failed to completely detect the salient
object, and it may degrade the overall performance if the new
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TABLE I
ABLATION STUDY REGRADING OUR DATA FILTERING STRATEGY, WHERE BASELINE DENOTES THE TARGET SOTA METHOD (I.E., SSAV), SEE MORE

DETAILS IN SEC. IV-E.

Dataset Davis Segv2 Visal DAVSOD VOS

Metric maxF S-M MAE maxF S-M MAE maxF S-M MAE maxF S-M MAE maxF S-M MAE

Basline 0.861 0.893 0.028 0.801 0.851 0.023 0.939 0.943 0.020 0.603 0.724 0.092 0.742 0.819 0.073
T=1 0.892 0.910 0.019 0.826 0.873 0.020 0.934 0.939 0.018 0.686 0.764 0.076 0.755 0.820 0.067
T=1/2 0.890 0.908 0.018 0.824 0.866 0.019 0.934 0.935 0.018 0.686 0.760 0.074 0.760 0.819 0.066
T=1/3 0.889 0.906 0.020 0.833 0.874 0.019 0.938 0.942 0.016 0.696 0.769 0.072 0.758 0.825 0.064
T=1/4 0.893 0.908 0.018 0.832 0.870 0.018 0.934 0.933 0.016 0.693 0.768 0.074 0.756 0.822 0.063
T=1/5 0.894 0.906 0.020 0.836 0.880 0.019 0.935 0.940 0.017 0.699 0.774 0.071 0.767 0.831 0.066
T=1/10 0.888 0.906 0.019 0.836 0.876 0.018 0.940 0.939 0.016 0.698 0.769 0.071 0.738 0.812 0.070

TABLE II
PROOFS REGARDING THE EFFECTIVENESS OF OUR MOTION QUALITY PERCEPTION MODULE (MQPM). THE QUANTITATIVE METRICS INCLUDE THE
MAXF (LARGER IS BETTER), MEANF (LARGER IS BETTER), ADPF (LARGER IS BETTER), S-MEASURE (LARGER IS BETTER) AND MAE (SMALLER IS

BETTER). BY USING THE MQPM AS THE INDICATOR, THOSE FRAMES WHICH ARE PREDICTED TO HAVE HIGH-QUALITY MOTIONS CAN OUTPERFORM
OTHER FRAMES SIGNIFICANTLY, IN WHICH WE CHOOSE THE SSAV [9] AS THE TARGET SOTA METHOD FOR EXAMPLE HERE.

Quality Frames with High-quality Motions (HQ) Frames with Low-quality Motions (LQ)

Metric maxF meanF adpF S-M MAE maxF meanF adpF S-M MAE

Davis [39] 0.884 0.840 0.800 0.906 0.022 0.828 0.782 0.719 0.875 0.034
Segv2 [48] 0.864 0.808 0.834 0.881 0.024 0.780 0.726 0.709 0.852 0.024

DAVSOD [9] 0.653 0.621 0.626 0.753 0.080 0.642 0.611 0.611 0.738 0.086
Visal [49] 0.883 0.850 0.832 0.910 0.025 0.938 0.895 0.841 0.945 0.014
VOS [50] 0.767 0.739 0.749 0.815 0.073 0.734 0.697 0.700 0.816 0.074

Total 0.810 0.772 0.768 0.853 0.045 0.784 0.742 0.716 0.845 0.046

TABLE III
COMPONENT QUANTITATIVE EVALUATION RESULTS. THE QUANTITATIVE METRICS INCLUDE THE MAXF (LARGER IS BETTER), S-MEASURE (LARGER IS

BETTER) AND MAE (SMALLER IS BETTER), MORE DETAILS CAN BE FOUND IN SEC. IV-D.

Dataset Davis Segv2 Visal DAVSOD VOS

Metric maxF S-M MAE maxF S-M MAE maxF S-M MAE maxF S-M MAE maxF S-M MAE

MS Baseline 0.798 0.854 0.044 0.648 0.760 0.054 0.627 0.738 0.079 0.450 0.613 0.148 0.405 0.566 0.167
MS−MQPM 0.784 0.844 0.043 0.656 0.761 0.053 0.688 0.774 0.075 0.488 0.632 0.143 0.501 0.617 0.161
MS+MQPM 0.814 0.866 0.032 0.760 0.832 0.028 0.745 0.809 0.051 0.569 0.685 0.107 0.627 0.702 0.108

MS+MQPM+SOTA 0.894 0.906 0.020 0.836 0.880 0.019 0.935 0.940 0.017 0.699 0.774 0.071 0.767 0.831 0.066

training set contains a large number of such cases.
Meanwhile, we have noticed that there exists a large number

of consecutive frames in the testing VSOD set (almost 30%)
which are tend to be predicted as the ones containing high-
quality motions. Since these consecutive frames usually share
similar spatial appearance in general, it will easily lead to an
over-fitted appearance model if we use all these frames during
the up-coming training.

So, due to the above mentioned issues, we propose a novel
filtering scheme, aiming to exclude the less-trustworthy or
redundant training instances, see below.
1) For each frame in the new training set, we measure the
consistency degree (we choose the S-Measure, but not limited
to it) between its motion saliency map and the VSOD result
produced by the target SOTA method.
2) For each T frames in the new training set, only one
frame with the largest consistency degree—this consistency
degree is usually positively correlated to the trustworthy degree
regarding the VSOD predictions made by the target SOTA
method, will be remained (see the detailed ablation study on

T in Table I).

3) New Round Of Network Training: Once the new training
set has been constructed, we will conduct a new round of
network training on it. However, we can not directly retrain
the target SOTA model using this new training set, because it
only consists of individual video frames without any temporal
information; i.e., our new training set only preserves spatial
information, while the SOTA models need to be fed by both
spatial and temporal information. So, we choose to set up a
completely new model with an identical network structure to
the localization branch demonstrated in Fig. 4, and this new
model will be trained over this new training set by using the
common thread supervised training protocol (Eq. 6), and its
output will be our final VSOD results with much improved
performance compared with the target SOTA method.

Specifically, though this new round of training requires
additional time cost, the performance gain can still benefit
scenarios without speed requirements.
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TABLE IV
QUANTITATIVE COMPARISONS WITH CURRENT SOTA METHODS. THE TOP THREE RESULTS ARE MARKED BY RED, GREEN AND BLUE, RESPECTIVELY.

Dataset Metric Ours

2020 2019 2018 2017

PCSA LSTI SSAV MGA COS CPD PDBM MBNM SCOM SFLR SGSP STBP
[13] [47] [9] [12] [46] [8] [33] [51] [52] [53] [54] [52]

Davis [39]
maxF 0.894 0.880 0.850 0.861 0.892 0.875 0.778 0.855 0.861 0.783 0.727 0.655 0.544
S-M 0.906 0.902 0.876 0.893 0.910 0.902 0.859 0.882 0.887 0.832 0.790 0.692 0.677
MAE 0.020 0.022 0.034 0.023 0.023 0.020 0.032 0.028 0.031 0.064 0.056 0.138 0.096

SegV2 [48]
maxF 0.836 0.810 0.858 0.801 0.821 0.801 0.778 0.800 0.716 0.764 0.745 0.673 0.640
S-M 0.880 0.865 0.870 0.851 0.865 0.850 0.841 0.864 0.809 0.815 0.804 0.681 0.735
MAE 0.019 0.025 0.025 0.023 0.030 0.020 0.023 0.024 0.026 0.030 0.037 0.124 0.061

Visal [49]
maxF 0.935 0.940 0.905 0.939 0.933 0.966 0.941 0.888 0.883 0.831 0.779 0.677 0.622
S-M 0.940 0.946 0.916 0.943 0.936 0.965 0.942 0.907 0.898 0.762 0.814 0.706 0.629
MAE 0.017 0.017 0.033 0.020 0.017 0.011 0.016 0.032 0.020 0.122 0.062 0.165 0.163

DAVSOD [9]
maxF 0.699 0.655 0.585 0.603 0.640 0.614 0.608 0.572 0.520 0.464 0.478 0.426 0.410
S-M 0.774 0.741 0.695 0.724 0.738 0.725 0.724 0.698 0.637 0.599 0.624 0.577 0.568
MAE 0.071 0.086 0.106 0.092 0.084 0.096 0.092 0.116 0.159 0.220 0.132 0.207 0.160

VOS [50]
maxF 0.767 0.747 0.649 0.742 0.735 0.724 0.735 0.742 0.670 0.690 0.546 0.426 0.526
S-M 0.831 0.827 0.695 0.819 0.792 0.798 0.818 0.818 0.742 0.712 0.624 0.557 0.576
MAE 0.066 0.065 0.115 0.073 0.075 0.065 0.068 0.078 0.099 0.162 0.145 0.236 0.163

IV. EXPERIMENTS

A. Datasets

We have evaluated our method on five widely used public
available datasets, including Davis [39], Segtrack-v2 [48],
Visal [49], DAVSOD [9], and VOS [50].

• Davis dataset contains 50 video sequences with 3455
frames in total, and most of its sequences only contain
moderate motions.

• Segtrack-v2 dataset contains 13 video sequences (ex-
clude the penguin sequence) with 1024 frames in total,
containing complex backgrounds and variable motion
patterns, which is more challenging than the Davis dataset
generally.

• Visal dataset contains 17 video sequences with 963
frames in total, and this dataset is a relatively simple one
than others.

• DAVSOD dataset contains 226 video sequences with
23938 frames in total, which is the most challenging
dataset in the field, involving various object instances,
different motion patterns, and saliency shifting between
different objects.

• VOS dataset contains 40 video sequences with 24177
frames in total, yet only 1540 frames were annotated well,
in which the sequences are all obtained in indoor scenes.

B. Implementation Details

We have implemented our method on a PC with an Intel(R)
Xeon(R) CPU, Nvidia GTX2080Ti GPU (with 11G RAM)
and 64G RAM. We use the DAVIS-TR [39] as the initial
training set to train our motion quality perception model
(MQPM). Also, an ADAM optimizer [55] is applied to update
the network parameters. We set the batch size to 8 which takes
almost all GPU memory. The initial learning rate is set to 10e-
3. To avoid over-fitting problem, we have adopted the random
horizontal flips for data augmentation.

C. Evaluation Metrics

In order to accurately measure the consistency between the
predicted VSOD and the manually annotated ground truth,
we adopt three common used evaluation metrics, including
the maximum F-measure value (maxF) [42], the mean abso-
lute error (MAE) [41], and the structure measure value (S-
measure) [43].

D. Component Evaluation

We have conducted an extensive component evaluation to
verify the effectiveness of our proposed motion quality per-
ception module (MQPM), and the quantitative results can be
found in Table III. Meanwhile, the corresponding qualitative
demonstrations regarding this component evaluation can be
found in Fig. 7.

As is shown in Table III, the performance of the learned
motion saliency, which is denoted by “MS” and it can be
obtained via Θ(OFi) as mentioned in Eq. 1, have exhibited the
worst performance in all the adopted metrics. Then, by using
our MQPM (Sec. III-B) to formulate a new training set (MS
will be applied as the pseudo-GTs), the overall performance
can be improved significantly (denoted by “MS+MQPM”),
e.g., the maxF metric value in the VOS dataset has been
increased from 40.5% to 62.7%. Notice that we can not
achieve such performance improvements via the randomly
assembled key frames from the training set, and we denote
such implementation as “MS−MQPM”, of which the overall
performance is quite similar to the original MS baseline. For
example, in the breakdance video sequence of the Davis test-
ing set, the MQPM has selected 16 high-quality key frames.
For fair comparison, the “MS−MQPM” randomly select 16
frames as the key frames.

Since the object boundaries are usually blur in the MS
baseline, the overall performance of the above re-trained model
(i.e., “MS+MQPM”) is limited. Thus, we further resort our
data filtering strategy (Sec. III-C2) to introduce the target
SOTA results as the high-quality pseudo-GTs, of which the
corresponding results are shown in the last row of Table III
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Fig. 6. Qualitative comparisons between several most representative target SOTA methods and the corresponding VSOD results after using our novel learning
scheme.

TABLE V
QUANTITATIVE COMPARISONS OF SEVERAL MOST REPRESENTATIVE SOTA METHODS (SSAV19, MGA19, COS19, LSTI20, AND PCSA20) VS. THEIR

IMPROVED RESULTS BY USING OUR NOVEL LEARNING SCHEME.

Dataset Metric SSAV[9] SSAV* MGA[12] MGA* COS[46] COS* LSTI[47] LSTI* PCSA[13] PCSA*

Davis [39]
maxF 0.861 0.894 0.892 0.900 0.875 0.892 0.850 0.863 0.880 0.894
S-M 0.893 0.906 0.910 0.914 0.902 0.909 0.876 0.889 0.902 0.909
MAE 0.023 0.020 0.023 0.018 0.020 0.017 0.034 0.024 0.022 0.019

SegV2[48]
maxF 0.801 0.836 0.821 0.835 0.801 0.815 0.858 0.862 0.810 0.835
S-M 0.851 0.880 0.865 0.882 0.850 0.866 0.870 0.891 0.865 0.880
MAE 0.023 0.019 0.030 0.028 0.020 0.018 0.025 0.016 0.025 0.020

Visal[49]
maxF 0.939 0.935 0.933 0.933 0.966 0.956 0.905 0.916 0.940 0.942
S-M 0.943 0.940 0.936 0.931 0.965 0.955 0.916 0.928 0.946 0.946
MAE 0.020 0.017 0.017 0.015 0.011 0.010 0.033 0.022 0.017 0.014

DAVSOD[9]
maxF 0.603 0.699 0.640 0.672 0.614 0.643 0.585 0.627 0.655 0.680
S-M 0.724 0.774 0.738 0.755 0.725 0.736 0.695 0.718 0.741 0.751
MAE 0.092 0.071 0.084 0.075 0.096 0.086 0.106 0.093 0.086 0.077

VOS[50]
maxF 0.742 0.767 0.735 0.755 0.724 0.758 0.649 0.690 0.747 0.758
S-M 0.819 0.831 0.792 0.811 0.798 0.810 0.695 0.722 0.827 0.824
MAE 0.073 0.066 0.075 0.066 0.065 0.063 0.115 0.101 0.065 0.057

Fig. 7. The corresponding qualitative demonstrations regarding the component
evaluations in Table III, in which the “MS+MQPM+SOTA” has achieved
the best performance.

with the highest scores in all metrics, showing the effectiveness
of our data filtering strategy.

Also, it should be noted that we have simply chosen the
SSAV [9] as the target SOTA method here, because the off-the-
shelf SSAV model was pre-trained using the identical training
set as our method, which can avoid the data leakage problem.

E. Ablation Study

As we have mentioned in Sec. III-C2, there are almost 30%
video frames in the original testing set which will be predicted
to contain high-quality motions (we abbreviate it as the high-
quality frames). Due to the reasons we have mentioned in

Sec. III-C2, we believe that it is time-consuming and not
necessary to use all these high-quality frames to start a new
round of training. Thus, the main purpose of our data filtering
strategy is to automatically keep a small subgroup of high-
quality frames as the final training set.

Thus far, we have conducted an extensive ablation study
regarding the parameter T, and the detailed results can be
found in Table I. We choose T = {1/10, 1/5, 1/4, 1/3, 1/2, 1}
respectively, in which T = 1 means to use all those high-
quality video frames as the new training set, and T = 1/5
denotes only one frame with the largest consistency degree
will be remained for each 5 consecutive high-quality frames.
As is shown in Table I, the overall performance of our method
is moderately sensitive to the choice of T, in which the overall
performance via T = 1/5 have exhibited the best performance
in general, and a clear performance degradation can be found
when we assign T = 1/10. So, we set T = 1/5 as the
optimal choice to strike the trade-off between performance
and efficiency.

F. Comparisons to the SOTA methods

We have compared our method with 12 most represen-
tative SOTA methods, including PCSA20 [13],LSTI20 [47],
SSAV19 [9], MGA19 [12], COS19 [46], CPD19 [8],
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TABLE VI
RUNTIME COMPARISONS, WHERE WE HAVE EXCLUDED THE TRAINING TIME (I.E., THE FPS PROVIDED HERE IS ONLY THE INFERENCE SPEED), BECAUSE
THE TRAINING PROCEDURE MAY ONLY NEED TO BE CONDUCTED ONLY ONCE FOR MANY VIDEO SALIENCY BASED SUBSEQUENT APPLICATIONS. ALSO,

OUR METHOD TAKES ABOUT 80S TO CONSTRUCT THE NEW TRAINING SET, AND ANOTHER 600S TO CONDUCT THE FINE-TUNING IN 5 EPOCHES (THIS
WILL VARY WITH THE TRAINING SET SIZE); FOR A SINGLE TESTING FRAME, IT TAKES ABOUT 0.03S TO INFERENCE SOD RESULT.

Methods Ours PCSA20 [13] LSTI20 [47] SSAV19 [9] MGA19 [12] COS19 [46] PDBM18 [33] SCOM18 [56] SFLR17 [53] SGSP17 [54]

FPS 33 110 0.7 20.0 14.0 0.4 20.0 0.03 0.3 0.1
Platform GTX2080Ti GTXTitanXp GTX1080Ti GTXTianX GTX2080Ti GTX2080Ti GTXTitanX GTXTitanX GTX970 CPU

PDBM18 [33], MBNM18 [51], SFLR17 [53], SGSP17 [54],
STBP17 [52] and SCOM18 [56].

As is shown in Table IV, all quantitative results have indi-
cated that our method (we take the SSAV as the target SOTA
model here) have significantly outperformed these compared
SOTA methods for all tested datasets excepting the Visal
dataset, showing the performance superiority of our method. In
fact, the Visal dataset may be a bit different to other datasets,
i.e., the Visal dataset is dominated by color information, in
which the motion clues are usually at the second place to
determine the true saliency. As a result, the COS19, which
is heavily rely on the spatial domain, has exhibited the best
performance in the Visal dataset. Also, we have provided the
qualitative comparisons in Fig. 5, where our VSOD results
are more consistent to the GT than those compared SOTA
methods.

Moreover, our method can be applied to any other SOTA
VSOD methods to get its performance further improved. To
show such advantage, we have provided the direct comparisons
between several most representative SOTA methods and their
improved versions after using our learning scheme. As is
shown in Table V, our method can make averagely 5%
performance improvement generally and almost 9.6% regard-
ing the best case (maxF), and the corresponding qualitative
comparisons can be found in Fig. 6.

Also, we have conducted the running time comparisons to
the SOTA methods in Table VI, in which our method has
achieved the real-time speed with 33 FPS during the inference
phase. Although our total time is a bit time-consuming, there
are still advantages compared to other methods.

V. CONCLUSION

In this paper, we have proposed a universal scheme to boost
the SOTA methods within a semi-supervised manner. The key
components in our method include: 1) The motion quality
perception module, which was used to select a subgroup of
high-quality frames from the original testing set to construct
a new training set; 2) Data filtering scheme, which was used
as a double-check to ensure the overall quality of the newly
constructed training set. We have conducted an extensive
quantitative evaluation to respectively show the effectiveness
regarding these two components.
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